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Part 1: Quasiclassical approximation. Barriers and wells
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Correspondence rules 1 and 2

Correspondence rule 1 between exponentially decaying solution in the forbidden region and

standing wave in the accessible region

1

2

1√
|p(z)|

exp

−1

~

∣∣∣ z∫
z0

p(z) dz
∣∣∣
 at E‖ < U(z) =⇒

1√
p(z)

cos

1

~

∣∣∣ z∫
z0

p(z) dz
∣∣∣− π

4

 at E‖ > U(z).

Correspondence rule 2 between travelling wave and decaying solution

1√
p(z)

exp

 i

~

z∫
z0

p(z) dz + i
π

4

 ïðè E‖ > U(z) =⇒

1√
|p(z)|

exp

1

~

∣∣∣ z∫
z0

p(z) dz
∣∣∣
 ïðè E‖ < U(z).
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Transmission through quasiclassical potential barrier

U(z)

E‖

z0

1
2 |p(z)|−1/2 exp

(
h̄−1

∣∣∣∣∣
z∫
z0

p(z)dz

∣∣∣∣∣
)

p(z)−1/2 cos

(
h̄−1

∣∣∣∣∣
z∫
z0

p(z)dz

∣∣∣∣∣− π
4

) U(z)

E‖

z0

p(z)1/2 exp

(
ih̄−1

z∫
z0

p(z)dz + iπ4

)
|p(z)|−1/2 exp

(
h̄−1

∣∣∣∣∣
z∫
z0

p(z)dz

∣∣∣∣∣
)

If incident wave runs from left to right, then there is outcoming travelling wave in the area

behind the barrier (z > z2)

ψIII (z) =
C√
p(z)

exp

 i

~

z∫
z2

p(z) dz + i
π

4

 .

Wave function inside the barrier (z1 < z < z2) can be found using the quasiclassical

boundary condition 2

ψII (z) =
C√
|p(z)|

exp

1

~

∣∣∣∣∣∣∣
z∫

z2

p(z) dz

∣∣∣∣∣∣∣
 .
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Inside the barrier (z < z2) we have∣∣∣∣∣∣∣
z∫

z2

p(z) dz

∣∣∣∣∣∣∣ =

z2∫
z

∣∣p(z)
∣∣ dz =

z2∫
z1

∣∣p(z)
∣∣ dz − z∫

z1

∣∣p(z)
∣∣ dz .

We can rewrite the expression for the wave function inside the barrier in the form

ψII (z) =
C√
|p(z)|

exp

1

~

z2∫
z1

|p(z)| dz

 · exp

−1

~

z∫
z1

|p(z)| dz

 .

Using quasiclassical boundary condition 1, one can get the solution in the area in front of

the barrier (z < z1)

ψI (z) =
2C√
p(z)

exp

1

~

z2∫
z1

|p(z)| dz

 · cos

1

~

z1∫
z

p(z) dz − π

4

 =

=
2C√
p(z)

exp

1

~

z2∫
z1

|p(z)| dx

 · cos

1

~

z∫
z1

p(z) dz +
π

4

 .
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Taking into account cosα = (e iα + e−iα)/2, we come to the solution in the form of two

travelling waves (incident + re�ected)

ψI (z) =
C√
p(z)

exp

1

~

z2∫
z1

|p(z)| dz

 · exp

 i

~

z∫
z1

p(z) dz + i
π

4

+

+
C√
p(z)

exp

1

~

z2∫
z1

|p(z)| dz

 · exp

− i

~

z∫
z1

p(z) dz − i
π

4

 .

Comparing the amplitudes of the waves, we can �nd the amplitudes of re�ection and

transmission

r ' exp
(
−i π

2

)
and t = exp

−1

~

z2∫
z1

|p(z)| dz

 .

Coe�cients of re�ection and transmission are

R = |r |2 ' 1 and T = |t|2 = exp

−2

~

z2∫
z1

|p(z)| dz

 .
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Kemble formula∗

Kemble formula for quasiclassical barrier and arbitrary energy of incident particle

T =

1 + exp

 2

i~

z2∫
z1

p(z) dz



−1

.

