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Pauli exclusion principle and Fermi surface

The Pauli exclusion principle states that two or more identical particles with half-integer

spins (fermions) cannot simultaneously occupy the same quantum state within a system

that obeys the laws of quantum mechanics (1925).

EF

kx

ky
Periodic boundary conditions:

kxLx = 2πnx → ∆kx = 2π/Lx

kyLy = 2πny → ∆ky = 2π/Ly

kzLz = 2πnz → ∆kz = 2π/Lz

Volume per a single state in k-space:

∆kx∆ky ∆kz =

(2π)3/(Lx Ly Lz) = (2π)3/V

Fermi surface is the surface in reciprocal space which separates occupied from unoccupied

electron states at zero temperature. The existence of a Fermi surface is a direct consequence

of the Pauli exclusion principle, which allows a maximum of one electron per quantum state.
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Tunneling in multi-electron systems

We consider two metal electrodes (electronic reservoirs): left (L) and right (R). For

brevity, the electron momentums in the left and right electrodes are denoted by k and

q, respectively. Here and further we will use the notation typical for the theory of quantum

transport:

sign ¾‖¿ corresponds to the direction along the current,

sign ¾⊥¿ corresponds to the directions along the barrier.

L R

k||

k⊥ k

q||

q⊥ q

L|| R||

L⊥ R⊥

Ek = h̄2k2/2m∗ + eϕL Eq = h̄2q2/2m∗ + eϕR
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Tunneling current induced by single electron

Each of free electrons in L−electrode can be described by normalized quasiclassical wave

function

ψL(x , y , z , t) = aL · e ik⊥r⊥ · e ik‖z · e−iE
k
t/~,

where |aL| = Ω
−1/2
L is normalized coe�cient, ΩL = L2⊥ L‖ is volume of L−electrode,

Ek = ~2k2

⊥/2m
∗ + ~2k2

‖/2m
∗ + eϕL is the full energy of electron with wave vector k

accounting electrostatic energy, m∗ is e�ective mass.

During tunneling the longitudinal (with respect to the direction of the current) and perpendicular

(with respect to the barrier) component of the probability �ux is transformed as follows

ΠL =
~k‖
m∗
|aL|2 =⇒ ΠR = ΠL · TL→R =

~k‖
m∗
· 1

ΩL

· TL→R =
vL,‖
ΩL

· TL→R ,

where T = |t|2 is the transmission coe�cient depending only on k‖ and the parameters of

the tunneling barrier.

Each of free electrons in L−electrode can induce the current inside R−electrode equal to

e (vL,‖/ΩL) TL→R .

Each of free electrons in R−electrode can induce the current inside L−electrode equal to

e (vR,‖/ΩR) TR→L.
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Full tunneling current induced by all electrons

A necessary condition for the appearance of the tunnel current is that the quantum state

with a given k in the emitter should be occupied, while the quantum state with a given q

in the collector should be free. Consequently, the density of the tunnel current taking into

account spin degeneracy and �lling factors equal to

jL→R = 2 ·
∑
k

e
vL,‖
ΩL

· TL→R · fL(Ek)
{
1− fR(Eq)

}
, provided that vL,‖ > 0,

jR→L = 2 ·
∑
q

e
vR,‖
ΩR

· TR→L · fR(Eq)
{
1− fL(Ek)

}
, provided that vR,‖ < 0.

We assume that the �lling factors are close to the equilibrium Fermi-Dirac distribution (kB
is Boltzmann constant and Θ is absolute temperature)

fL(E) =

(
1 + e

(
E−(µL+eϕL)

)
/kBΘ

)−1
and fR(E) =

(
1 + e

(
E−(µR+eϕR )

)
/kBΘ

)−1
.

where ϕL and ϕR are electrical potential of L− and R− reserviors; µ̃L = µL + eϕL and

µ̃R = µR + eϕR are electrochemical potential of L− and R− reserviors.
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Band structure of tunneling junction

I < 0

fL(E)

µ− |e|ϕL

fR(E)

µ− |e|ϕR

ϕL < 0 ϕR > 0

I = 0

fL(E)

µ

fR(E)

µ

ϕL = 0 ϕR = 0

I > 0

fL(E)

µ− |e|ϕL

fR(E)

µ− |e|ϕR

ϕL > 0 ϕR < 0

Reminder: e = −|e|.

Electrochemical potential

µ̃ = µ+ eϕ = µ− |e|ϕ

corresponds to the maximal energy of the occupied states at low temperatures (including

the e�ect of electrostatic energy).
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Simplifying assumptions

Burstein and Lundquist, Tunneling phenomena in solids. New York, Plenum Press, 1969

1. Conservation of the total energy of tunneling particle Ek = Eq (elastic tunneling).

2. For simplicity, we assume equal temperatures and chemical potentials of both electrodes

(µL = µR = µ)

fL(E) =

(
1 + e

(
E−(µ+eϕL)

)
/kBΘ

)−1
=

(
1 + e

(
(E−eϕL)−µ

)
/kBΘ

)−1
≡ f0(E − eϕL),

fR(E) =

(
1 + e

(
E−(µ+eϕR )

)
/kBΘ

)−1
=

(
1 + e

(
(E−eϕR )−µ

)
/kBΘ

)−1
≡ f0(E − eϕR).

