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Abstract

More is left to do in the field of flat bands besides the known research efforts. One of these unexplored areas is the flat bands featured in the two-
dimensional (2D) van der Waals (vdW) materials. Compared to 3D crystals, the 2D vdW materials with a lower dimension could easily map out
prominent flat-band lattice models and provide more straightforward visual evidence for the capture of prime features. Since vdW materials are
potentially applicable to the study of flat-band physics, it is urgent to develop a simple and efficient approach to finding realistic vdW crystals with
. desired flat bands. Here, we utilize a powerful high-throughput tool to screen feasible vdW materials based on the Inorganic Crystal Structure
Database. Through layers of filtration, we obtained 861 potential monolayers from 187093 items. Unlike existing screening schemes, a simple,
universal rule, i.e., 2D flat-band score criterion, is first proposed to efficiently identify 229 flat-band candidates, and guidance is provided to diagnose
the quality of flat bands in 2D systems. From the experimental accessibility perspective, we further provide a sub-catalog of 74 high-quality flat-band
candidates among those selected 229 flat-band materials. All these efforts to screen experimental available flat-band candidates will certainly
motivate continuing exploration toward the realization of this class of special materials and their applications in material science.
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Figure 4. Geometric structure and band structure of the
representative flat-band material NbsTel7. (a) Statistics of
the candidate’s entries include serial number, chemical for-

features of flat bands and illustrate the details of construct- mula, ICSD number of corresponding 3D material, space

ing a high-quality Flat-band Materials Category by two tiers: group number (SGN), and flat-band score (Score). The CL Y
primary targeting and secondary screening. tal structures of NbzTel7 (b), feature an apparent breathing-

kagome lattice formed by the Nb atoms (in red). The band
structure and density of states of the flat-band characteriza-
it tion for NbsTel; are plotted in (c¢). In the band-structure

& IR S plots, a flat band is remarked by the solid red line and is la-
yes T beled score=1.00. The orbital characters of the colored bands

Figure 1. The schematic flowchart of screening 2D van der
Waals flat-band materials. This workflow can identify the
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Figure 2. (a) Workflow to construct the 2D flat-band score
criterion; the core part is to determine the energy window
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hollow dots, and the blue and white diagonal striped area
represents the effective area defined by the expansion of the

. . Figure 5. (a) A schematic illustration of transforming a po-
yellow dashed line along with the Fw.

tential flat-band material into a high quality flat-band mate-
rial by adjusting the flat-band position to the Fermi level by
doping. The electronic structures of undoped (b) and doped
Conductivity (d) NbsTel7. (c) The hole-doping charge as a function of the
Fermi energy.
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In this work, we have performed a systematic search for flat-band vdW materials
and, we found that 229 items (score criterion: w = 50 further explored the flat-
band physical mechanism by mapping the types of lattices from the vdW
candidates. By implementing effective screening strategies for 861 unique
monolayers and AE = 2 eV) host high-quality flat bands. From the standpoint of
discrete values of w and AE. (b) Classification of fingerprint expe.rimental feasibility, we provide a sub-catalog of. 74 high-quality flat-band
charasteristios of 298 fat-band materisls obtained by w = candidates among those selected 229 flat-band materials. Our results work as a
50 meV and AFE = 2 eV, including the number of element 8uide for future theoretical and experimental studies on 2D flat-band vdW
species, conductivity, and magnetism. materials where exotic physics phenomena such as magnetism and
superconductivity can be further explored.
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Figure 3. (a) Distribution of high-quality flat-band materials