If the full energy is smaller than the barrier height, then both classical turning points can

be found from the condition U(z1,2) = E . Since in the barrier area z1 < z < z2 kinetic

energy is formally negative, then p(z) = i |p(z)| and

T =

1 + exp

2

~

z2∫
z1

|p(z)| dz



−1

, provided that E‖ < max U(z).

If the barrier height signi�cantly exceed the energy (limit of low-transmission barrier), then

T = exp

−2

~

z2∫
z1

|p(z)| dz

 , provided that E‖ � max U(z).
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Bohr-Sommerfeld quantization rule

U(z)

z1 z2En

Quantized states in

one-dimensional potential well:

U(z) is the pro�le of potential

energy

En is n-th energy level

z1 and z2 are classical turning points

for the n-th energy level

According to the quasiclassical boundary condition 1, the exponentially-decaying solution

at z > z2 gives us the following oscillating solution in the accessible region z < z2

ψ(z) =
C√
p(z)

cos

1

~

z2∫
z

p(z) dz − π

4

 .

If we apply the same condition to the point z1, we get an alternative expression for the

wave function in the region z > z1

ψ′(z) =
C ′√
p(z)

cos

1

~

z∫
z1

p(z) dz − π

4

 =
C ′√
p(z)

cos

−1

~

z∫
z1

p(z) dz +
π

4

 .
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In order to guarantee that both expressions

ψ(z) =
C√
p(z)

cos

1

~

z2∫
z

p(z) dz − π

4

 , ψ′(z) =
C ′√
p(z)

cos

−1

~

z∫
z1

p(z) dz +
π

4


corresponds to the same wave function, the di�erence of the arguments of the cos-functions

should be a multiple of π (provided that C = (−1)nC ′, where n is integer)1

~

z2∫
z

p(z) dz − π

4

−
−1

~

z∫
z1

p(z) dz +
π

4

 =
1

~

z2∫
z1

p(z) dz − π

2
= πn.

It leads to well-known Bohr-Sommerfeld quantization rule in the following form

1

π~

z2∫
z1

p(z) dz = n +
1

2
, n = 0, 1, 2, ...

or in the alternative form of closed integral

1

2π~

∮
p(z) dz = n +

1

2
, n = 0, 1, 2, ...
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Illustrative example: particle in a parabolic potential well

Assume that the potential energy can be written in the form U(z) = m∗ω2z2/2, where ω

is the frequency of oscillations.

Let En be the full energy of a particle at the n-th energy level.

From the condition U(z) = En we �nd the coordinates of the turning points

z1,2 = ±
√

2En

m∗ω2
.

We apply Bohr-Sommerfeld quantization rule

1

π~

√
2En/(m

∗ω2)∫
−
√

2En/(m
∗ω2)

p(z) dz =
2m∗ω

π~

√
2En/(m

∗ω2)∫
0

√
2En

m∗ω2
− z2 dz =

2

π

En

~ω
arcsin 1 = n +

1

2
.

Taking into account that arcsin 1 = π/2, we get

En = ~ω
(
n +

1

2

)
, n = 0, 1, . . .

This result coincides with the exact solution of the quantum-mechanical problem.
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Illustrative example: particle in a square potential well

Assume that the potential energy can be written in the form U(z) = 0 for 0 < z < w and

U(z) =∞ outside this region; w is the width of the potential well.

The coordinates of the turning points do not depend on the particle energy

z1 = 0 and z2 = w .

We apply Bohr-Sommerfeld quantization rule

1

π~

w∫
0

p(z) dz =

√
2m∗En

π~

w∫
0

dz = n +
1

2
or En =

π2~2

2m∗w2
·
(
n +

1

2

)
2

, n = 0, 1, . . .

Reminder: the exact formula reads

En =
π2~2

2m∗w2
· n2, n = 1, 2, . . .

Thus, the approximate WKB-result coincides with the exact solution only for n� 1.

