Problem set 1

Use the material from **Problem set 1**
V.F.Gantmakher "Electrons and Disorder in Solids", Chapter 1
A.A. Abrikosov "Fundamentals of Theory of Metals", Chapter 3
e the expression for electronic diffusion coefficient D in a metal (consider two-**Problem set 1**

Use the material from

V.F.Gantmakher "Electrons and Disorder in Solids", Chapter 1

A.A. Abrikosov "Fundamentals of Theory of Metals", Chapter 3

the expression for electronic diffusion coefficient D in a

Problem set 1
Use the material from
V.F.Coantmakher "Electrons and Disorder in Solids", Chapter 1
A.A. Abrikosov "Fundamentals of Theory of Metals", Chapter 3
- Derive the expression for electronic diffusion coefficient and three-dimensional cases). Derive the Einstein relation between D and electrical conductivity. Estimate resistivity of a typical metal (take Cu or Au as an example) assuming the mean free path ~ 100 nm. **Problem set 1**
Use the material from
V.F.Gantmakher "Electrons and Disorder in Solids", Chapter 1
A.A. Abrikosov "Fundamentals of Theory of Metals", Chapter 3
Derive the expression for electronic diffusion coefficient D

and discuss its main features in terms of various mechanisms of electronic scattering (impurities, electron-electron and electron-phonon interaction).

Preoblem set 2
- Using the weak localization theory, explain the main features of the exp
shown below **Preoblem set 2**
- Using the weak localization theory, explain the main features of the experimental data
shown below
Au – S.I. Dorozhkin, *et. al.*, JETP Lett. **36**, 15 (1982)
Cu – L.Van der Dreis *et. al.*, PRL **46** shown below

Au - S.I. Dorozhkin, et. al., JETP Lett. 36, 15 (1982)

lengths in Au and Cu at $T = 2 K$.

Prove that the condition $\Omega \tau \ll 1$ is fulfilled,

Problem set 3

Problem set 3
- Estimate a Coulomb gap in a material with permittivity $\kappa=10$
(a) in 3D regime with carrier concentration 10^{16} cm⁻³
(b) in 2D regime with carrier concentration 10^{12} cm⁻²
- Consider thin fil (a) in 3D regime with carrier concentration 10^{16} cm⁻³ (b) in 2D regime with carrier concentration 1012 cm-2

Problem set 3

- Estimate a Coulomb gap in a material with permittivity κ=10

(a) in 3D regime with carrier concentration 10^{16} cm⁻³

(b) in 2D regime with carrier concentration 10^{12} cm⁻²

- Consider thin fil and effective mass 0.1m_e . Estimate crossover temperature when electronic hopping behaviour changes from three-dimensional to two-dimensional regime i.e. when the resistivity behaviour changes from **Problem set 3**

- Estimate a Coulomb gap in a material with permittivity κ =10

(a) in 3D regime with carrier concentration 10^{16} cm³

(b) in 2D regime with earrier concentration 10^{12} cm³

- Consider thin f **Problem set 3**
 Example 36
 Example 36
 Example 36 concentration 10^{16} cm³
 (b) in 2D regime with carrier concentration 10^{16} cm³
 Consider thin film with thickness 100 nm, permittivity κ **=10, conce** (b) in 2D regime with earrier concentration 10¹² cm².

- Consider thin film with thickness 100 nm, permittivity κ =10, concentration of carriers 10¹⁸ cm³

and cflective mass 0.1m_e. Estimate crossover temperat

 $\rho = \rho_0 \exp(T_M / T)^{1/4}$

to

 $\rho = \rho_0 \exp(T_M / T)^{1/3}$

Hint: the discussion for two dimensions can be found e.g. on pp.73-74 in Datta's textbook "Electronic transport in mesoscopic systems".

of Thouless energy and mean level spacing for any sample dimensionality. Discuss the physical meaning of Thouless energy.