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Fermi liquid and quasiparticles
Quasiparticle concept (Landau 1956, 1957)

Fermi liquid - a system of interacting Fermi particles

electron-like QP Quasiparticle (QP) — excitation in a Fermi liquid, it
) resembles an excitation in an ideal Fermi gas,
but not equivalent

hole —like QP

Due to interaction with other electrons and ions,
Fermi sea quasiparticle effective mass m* differs from
the free electron mass m,

In superconductors effective charge e” also differs
from electronic charge e

Excitation energy §:p2/2m*—p12:/2m* va(p—pF)

Quasiparticles have finite lifetime due to interaction with other electrons,
phonons, etc.



Fermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

L.D. Landau, ” Fermi-Liquid Theory”
Zh. Exp. Teor. Fiz., v.30, p.1058 (1956)



Fermi statistics
Low temperatures

Not too strong interactions
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin - , charge

b) decay rate is small as compared with the excitation energy

2. Substantial renormalizations. For example, in a Fermi gas

onfou, y=c/T, x/guy
are all equal to the one-particle density of states V.

These quantities are different in a Fermi liquid
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Weak Localization /

Quantum 8orreqt|ons to
con

uctivity

Two types of electronic scattering

elastic scattering, probability 1/t 1nelastic scattering, probability 1/,

Phase @ of the wave

function T<<7 - phase coherence
v oc exp(iet/ h) v

o=c¢ct/h



Experiment
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Anomalous (negative) magneto-resistance

R(€)
169,01

168,51

168,0[

167,5

G. Bergmann, Phys.Rep. 107, 1 (1981)



Aharonov-Bohm effect

O

With magnetic field H
0~ Q=21 /D,

Resistance is a periodic function of
the magnetic flux with the period

®_=h/2e
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FIG. 8. Longitudinal magnetoresistance AR(H)} at T=1.1 K
for a cylindrical lithium film evaporated onto a l-cm-long
quartz filament. Ry;=2kf, Rya/Ry;=2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for L,=2.2 pum, 7,./7,=0, filament diameter d=1.31 um,
film thickness 127 nm. Filament diamecter measured with scan-
ning electron microscope vields d =1.304+0.03 um (Altshuler
et al., 1982; Sharvin, 1984).



Metals with strong electronic scattering

G = A a5
S P ~ (100+1000) pQ-cm

n_% z31§x

J



Localization ??
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Effects of Coulomb Interaction
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ee - interaction (interference)

Ballistic regime r~vpl

Diffusion regime r~1 W ~ VFJE

" Phase exp(io)=expli(€;/h)t], Ap=(Ag/h)t

L ' Dephasing time T, ~ N A‘C’}

Ae~T

Dephasing length

Diffusing electrons keep coherence during time T,, keeping
the typical distance L,



Peierls transition

—_ a0

Shift of every second atom =>
period doubling a ->2a—
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Impurity band

Conduction band

E; K — __ Donor level
| O & O O
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Hopping conductivity

el



“Coulomb gap”
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Variable range hopping: Mott low

els, I'<<p=g,
g(e)

1 _=

Average distance r; (€) =

Energy difference ~ ¢

Number of states N(g) = g &
[IN@E)] ',
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Lowering of temperature

Mechanisms of hopping conductivity

Increase in scale

Ir Thermal delocalization

]*50_ _‘ U of carriers
________ CXp (_Eo/ T)

:> exp [~ (L—E,)/T)]
o0€
X

&

IT Nearest-neighbor hopping

T Variable-range hopping,
Mott law (T>d¢)

CXp [_ (TM/T)M]

[T Variable-range hopping,
Efros-Shklovskii law
(T<0¢)

CXp [_ (T ES/ T)m]
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Metal-insulator transitions

The defition: metal — c # 0

. —> has asenseonly at T =0
insulator — ¢ =10

Isolated point at the
phase diagram

n

M)
N\

insulator metal



Anderson localization

Quantum particle in random
quenched potential




Anderson transition

e
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Delocalized states first appear at the energy band center



Mott transition

3 length scales: y
1 2
)
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CIB — m*e2 e Khz
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agn.®> =0.25 point
Hubbard model