Question: is it possible to improve the Bohr-Sommerfeld quantization rule?
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Modi�ed Bohr-Sommerfeld quantization rule∗

∆ϕ = h̄−1
z2∫

z1

p(z)dz

∆ϕ = h̄−1
z1∫

z2

(−p(z))dz
∆ϕ∗ = −π/2

∆ϕ∗ = −π∆ϕ∗ = −π

∆ϕ∗ = −π/2
oror

The model of the accumulation of the total phase for the well with �nite slope at the

turning points

1

~

z2∫
z1

p(z)dz +
(
−π
2

)
+

1

~

z1∫
z2

(−p(z))dz +
(
−π
2

)
= 2πn, n = 0, 1, . . . =⇒

1

π~

z2∫
z1

p(z)dz = n +
1

2
, n = 0, 1, . . .
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Modi�ed Bohr-Sommerfeld quantization rule, taking into account the additional phase shift

occurring at the turning points

1

π~

z2∫
z1

p(z) dz = n + γ or
1

2π~

∮
p(z) dz = n + γ, n = 1, 2, ...

where

γ = 1/2 for the potential well with �nite slope at the turning points;

γ = 3/4 for the potential well with �nite slope at one turning point and in�nite slope at

another turning point;

γ = 1 for the potential well with in�nite slopes at the turning points.

1/4 1/4 1/2 1/4 1/2 1/2

Another form of Bohr-Sommerfeld quantization rule

arg r ′1 + arg r2 = 2πn =⇒ arg r ′1 + arg r2 =
2

~

z2∫
z1

p(z) dz − 2πγ = 2πn, n = 0, 1, . . .
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Part 2: Tunneling in low-transmission systems: Bardeen's approach
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Fermi's golden rule and tunneling current

The rate of quantum transitions (i. e. the number of quantum transition per unit of time)

from the initial state i to the �nal state of discrete spectrum f is essentially constant and

it is known to be given by the formula

Γi→f =
2π

~
|Ti→f |2 δ

(
Ei − Ef

)
,

where Ti→f is the matrix element of a stationary perturbing Hamiltonian Ĥ ′ applied to the

system

Tn,m =

∫
Ψ∗n(r , t) Ĥ ′Ψm(r , t) dr = e−i(En−Em)t/~ ·

∫
ψ∗m(r) Ĥ ′ ψn(r) dr ,

and the delta-function δ
(
Ei−Ef

)
accounts the conservation of energy at quantum transitions.

Recommended methodological notes for educational reading: Emmanuel N. Koukara, Fermi's

Golden Rule, http://sta�.ustc.edu.cn/∼yuanzs/teaching/Fermi-Golden-Rule-No-II.pdf

Question: How to introduce the tunneling Hamiltonian Ĥ ′ in such a way to calculate

tunneling current using the Fermi's golden rule I = e
∑

Γi,f ?
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Tunneling through low-transmission 1D potential barrier:

Bardeen's approach

John Bardeen, Nobel prize in physics in 1956 (with Shockley and Brattain for the invention of the

transistor) and in 1972 (with Cooper and Schrie�er for microscopic theory of superconductivity)

(a) Reservoir S (sample) Reservoir T (tip)U(z)

zB

Us(z)

(b)
ψs(z)

zB
(c)

ψt(z)

zB

Ut(z)
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Bardeen, Phys. Rev. Lett., vol. 6, 57 (1961).

Main idea: the partial wave functions ψL,n(z) and ψR,m(z) in a non-interacting system are

non-overlapping and thus form the full and orthonormal basises, describing the localization

of electrons in the left and right electronic reservoirs, respectively.

z1 z2 z

U(z)

ψL ψR

exact solution exact solution

Following the Bardeen's idea, we consider the approximate wave functions for the electrons

in the left and right reservoirs (limit of weekly-interacting subsystems)

ψL,n =

{
ĤψL,n = EL,nψL,n ïðè z ≤ z2;

const · e−κ2z ïðè z > z2,
ψR,n =

{
const · e+κ2z ïðè z ≤ z1;

ĤψR,n = ER,nψR,n ïðè z > z1,

where Ĥ is the exact Hamiltonian of the problem.
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We start with the assumption that the electron at initial moment (at t = 0) is in the left

reservoir in the state, described by one of the localized functions ψL,n(z). We estimate a

probability for this electron to transfer to one of possible electronic states described by the

localized wave function ψR,m(z) in the right reservoir.

