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Abstract
The realization of Majorana corner modes generally requires unconventional superconducting

pairing or s-wave pairing. However, the bulk nodes in unconventional superconductors and the low
T. of s-wave superconductors are not conducive to the experimental observation of Majorana corner
modes. Here, we show the emergence of a Majorana corner mode at each corner of a two-
dimensional topological insulator in proximity to a d+1d" pairing superconductor, such as heavily
doped graphene or especially a twisted bilayer of a cuprate superconductor, e.g., B1,Sr,CaCu,QOg,,
which has recently been proposed as a fully gapped chiral d,,_,,+1d,, superconductor with T close
to Its native 90 K, and an in-plane magnetic field. By numerical calculation and intuitive edge theory,
we find that the Interplay of the proximity-induced pairing and Zeeman field can introduce opposite
Dirac masses on adjacent edges of the topological insulator, which creates one zero-energy Majorana
mode at each corner. Our scheme offers a feasible route to achieve and explore Majorana corner
odes In a high-temperature platform without bulk superconductor nodes.
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FIG. 1. Schematic diagram of the proposed setup. A heterostruc-
ture composed of a 2D topological insulator deposited on a high-T7.
fully gapped d + id’ pairing superconductor such as a twisted bilayer
of cuprate superconductor monolayers and subject to an in-plane
Zeeman field. The sphere at each corner represents one zero-energy
Majorana corner mode.
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FIG. 2. Quasiparticle bands with edge spectra (red lines) and - . ~
bulk spectra (light blue lines) for an open boundary condition along ~ |IN conclusion, we have demonstrated that a heterostructure

the y direction for (a) i = 0, (b) ke = 0.75, and (¢) hy = 1. The gap ~ 'eomposed of topological insulators and twisted bilayer
for the edge spectrum closes at the critical Zeeman field 4, = 0.75.

(d) Quasiparticle bands with the edge spectrum (red lines) and bulk Cuprate superconductors can host MCMs when an in'plane
spectra (light blue lines) for open boundary conditions along the |Zeeman field is applied. Our proposed setup with fully gap

x direction with the critical Zeeman field A, = 0.75. (e) Eigenval- . d hish - h d
ues of the real-space TB Hamiltonian with 4, = 1 for a 30 x 30 Palring an Igh transition temperature has great aavantages

square size sample. (f) The density plot displays the corner localized |for the experimental observation of the zero-energy MCM

probability distribution of the four zero-energy MCMs 1n (e). I, II, signals. Our work may also stimulate further studies of
III, and IV label the four edges. Common parameters are my = 1,

o=t =de=A, =2,A; = Ay =0.5, 1 = 0.1. MCMs in twisted systems. Y
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