Energy scales (Thouless, 1972)

d is the number of
dimensions

_ E T hD/LZ is the diffusion const

E 7 has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

dimensionless
g=E, /O ; Thouless g= Gh/e’

conductance




Scaling theory of localization

E.Abrahams, PW.Anderson, D.C.Licciardello, and T.W.Ramakrishnan,
ﬂ ( ) Phys.Rev.Lett. 42, 673 (1979)

Metal - insulator transition in 3D
All states are localized for d=1,2




Fermi liquid and quasiparticles

Quasiparticle concept (Landau 1956, 1957)

Fermi liquid - a system of interacting Fermi particles

electron-like QP Quasiparticle (QP) — excitation in a Fermi liquid, it
) resembles an excitation in an ideal Fermi gas,
but not equivalent

hole —like QP

Due to interaction with other electrons and ions,
Fermi sea quasiparticle effective mass m* differs from
the free electron mass m,

In superconductors effective charge e” also differs
from electronic charge e

Excitation energy §:p2/2m*—p12:/2m* va(p—pF)

Quasiparticles have finite lifetime due to interaction with other electrons,
phonons, etc.



Semi-classical electron transport (Drude-Sommerfeld)

ky with electric field:
all electrons aquire drift velocity

* m

kd
hk
( —k L=V, =uE

722 energy diagram:
E = 5 states occupied with
m
F+} k. >0 ad E <FE<F"
e i EF
F- } states unoccupied with

k.<0 aod F <F<E,

2



Einstein relation for electric conductivity o -

conductance as a diffusion problem
dn  dn du dn

aill
= el —

n=n(4) _
metal / \ dx du dx / d 1
Density of elect k . Electric field
No currlent [ enstty oTelee roﬂ [- I(;::;'r:‘ltci:aall } [ ectric fie

2
dx
[ Conductivity [ Density of states

Diffusion coefficient D = vl /3
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Weak Localization /

Quantum corrections to
conductivity

Two types of electronic scattering

Elastic scattering, probability 1/t Inelastic scattering, probability 1/1,,

Phase (0 of the wave function T << T(P - phase coherence

y oc exp(iet/ h)
p=¢ct/h => op= O¢ t/h



Semiclassical description of electric conductivity

At low temperatures conductivity saturates and has the value

k.l >1 — loffe-Regel rule k. = (371:211)%

2 ™
o= A 03 (k,D)
L > Paax ~ (100+1000) uQ-cm

n_% ~3A

J

Semiclassical approach should break down for small values of /



First experiments in 1981-1982:

Anomalous behaviour of resistivity of disordered metallic films —

35,3

R ()

35,2

35,1 L

Au — S. Dorozhkin, et al.,

no saturation at low 7

-Au

AR/R=0,54%

&

15-10°Q)

Ac=

T (K)

JETP Lett. 36, 15 (1982)

7-10°

Ao

T'(K)

Cu — van der Dreis ef al., PRL 46, 565 (1981)

5,7215

5,7210

5,7205

5,7200

5,7195

R(Q)



Classical diffusion

Random walk
Density fluctuations o(r,?) at a

~.] given point in space r and time ¢.

Mean squared
distance from
the original

point at time ¢

(r(t)"y=Dt

op 2~ Diffusion
E_DV p=0 Equation

D - Diffusion constant

Probability to come back
(to the element of the
volume dV centered at

the original point)
dV

P(r(t) - O)dV: (Dt)d/z



Andrei Markov
1856-1922

Markov Chains

*A. A. Markov. « Rasprostranenie
zakona bol'shih chisel na velichiny,
zavisyaschie drug ot druga ». Izvestiya
Fiziko-matematicheskogo obschestva pri
Kazanskom universitete, 2-ya seriya,
tom 135, pp 135-156, 1906.

*A. A. Markov. « Extension of the limit
theorems of probability theory to a
sum of variables connected in a

chain ». reprinted in Appendix B of: R.
Howard. Dynamic Probabilistic
Systems, volume 1: Markov Chains.
John Wiley and Sons, 1971.



Diffusion description fails at short scales
Why?

Einstein: there is no diffusion at too short
scales - there is memory, i.e.,
the process is not marcovian.

r(t) =+ Dt Does velocity diverge at t — (?
No because at times shorter

dr D than mean free time

Al AL process is not marcovian and

dt 2t there is no diffusion

Quantum coherence:
there is memory at large distances



Diffusion description fails at large scales.
Why ?