We seek for the solution of time-dependent Schr�odinger equation in the form of the linear

combination of non-perturbed wave functions

Ψ(z , t) = cn(t)ψL,n(z) e−iEnt/~ +
∑
m′

dm′(t)ψR,m′(z) e−iE
m′ t/~,

where En è Em are eigenenergies of the initial and �nal states.

After substitution of the trial function Ψ(z , t) into the non-stationary Schr�odinger equation

i~ ∂Ψ/∂t = ĤΨ, we get

i~ ċn(t)ψL,n(z) e−iEnt/~ +
∑
m′

i~ ḋm′(t)ψR,m′(z) e−iE
m′ t/~ =

= cn(t) e−iEnt/~ (Ĥ − En)ψL,n(z) +
∑
m′

dm′(t) e−iEmt/~ (Ĥ − Em′)ψR,m′(z) (∗),

where ċn(t) ≡ dcn/dt.
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After multiplying the equation (*) at ψ∗R,m(z) and integration over z , we get∑
m′

i~ ḋm′(t)
〈
ψ∗R,m(z)

∣∣ψR,m′(z)
〉
e−iE

m′ t/~ ' cn(t) e−iEnt/~
〈
ψ∗R,m(z)

∣∣(Ĥ − En)ψL,n(z)
〉
.

The expression

TL→R =
〈
ψ∗R,m(z)

∣∣(Ĥ − En)ψL,n(z)
〉

can be viewed as a matrix element of quantum transition for the e�ective Hamiltonian

Ĥ ′ = Ĥ − En from the initial state ψL,n(z) (electron in the left box) to the state ψR,m(z)

(electron in the right box).

Provided that ψR,m(z) are orthonormal functions, we arrive∑
m′

i~ ḋm′(t) δm,m′ e
−iE

m′ t/~ = i~ ḋm(t) e−iE
m′ t/~ ' cn(t) e−iEnt/~ TL→R .

This means that the evolution of the coe�cients dm is similar to the expression typical for

quantum-mechanical problems

i~ ḋm ' e−i(En−Em)t/~ · TL→R .
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Thus, the matrix element in the Bardeen's problem is equal to

TL→R = 〈ψ∗R,m(z)|(Ĥ − En)ψL,n(z)〉 =

∞∫
−∞

ψ∗R,m(z) (Ĥ − En)ψL,n(z) dz =

=

∞∫
z
B

ψ∗R,m(z) (Ĥ − En)ψL,n(z) dz ,

where zB is an arbitrary point inside the tunneling barrier (z1 ≤ zB ≤ z2).

This expression can be written in a symmetric form

TL→R =

∞∫
z
B

{
ψ∗R,m(z) (Ĥ − En)ψL,n(z)− ψL,n(z) (Ĥ − Em)ψ∗R,m(z)

}
dz .

Taking into account the conservation of the energy at tunneling process (En = Em) and

after integration by parts, we get a simple expression for the matrix element

TL→R = − ~2

2m∗

{
ψL,n

d

dz
ψ∗R,m − ψ∗R,m

d

dz
ψL,n

}
z=z

B
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Bardeen's approach: summary

The matrix elements for the direct and reverse tunneling processes in 1D case are equal to

TL→R = − ~2

2m∗

{
ψL,n

d

dz
ψ∗R,m − ψ∗R,m

d

dz
ψL,n

}
z=z

B

TR→L = − ~2

2m∗

{
ψR,m

d

dz
ψ∗L,n − ψ∗L,n

d

dz
ψR,m

}
z=z

B

,

where zB is the arbitrary point inside the tunneling barrier.

These expressions look like probability �ux in quantum mechanics (up to numerical coe�cient)

j =
i~
2m∗

{
ψ

dψ∗

dz
− ψ∗ dψ

dz

}
.