3. In order to estimate the number of electronic waves involving in tunneling process

in systems with low-transmission barrier, we formally apply periodic boundary conditions

ψ(z) = ψ(z + L‖), which leads to equidistant spectrum of allowed k−values

k‖ =
2π

L‖
n‖ è ∆k‖ = k‖

∣∣∣
n
− k‖

∣∣∣
n−1

=
2π

L‖
,

where L‖ is the length of L−electrode, n‖ is integer.
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4. Standard rule for transition from summation to integration along the ‖−direction∑
k‖

... =
1

∆k‖

∑
k‖

∆k‖ ... '
L‖
2π

∫
dk‖ ... ,

∑
q‖

... =
1

∆q‖

∑
q‖

∆q‖ ... '
R‖
2π

∫
dq‖ ... .

The same rule can be applied for ⊥ −components for the tunnel junctions of large area.

Intermediate result:

j =
2eL‖
2π

∫
dk‖

∑
k⊥

vL,‖
L2⊥ L‖

f0(Ek − eϕL)
{
1− f0(Ek − eϕR)

}
TL→R +

+
2eR‖
2π

∫
dq‖

∑
q⊥

vR,‖
R2

⊥ R‖
f0(Eq − eϕR)

{
1− f0(Eq − eϕL)

}
TR→L.

5. For tunneling system uniform in the ⊥-direction and mirror re�ection of electrons from

the barrier, ⊥-components of the wave vectors should be conserved: k⊥ = q⊥. As a result,

the energy associated with the motion along the barrier should be conserved: Ek⊥ =

Eq⊥ = E⊥. As a result, the energy associated with the motion along the current should be

conserved: Ek‖
= Eq‖ = E‖. In the other words, we come to a reduced energy conservation

law

~2k2

‖

2m∗
+ eϕL =

~2q2‖
2m∗

+ eϕR .
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6. For non-magnetic systems the transmission coe�cient of the barrier does not depend on

the direction of tunneling, therefore TL→R = TR→L = T . It is clear that the transmission

coe�cient T depends only on E‖ and voltage bias U = ϕL − ϕR .

7. It is clear that

f0(E − eϕL)
{
1− f0(E − eϕR)

}
− f0(E − eϕR)

{
1− f0(E − eϕL)

}
=

= f0(E − eϕL)− f0(E − eϕR).

8. Since v‖ = ~−1 ∂E/∂k‖ = ~−1 dE‖/dk‖,

vL,‖ dk‖ =
dE‖
~

and vR,‖ dq‖ = −
dE‖
~
.

9. For planar structure the transverse dimensions of the electrodes should be equal: L⊥ = R⊥.

Intermediate result:

j =
2e

2π~

∫
dE‖

∑
k⊥

T (E‖)

L2⊥

{
f0(E − eϕL)− f0(E − eϕR)

}
,
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Conductance of large-area tunneling junctions

If quantization of transverse modes is not signi�cant (L2⊥ � λ2), we can substitute the

summation over k⊥ by the integration over all transverse modes

j =
2e

2π~

∫
dE‖

∫∫
T (E‖)

{
f0(E − eϕL)− f0(E − eϕR)

} d2 k⊥
(2π)2

=

=
2e

2π~

∫
T (E‖) dE‖

∫∫ {
f0(E − eϕL)− f0(E − eϕR)

} d2 k⊥
(2π)2

.

We introduce the number of electronic modes participating in tunneling process (supply

function)

N (E‖) =

∫∫ {
f0(E‖ + E⊥ − eϕL)− f0(E‖ + E⊥ − eϕR)

} d2 k⊥
(2π)2

.

Here we use the obvious relationship E = E‖ + E⊥.

As a result, the density of the tunneling current can be written as follows

j =
2e

2π~

∫
T (E‖) · N (E‖) · dE‖,

Alexey Yu. Aladyshkin Tunneling phenomena in solids. L-4 July 17, 2024 (BIT, Beijing) 10 / 31



Assume that electrons in the conduction band can be considered as free-electron gas

E⊥ =
~2k2

⊥
2m∗

=⇒ dE⊥ =
~2k⊥dk⊥

m∗
=⇒ d2k⊥ = 2πk⊥dk⊥ =

2πm∗dE⊥
~2

.