There is phase memory at large distances
in quantum case

Quantum corrections at large conductance -
weak localization



WEAK LOCALIZATION

— 73— The particle
QY = pdl” can go around
the loop in
Phase accumulated fwo directions
when traveling
along the loop O

P =0,




Weak Localization /’

without interference

|A1|2+|A2|2= 2A%
|A4=[A,=A

T<<T o B phase coherence

with interference

A +A,2 =
A PHALR +2IAA, = 447 7

| g9

A2 are the quantum mechanical amplitudes

to return to the point I' by clockwise/
counter-clockwise propagation
with equal phases ¢, = ¢,

Conductance 1s defined by the probability
of transmission from rv to rr (left to right)

Probability to return to the point r increases
=> Conductance is reduced



WEAK LOCALIZATION

el The particle
qp — p dl/' can go around
the loop in
Phase accumulated two directions
when traveling
along the loop

2

Constructive interference —= probability to return
to the origin gets enhanced —= diffusion constant
gets reduced.

Tendency towards localization



Breakdown of classical diffusion

| p(rt)=(4nDt) 'exp (—/4Dt)

1 2 d
P = (4nDi)"? exp( 4Dt ] 21:

N

Diffusion coefficient D = clilv ~ TV’ = [

Distribution width after N steps

lﬁzlﬁzﬁz%

without interference |A |>+|A,|*= 2A2

with interference |A1+A2|2 =
= |APHA, 2 +2|AA,| = 4A%




How to estimate the correction to the conductivity ?

First, we introduce the concept of dimensionality:

Consider a film with thickness b

and compare the phase-breaking length L , with b

»

b<L, 6 =>di jonality d =2 :
” imensionality Typical size of a loop

b> L, =>dimensionalityd =3 providing the quantum
correctionis L,

In 3D correction to the conductivity is proportional to the probability P
to come back to the volume element dV :
P = dv/(Dt)3/?

Since semiclassical trajectory can be viewed as “wire” with diameter of the order of
the de Broglie wavelength 1, one can estimate dV ~ veld *dt

o 2 2
Ford=3 AGz—J‘VFKC;z—VF; (r_l/z—r;/z)zlz L1
© (D) D’ kel \ L, !

T



Summary of main results

ACT ~ _J‘ VF}\.«zdt ~ _VF}Lz (1_1/2 —’C_l/z) ~ 1 1 _1
s  Ypn> D R = A W

const T

L p —Phase-breaking length:
1
L,~.Dt, =I\/N =I(T(P/7:)é

Ty~ phase-breaking time

Zl

j=2 AcC _]—p v, Ndt o v\ n r%
(Dt)b Db T

Ao ¢ v Adt N_valz
(Dty2b? Db’

(L, =1)

T



. 3—d
Let us introduce Conductance O, = O'b

e[ 1 1
niL, |
2
e . L . .
Ao-z ~——|n % expressions for Ac do not contain n and O
B [
o>
Ao, ~—(I—L,)
h
. e? 74\ C. W.J. Beenakker and H. van Houten
Exactresult in 2D: —gsgy—z2 In (1 T ?’) Solid State Physics, 44, 1-228 (1991)

gs =2 1S spin degeneracy, gv 1s valley é’egenemcy (relevant for semiconductors)

This review 1s uploaded to Canvas (see the Modul Additional reading)



Diffusion _
coefficient Density of
states

The origin of weak localization:
correction to the diffusion coefficient due to interference, while density of

states remains unchanged
(inter-electron interactions are not taken into account)



Weak Localization

Effect of Magnetic Field




Weak Localization
without interference /

A A= 2A%

A=A, [FA

T << T N phase coherence

with interference

[AFA P = A PHALP+2]A A, = 4A7



Magnetoreszstance

oL G

No magnetic field With magnetic field B
Q, =0, P~ @=21 O/,

A + Az‘z = ‘Al‘z + ‘Az‘z +2|4,4,|cos p =247 (1+cos )
4| =4,




Breaking weak localization by magnetic field

low field regime Q7 << 1, Q =eB/m is the Larmor frequency

going around trajectory of area S

e i BS
N — — _7h/ —
b LI’exp(zhJ-Aa’lj—\I’exp(ir ), D, = é—h/Ze

O,
Phase difference ¢ = 21 (BS/ D))

all diffusive trajectories have different areas S

= weak localization is destroyed.