Generalization for three-dimensional case:

TL→R = − ~2

2m∗

∫∫
S

{
ψL,n∇ψ∗R,m − ψ∗R,m∇ψL,n

}
n

· dS ,

where S is an arbitrary surface inside the barrier, n is

the normal vector.
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Homework for inspired students: estimate of the transmission

coe�cient of one-dimensional square barrier

A model potential has the following form

U(z) =


U1 at z < z1,

U2 at z1 < z < z2,

U3 at z > z2

The auxiliary potentials for the 'left' and 'right' problems, which can be considered separately

z1 z2 z

UL(z)

U1

U2

1 2 3

z1 z2 z

UR(z)U2

U3

1 2 3

It is possible to demonstrate that the transmission coe�cient (do not mix it with the matrix

element) are equal to

T =
16k1κ2

2k3
(k2

1
+ κ2

2
)(κ2

2
+ k2

3
)
e−2κ2(z2−z1).

It perfectly coincides with the exact answer for the transmission coe�cient in the limit of

low-transmission barrier (κ2(z2 − z1)� 1).
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Part 3: Quasistationary states
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Stationary and quasi-stationary states in quantum mechanics

We start with time-dependent Schroedinger equation i~ ∂Ψ/∂t = Ĥ Ψ.

If Ψ(r , t) = ψ(r) · e−iEt/~, then we come to Ĥ ψ(r) = E ψ(r).

For decaying state Ψ(r , t) = ψ(r) · e−λt/2 · e−iEt/~ we get Ĥ ψ(r) = (E − i · λ~/2)ψ(r).

Such slowly-decaying states (E = Re E + i Im E and |Im E | � Re E) are typically called

quasistationary states. Imaginary part of the eigenenergy determines the decay constant λ:

|Ψ(r , t)|2 = |ψ(r)|2 · e−λt , where λ ≡ −2

~
Im E .

ReΨ

t

t

exp(−λt/2)

t

exp(−λt/2)

ReE

ImE
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Decaying states in double-barrier structure

U1(z)

U2(z)

z

E||

E||

T (E||)

Stationary states, which satisfy the Schroedinger equation Ĥ ψ = E ψ for the double-barrier

systems, corresponds to the poles of the transmission coe�cient T .

The shape of the transmission line near the quantum-well resonance

T ' Γ2

n

Γ2
n +

(
E − E

(0)
n

)
2
, where Γn =

∣∣∣∣∣ d

dE

(
arg r ′1 + arg r2

)∣∣∣∣
E=E

(0)
n

∣∣∣∣∣
−1 (

1−R
)

√
R

,

The pole for the dependence T (E) corresponds to complex-valued energy: E = E
(0)
n − iΓn,

where E
(0)
n is the energy and Γn is the transmission linewidth for the n-th quantum-well

state.
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We can Bohr-Sommerfeld quantization rule for one-dimensional potential well as follows

arg r ′1 + arg r2 =
2

~

z2∫
z1

p(z) dz − π, n = 0, 1, . . .

It is easy to demonstrate that

d

dE

(
arg r ′1 + arg r2

)∣∣∣∣
E=E

(0)
n

' d

dE

2

~

z2∫
z1

p(z)dz


E=E

(0)
n

'

' 2

~
√
2m∗

z2∫
z1

d

dE

√
E − U(z) dz ' 1

~
√
2m∗

z2∫
z1

dz√
E − U(z)

' 1

~

∮
dz

vn(z)
' T

~
,

where T = 2L/vn is the period of oscillations of a particle in the area L between two

potential barriers, fn = 1/T is so-called attempt frequency, vn is mean quasiclassical

velocity at n-th energy level. As a result, for Tn � 1 we get

Γn =

∣∣∣∣∣ d

dE

(
arg r ′1 + arg r2

)∣∣∣∣
E=E

(0)
n

∣∣∣∣∣
−1 (

1−Rn

)
√
Rn

'
∣∣∣∣1~ · 1fn

∣∣∣∣−1 Tn√
1− Tn

' ~ · fn · Tn .