r=0 Average area S and flux BS depend on time

BS ~ Br ~ BDt



How to estimate the “breaking magnetic field”

Phase difference ¢ =2n (BS/®,))

We use BS ~ B;z ~ BDt and replace t by Z,

Since DT, = L’

one can formulate the condition of weak localization breaking

¢ =2n (BL,2/®;) =1

O, 7 _
Breaking field B =E(2)=—(DT¢) 1

@
P e

Magnetic length and magnetic time

1 2
_(n % L Py
zB_(AeB 0 =2 Lm0 (k)




Breaking weak localization by magnetic field

R (€Y
In strong magnetic field 169.0%

Mg
Yo Tp
I —> j 168,5¢
t t 44K
° ° ° 168 O- 692
in 2 dimensions V18,
2

1

2 L 1

AG(B)—Ac(0) ~ S In=2 2
h IB 167,5

-8 -6 -4 -2 0 2 4 6

[<<Il, <L, B(T)
G.Bergmann, Phys.Rep. 107, 1 (1981)

Two characteristic fields:
B,= @,/L S

Magnetic length
lp = (D, /B)l/z



Aharonov-Bohm interference etfects

~

\
(o

Ve

Resistance,
‘/\/ Electron wave

The particle can
o around the
oop in two

directions

N\

Magnetic field, B

Phase accumulated when
traveling along the loop

p=§(p-ed)dr

Resistance is a periodic function of the magnetic
flux with the period

D, = h/e



Aharonov-Bohm effect in the WL regime

J S (]S —

With magnetic ﬁeld H 0 10 20 30 40 50 60 70

H (Oe)
¢~ Q721 D/D

FIG. 8. Longitudinal magnetoresistance AR(H)} at T=1.1 K
for a cylindrical lithium film evaporated onto a l-cm-long
quartz filament. Ry;=2k), Rya/Ry;=2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for L,=2.2 um, 7,/7,=0, filament diameter d=1.31 pm,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope vields d =1.304+0.03 um (Altshuler
et al., 1982; Sharvin, 1984).

Resistance is a periodic function of
the magnetic flux with the period

®_=h/2e




Magnetoresistance of cylindrical films
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Weak antilocalization: spin-orbit coupling time

1 T | |
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Heterostructures:
spin-orbit interaction ~ Ee o E|uv]

dependence on external field : via V.

=> Dependence on gate potential

20

GaAs/AlGaAs

V,=200 mV

o °
oo0 Lof’ g9 Ko %
a07-en I~ Q © o o8
SR e 0 .00, S5 2
5o o T
) S
o

10

Ac (MQ)™
ja)

ooo

Ao, B enununax e /h

-10

—20 -150 mV
—o',4 —6,2 0 o,'2 0,'4
B (mT)
S.A. Studenikin ef al., J.B. Miller et al,

JETP L:ett. 77,362 (2003) PRL 90, 076807 (2003)



Weak Localization and dephasing rate

3.1 Kvﬂé

1.17 K

210 mK

O,
vy
AR/R

Y 4
@) 2% 7]
-
e 7
e o
5 ) m
s &
v I o
~ &
&
S

\// 0.04-0.02 000 002 0.04
V

B (T)
Echternach, Gershenson, Bozler, Bogdanov & Nilsson,

PRL 48, 11516 (1993)



Magnetoresistance

No magnetic field With magnetic field B
=, ¢ —@=2n O/D

AR/R

20.04 -0.02 0.00 0.02 0.04
B (T)



2
— ST RyL |
B

L,=4Dz, I =h/2eB

AR/R

L is the length of the wire
A is the wire cross-section

0.04 -0.02 000 002 0.04
B (T)

Dephasing rate can be measured



Temperature dependence of 7 ’
(from magnetoresistance)

Telns)

'-'.|.|Z||u_l .”:II'I

T
Echternach, Gershenson, Bozler, Bogdanov & Nilsson,
PRB 48, 11516 (1993)



Quantum corrections tfo

conductance due to e-e

interaction (the density
of states effect)
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Dephasing due to ee — interaction

ballistic y~v.t

diffusive r~1Jt/t ~v.rt

phase  exp(ip) =expli( g, /h)t], A= (Ag/h)t

A

Ae~T

L "I dephasing time T,, ~ N/ Ae }

dephasing length

Electrons diffuse and keep their coherence during time T,,

typical distance during this timeis L,, .



Using the expression for the nD
dephasing length “ * T

and replacing L.. by the system size L

we define the corresponding 7
energy scale, the Thouless energy ET =hD/L

E r has a meaning of the inverse diffusion time of the traveling
through the system.

It determines the “phase coherent” energy interval around Fermi
energy for a given system size L



Exchange interaction

Consider two electrons in states 1,2 with orbital wave functions g, (r) and @, (r)

Total wave function P= .'/- (9, (ry) @, (ra) £Py (F2) e (ry)]

sign ‘+’ for total spin S =0, sign ‘-’ for spin S =1
since the sum of the orbital (L) and spin (S) quantum numbers should be even

Average values of interaction energy [/ (r,—r,) are A4J

a={{U1o @)1 @ () P aV,av,
e S \ Ugy () 01 () @2 (7)) @ () 4V AV

—> shifts of the energy levels AE,=J, AE,=—1J
J - exchange energy



Exchange interaction and the density of states

Mean level spacing o :I/ng

'S

g Is the density of states

—

Exchange interaction leads to the shift
of the energy levels Agp —J " AE,=—1/J

= Effective “level repulsion” => Reduction of the density of states

This effect is realized only in the T, ~ N /At
“phase coherent” energy range determined by Ae ~ T



The result of level repulsion -

correction to the density of states:
Altshuler - Aronov (AL) effect

g(e)

gF; ler — €| > R/,
Q(T,E)E g(O?E)? :F“T:|E]_:‘—E|«'.’..f‘;i’l/'r'J
g(U:E:T)-, |EF—E!{T.



Tunneling experiments

25—~ T -
Si:B "~ /,/"110%
0.6_ 20_ \ ,
— 2 =
> = 1.5F
E 5 04 g
Q 2 =
A} . S1.0f
S 3 0.2 B
<Y} .
S
I 0.5}
0 L | 0
—~100 0 100 -2
V(mV) V(mV)
G. Hertel of al J.G. Massey, M. Lee
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PRL 50, 743 (1983
W.L. McMillan, J. Mochel 50, 743 (1983)

PRL 46, 556 (1981)

g(V)/g(15 mV)

V.Yu. Butko, J.F. DiTisa, P.V. Adams,
PRL 84, 1543 (2000)




Quantum correction to the conductivity
due to e-e interaction

e-e interaction influencrs transport via correction to the density of states.
The correction is proportional to the probability of e-e collision

within time
BT

J’ Vszdt d=123 => Altshuller — Aronov effect:

(D0 b
2
e 1 1
Aeeo-3 = -
h (Lee [ j




Influence of diffusion on the frequency of ee-collisions

1 1’
ballistic regime \ \/ 7 _ T7
Te 8F

diffusive regime

Size of interaction region L ee>>]/k , momentum transfer is small :

qg=1/L,, <<k
d
h/ 4 - 1 d/_| 1
%e éd /gd[fie , density of states &4 ™~ EFA lmé

(TR 4=

h_phagtar®s J) peie, d=2

\ T72%2072, d=3

This time constant t, controls the weak localization processes



dirty limit

T

h/et

clean limit

/



Effect of Coulomb
Interaction
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Impurity band

Conduction band

E; K — __ Donor level
| O & O O
>, |
= !
O
5 |
- : Acceptor level
I -
'*
Valence band | . -—

Distance

N

—l}/‘_l— Electric fields of

! : \ chftrged impurities
| —e /x(r—r,) shift the levels




Density of states in the impurity band

T Direct overlap of wave functions is negligible
conduction band is not formed => insulator at T=0
| (only thermally activated hopping is possible)

E,
—--" g .
D Bohr radius

2

TTTTT ~ N, a, = 7

2

C. e

5 ionization energy E, =
K<<1 . 2CZBK
low doping:
compensation K =N_/N, Na;, <<1, = &, <<E,
2

€
band width g, =— N>
K



Density of states in the impurity band

ele,
2 g(e)
1 L
0
—1
—2r K<<1

Weak compensation

ele,
2

" g(e)