Decay constant is equal to the product of attempt frequency fn and the transmission

coe�cient Tn

λ = −2

~
Im E ' 2

~
Γn '

2

~
· ~ · fn · Tn =⇒ λ ' fn

2
· Tn '

vn
L
· Tn .
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Decay constant for s−state in spherical potential well∗

We consider spherical potential well

U(r) =


U1 at r < r1

U2 at r1 < r < r2

U1 at r > r2
r1 r2

U1

U2

U1

For spherically-symmetrical wave function ψ(x , y , z) = ψ(r) we get the following di�erential

equation with variable coe�cients

d2

dr
ψ(r) +

2

r

d

dr
ψ(r) +

2m∗

~2
(
E − U(r)

)
ψ(r) = 0.

After change of variable ψ(r) = χ(r)/r we come to an ordinary di�erential equation, which

resembles one-dimensional problem (r → x)

d2

dr2
χ(r) +

2m∗

~2
(
E − U(r)

)
χ(r) = 0.

In order to solve this equation we need to apply an additional condition χ = 0 at r = 0 to

avoid divergency of the wave function ψ(r) at origin.
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For piece-wise potential U(r) we get the following solution

Region 1 (r < r1) : χ1(r) = a1 e
ik1r−a1 e−ik1r

Region 2 (r1 < r < r2) : χ2(r) = a2 e
ik2r + b2 e

−ik2r

Region 3 (r > r2) : χ3(r) = a3 e
ik3r + 0 e−ik3r .

Criterion for localized states in terms of transfer-matrices T̂ = T̂ (1) T̂ (2)(
a1
−a

)
= T̂

(
a3
0

)
=⇒ T11 = −T21.

It is easy to obtain the spectrum of the localized states{
(k1 + k2)(k2 + k3) e i(−k1+k2)r1 e i(−k2+k3)r2 + (k1 − k2)(k2 − k3) e i(−k1−k2)r1 e i(k2−k3)r2

}
=

−
{

(k1 − k2)(k2 + k3) e i(k1+k2)r1 e i(−k2+k3)r2 + (k1 + k2)(k2 − k3) e i(k1−k2)r1 e i(k2−k3)r2

}
.

Simpli�ed expression for symmetric spherical barrier (k = k1,3 =
√
2m∗(E − U1,3)/~ and

k2 = iκ2):{
(k + iκ2)(iκ2 + k) e i(−k+iκ2)r1 e i(−iκ2+k)r2 + (k − iκ2)(iκ2 − k) e i(−k−iκ2)r1 e i(iκ2−k)r2

}
=

−
{

(k − iκ2)(iκ2 + k) e i(k+iκ2)r1 e i(−iκ2+k)r2 + (k + iκ2)(iκ2 − k) e i(k−iκ2)r1 e i(iκ2−k)r2

}
.
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As a result, we get the following equation(κ
k

tan kr1 + 1
)

= −e−2κw

(
k − iκ
k + iκ

)
·
(κ
k

tan kr1 − 1
)
, (∗)

where w = r2 − r1 is the barrier width, ϕ = arctan(κ/k) is the phase shift.

1. For completely impenetratable barrier (e−2κw ≪ 1) we get the spectrum of quantum-

well states in the spherical potential well:(
κn

kn
tan knr1 + 1

)
= 0.

2. For low-transmission barrier (e−2κw � 1) we can calculate the spectrum of quantum-

well states using theory of perturbation, formally considering the o�set ∆k = k − kn from

the stationary-state value.

Left-hand side of Eq. (*): we expand over ∆k and take into account that (dκ/dk)n =

−kn/κn, tg knr1 = −kn/κn è cos−2 knr1 = (k2n + κ2

n )/κ2

n , òîãäà

LHS:
(κ
k

tan kr1 + 1
)
'
(
k2n + κ2

n

)
knκ2

n
(1 + κnr1) ∆k.

Right-hand side of Eq. (*): we put here the unperturbed values kn and κn

RHS: − e−2κnw

(
kn − iκn

kn + iκn

)
·
(
κn

kn
tan knr1 − 1

)
' 2 e−2κnw

(kn − iκn)2

k2n + κ2
n
.
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Combining two previous expressions, we get the equation for the o�set ∆k

∆kn =
2knκ2

n

(1 + κnr1)

(kn − iκn)2

(k2n + κ2
n )2

e−2κnw .