= (Nd_Na)/gD

- - u
1—K<<1

Strong compensation



Coulomb gap

I
f&{ K=0.5 Energy of occupied states decreased
\ %\\ - Energy of empty states increased
\' 2
/
/
4
{
/
=

ol

0.15

K=0.9

A.L. Efros, N.V. Lien, B.I. Shklovskii 0.10L
J. Phys. C 12, 1023 (1979) ff
<Y}

0.05F




Coulomb gap

TSI NS SRS SO

H P <
A --‘ ___________ _
N rij
oW 2 4 g 8.—5.—37 >0 — e/ <.
I ’ Kr.
¥ ij
3D 3
@N 521(’3
Ng = _3S E ’ &)= oC
(&) g (ezj g(&) Py T
2D ;
_ K& ON |5|K2
Ng IVZS — |, E)=——C
U (&) ij (ezj g(&) P r




Another example of electronic phase transition:

Peierls transition

—Ljo‘lo‘lo‘lo‘lo‘lo‘l»

Period doubling a — 2a

I € 1 g(¢)

—'}c/a —1t/2a 0 n/2a Tc/-a Ex g



Hopping conductivity

el



Main characteristics of an impurity band

Bohr radius
Khz
m e’

2
e

band width &p = ;Né”

dp =

low doping regime: a g << r;
where r;; 1s the distance
between neighboring sites

Compensation factor K=N_/N, Na, <<1, = &, <<E,

Hydrogen atom: attractive Coulomb potential U = —(e”/7)

the Bohr radius ag = h*/me?
Y (r) — C*('n,)fr’f”_1 exp(—r/nag) asr — oo, (n=1,2,3,...)

In the ground state (n=1) localization length equals a ,



Hopping probability
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Abrahams-Miller net
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Experiment
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H.Fritzsche, M.Guevas, PR 119, 1238 (1960)

Neutron-irradiated Ge

As a result of nuclear reaction

one of Ge isotopes -> Ga
another Ge isotope - > As

Ga —acceptors, As — donors

K=0.4 1s fixed

while /V , 1s a function of irradiation time



Basic ideas of percolation theory

- The nodes are introduced which are characterized by concentration n
and the radius r ofinteraction between neighboring nodes

- Percolation is the problem of global connectivity across the whole
sample via connected nodes

- In the case of electrons the interaction radius P is controlled by a g



3D

2D

Percolation theory: Random nodes

The percolation threshold depends on a number of
nodes within the interaction radius r

The number of nodes in a sphere with radius r

4 ,
—r’n

3

where n is the concentration of nodes

Numerical results for critical concentration n




Nearest neighbour hopping

Abrahams-Miller net

ul
R; =Rye”
ij
= 2r, €
U, = iy i
a, T
& T-dependent factor is the same
o /T 3
for all transitions

Dependence on concentration: 7 if in the

Abrahams-Miller relation is replaced by r




Experiment

Percolation threshold 4nr3n B =27 => ro= 0.865 n_%

H.Fritzsche, M.Guevas,

Phys. Rev. 119, 1238 (1960) R.Ray, H.Fan, n-GaAs 1.7 1.88 1.9

Ga —acceptors, As - donors Phys. Rev. 121, 768 (1961)

n-InP 1.9
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Variable range hopping: Mott law

g/gD T<<Mz8D _
Pt8y = === mmmm =
] _H__ " ey
i W =mmm T
O ‘

Number of states  N(€) =g, ,
Average distance 1 (€) =[N3, average energy spacing is €

parameter u;; of Miller —Abrahams net

. 2 L€ 2 L€
T INE T gl T
d

u; depends on € and reaches its minimum when E“U ()=0

%
| T ! B 7 3 -l
=> €min — 1/3 (T Mott) > TMotz‘ - (aBgu)

aBgu




Mott law
Average hopping length r= l’:j (Smin)

= (8,6m) = ag( MO%j%

Resistance T %
p=poexp( Py | (@=3
For d=2
-1 2 €
=[N(e A, Y, =1
7

T _

8rnin = {g%a J o (T Mott)/ TMott = (guag) 1
n B

P =P,y eXp (TMO% j% (d =2)




Coulomb gap

TSI NS SRS SO

H P <
A --‘ ___________ _
N rij
oW 2 4 g 8.—5.—37 >0 — e/ <.
I ’ Kr.
¥ ij
3D 3
@N 521(’3
Ng = _3S E ’ &)= oC
(&) g (ezj g(&) Py T
2D ;
_ K& ON |5|K2
Ng IVZS — |, E)=——C
U (&) ij (ezj g(&) P r