It is obvious that the o�set is complex-valued parameter. We can write the imaginary part

of the o�set as follows

Im ∆kn =
2knκ2

n

(1 + κnr1)
· −2 kn κn

(k2n + κ2
n )2
· e−2κnw < 0.

One can substitute k = kn + i Im ∆k in the expression for energy

E =
~2

2m
k2 ' ~2

2m∗
(kn + i Im ∆k)2 , =⇒ Im E =

~2

m∗
kn · Im ∆k < 0.

Decay constant is equal to

λ = −2

~
Im E ' 8~kn

m∗
k2nκ3

n

(k2n + κ2
n )2

e−2κnw

(1 + κnr1)
.

For low-transmission barrier κnr1 � 1, therefore

λ ' ~kn
m∗
· 1

2r
1

· 16knκ2

nkn

(k2n + κ2
n )2

e−2κnw ' vn
2r

1

· Tn .

As before, the decay constant equal to the product of the attempt frequency (vn/2r1) and

the transmission coe�cient Tn for n−th quantum-well state.
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Alpha-decay as a tunneling process

Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha

particle 4

2He and thereby transforms into a di�erent atomic nucleus, with a mass number

that is reduced by four and an atomic number that is reduced by two.

In order to estimate the decay constant, we calculate the transmission coe�cient through

the following Coulomb potential barrier

U(r) =

{
−U0 ïðè r < r0
A/r ïðè r > r0,

where A = (Z − 2)e · 2e,

r0 is typical radius of strong nuclear forces, Z is atomic number of parent nucleus.

0

r0 r

U = A/r

U0
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We consider the Coulomb barrier as quasiclassical barrier and estimate the transmission of

such barrier for α-particle of energy E using WKB-theory

T = exp

−2

~

b∫
a

|p(r)| dr

 = exp

−2
√
2m∗

~

A/E∫
r0

√
A

r
− E dr

 ,

where a = r0 and b = A/E are classical turning points, |p(r)| =
√
2m∗

√
U(r)− E is

classical momentum.

This integral can be easily calculated by means of change of variables x = b cos2 u and the
following standard integral∫ √

b

x
− 1 · dx = −b arccos

√
r

b
+ b

√
r

b
−

r2

b2
.

As a result, we get the transmission coe�cient of the Coulomb barrier

T ' exp

(
−2A

~

√
2m∗

E

{
arccos

√
Er

0

A
−

√
Er

0

A

(
1− Er

0

A

)})
.

For low-energy emitting α-particles one can come to a simpli�ed formula

T ' exp

(
−2A

~

√
2m∗

E
· π
2

)
, provided that

Er0
A
� 1.

Alexey Yu. Aladyshkin Tunneling phenomena in solids. L-3 July 16, 2024 (BIT, Beijing) 32 / 33



Now we can estimate the decay constant

λ =
vn
2r

0

· T = const · exp

(
−πA

~

√
2m∗

E

)

and half-life time T
1/2 = ln 2/λ for heavy nucleus (Gamow, 1928)

lnT1/2 ' − ln const +
π(Z − 2)2e2

~

√
2m∗

E
.

Gamow's formula explains well the experimental dependence of the half-life time on atomic

number and energy (Geiger and Nuttal, 1911)

lnT1/2 ' −const1 + const2 ·
Z√
E
.

Examples of alpha-decay:

232

90 Th→228

88 Ra + α (1.4 · 1010 yr), 238

92 U→234

90 Th + α (4.5 · 109 yr),
236

92 U→232

90 Th + α (2.3 · 107 yr), 226

88 Ra→ 222

86 Re + α (1600 yr)
241

95 Am→ 237

93 Np + α (433 yr), 210

84 Po→ 208

82 Pb + α (138 day),
222

86 Rn→ 218

84 Po + α (3.8 day).

Alexey Yu. Aladyshkin Tunneling phenomena in solids. L-3 July 16, 2024 (BIT, Beijing) 33 / 33