Variable range hopping: Shklovskii-Efros
Coulomb gap

K

g(e)= (ezj e|”, g(0)=0

Number of states in & - interval near Fermi level

o[

Same procedure as in the Mott case

? 2
’”ij:[N(S)]_%l:e, u; = 2 y+8:28 +8,
we a;[N(e)¢ T xaze T
/2 >
2¢’T ) 2e
Emin :( j :(TTES)Aa Lpg=—
Ka, Ka,

resistance

P =P, eXp (TE%)% (d =3,2)




Lowering of temperature

Mechanisms of hopping conductivity

Increase in scale

Ir Thermal delocalization

]*50_ _‘ U of carriers
________ CXp (_Eo/ T)

:> exp [~ (L—E,)/T)]
o0€
X

&

IT Nearest-neighbor hopping

T Variable-range hopping,
Mott law (T>d¢)

CXp [_ (TM/T)M]

[T Variable-range hopping,
Efros-Shklovskii law
(T<0¢)

CXp [_ (T ES/ T)m]



Variable range hopping: experiment

temperature dependence, fitting by standard functions
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More experiments: Si:B

T(K)
el 02 0l 0.05
1§
10’ _ =
Cl S
5 1025_ | L 2
St 06 07 08 09 o
(@R 1— \&
10? é
1_ - O'(1).6 | 08 1.0
E ﬁ.\ 10—1 ‘ ‘ | . | ) TI (K I)
01- = 0 4 8 12 16 20 24
0 § /T (1/K)
<
v Looa T®g, 0.04
R ' ]
J.G. Massey, M. Lee, p
PRL 75, 4266 (1995) o
S
N
s
‘=
A
ol

T—1/2 I3<—1/2
(K



PHYSICAL REVIEW B VOLUME 52, NUMBER 8 15 AUGUST 1995-11

Electric-field activated variable-range hopping transport in PrBa,Cu;0-_;

G. K. van Ancum, M. A. J. Verhoeven, D. H. A. Blank, and H. Rogalla
Department of Applied Physics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
(Received 25 January 1995)

We demonstrate the transport of charge carriers in PrBa,Cu;0,_; (PBCO) to be dependent both on
the applied electric field and on the temperature. In our measurements we use inert noble-metal contacts
on laser ablated and sputtered PBCO films. By applying the transmission line model we are able to
separate the contact resistance from the PBCO resistance. The average hopping distance can be found
by extending Mott’s formula to field activation, and is found to be much greater than the dimensions of
the PBCO unit cell. From the measurements in strong electric field a minimum hopping distance in the
direction of the applied field of about 14 nm is determined, which we discuss in terms of localized states
and intrinsic mixed valence of the Pr atoms in the PBCO film.
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FIG. 3. The PBCO resistivity pppco for laser ablated and
sputtered films in zero electric field.



Magnetoresistance of PrBa,Cu;0,_; thin films

G. K. van Ancum, M. A. J. Verhoeven, D. H. A. Blank, and H. Rogalla
Department of Applied Physics, University of Twente, PO. Box 217, NL-7500 AE Enschede, The Netherlands

(Received 26 June 1995)

Transport of charge carriers in PrBa,Cu;04_ 5 (PBCO) is often described by variable-range hopping (VRH).
Until now the VRH mechanism was confirmed merely on the basis of a temperature dependence of the
resistivity following Mott’s law. In this article we show a positive magnetoresistance in PBCO thin films,
depending exponentially on the applied magnetic field. This provides substantial additional evidence for a
variable-range hopping transport mechanism. Both a strong-field and a weak-field magnetoresistance can be
identified. At temperatures above 30 K we observe weak-field magnetoresistance, at 4.2 K we detect a transi-
tion from weak-field to strong-field magnetoresistance at a magnetic field of approximately 4.5 T. In the
weak-field regime the radius of the localized wave function is only affected marginally by the applied magnetic
field. In the strong-field regime the radius of the localized wave function decreases with increasing magnetic
field. From the measurements in the strong-field regime we obtain an estimate for the two-dimensional density
of localized states in the PBCO thin film of approximately 210" 1/eVm?®.
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FIG. 2. Magnetoresistance at 100, 60, and 30 K (sample No. 1).
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