In this model the number of the electronic modes, involving in tunneling process is equal

to

N (E‖) =

∫∫ {
f0(E‖ + E⊥ − eϕL)− f0(E‖ + E⊥ − eϕR)

} 2πm∗dE⊥
(2π)2~2

=

=
m∗

2π~2

∞∫
E‖

{
f0(E ′ − eϕL)− f0(E ′ − eϕR)

}
dE ′.

0
-1

0

1

µ E

f0(E − eϕL)− f0(E − eϕR) ϕL < 0
ϕR > 0

µ− |e|ϕR µ− |e|ϕL

E‖E‖

0

0

µ− |e|ϕR µ− |e|ϕL

µ E‖

N (E‖) U < 0
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Visual interpretation: cross-sections of Fermi surface∗

Electronic states participating in tunneling for the case U = ϕL − ϕR < 0

E‖
0

0.2

N
·
2π

h̄
2
/
m

∗

|e|U/EF = 0.3

0.2

0.1

EF

-5

k‖

k⊥

E = EF − |e|ϕL

q‖

q⊥

E = EF − |e|ϕR

Sectional area of the larger sphere Fermi (provided 0 ≤ k‖ ≤ kF )

S1 = π (k2

F − k2

‖) =
2πm∗

~2

(
~2k2

F

2m∗
−

~2k2

‖

2m∗

)
=

2πm∗

~2
(
EF + eϕL − E‖

)
.

Sectional area of the smaller sphere Fermi (provided 0 ≤ k‖ ≤ k ′F )

S2 = π (k ′2F − k2

‖) =
2πm∗

~2

(
EF − eϕL + eϕR −

~2k2

‖

2m∗

)
=

2πm∗

~2
(
EF + eϕR − E‖

)
.

The area of the ring S1 − S2 for given E‖ coincides with the N (E‖) function!

Alexey Yu. Aladyshkin Tunneling phenomena in solids. L-4 July 17, 2024 (BIT, Beijing) 12 / 31



Appelsine (RU), Apfelsine (DE), Sinaasappel (ND) � apple from China
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Tsu-Esaki relationship

We can substitute the functional dependence corresponding to the Fermi-Dirac distributions

and obtain

N (E‖) =
m∗

2π~2

∞∫
E‖

{(
1 + e

−(E‖−µ−eϕL)/kBΘ
)−1
−
(
1 + e

−(E‖−µ−eϕR )/kBΘ
)−1}

dE ′ =

=
m∗

2π~2
· kBΘ ·

{
ln
(
1 + e

−(E‖−µ−eϕL)/kBΘ
)
− ln

(
1 + e

−(E‖−µ−eϕR )/kBΘ
)}

=

=
m∗

2π~2
· kBΘ · ln

(
1 + e

−(E‖−µ−eϕL)/kBΘ
)

(
1 + e

−(E‖−µ−eϕ
R

)/k
B

Θ
) .

Reminder: ln a− ln b = ln(a/b).

Thus, we arrive at Tsu-Esaki relationship, which is valid for all temperatures

j =
2e

2π~

∫
T (E‖) · N (E‖) · dE‖ =

=
2em∗

(2π)2~3
· kBΘ ·

∞∫
0

T (E‖) ln

(
1 + e

−(E‖−µ−eϕL)/kBΘ
)

(
1 + e

−(E‖−µ−eϕ
R

)/k
B

Θ
) dE‖.
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Conductance of tunnel-junction: limit of low bias and low
temperature

Tsu-Esaki relationship can be rewritten in the form

j(V) ' 2e

2π~

∞∫
max{−eU,0}

T (E‖)×

× m∗

2π~2
kBΘ ·

{
ln
(
1 + e

−(E‖−µ−eϕL)/kBΘ
)
− ln

(
1 + e

−(E‖+−µ−eϕR )/kBΘ
)}

dE‖.

It is clear at the low temperature (Θ→ 0) the following asymptotic expression are valid

ln
(
1 + e

−(E‖−µ−eϕL)/kBΘ
)
' 1

kBΘ
·

{
0 at E‖ ≥ µ− |e|ϕL,

−(E‖ − µ− eϕL) at E‖ < µ− |e|ϕL;

and

ln
(
1 + e

−(E‖−µ−eϕR )/kBΘ
)
' 1

kBΘ
·

{
0 at E‖ ≥ µ− |e|ϕR ,

−(E‖ − µ− eϕR) at E‖ < µ− |e|ϕR .
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If ϕL > ϕR , then the band structure of the left electrode is shifted down relative to the

band diagram of the right electrode, so the resulting electron �ow is negative and comes

from the right electron in the left one. It corresponds to positive tunneling current density

(e = −|e|). To estimate the current density, it is necessary to consider three energy intervals

j ' − 2|e|
2π~

∫
T (E‖)·

m∗

2π~2
·


0 at E‖ > µ− |e|ϕR

−(µ+ eϕR − E‖) at µ− |e|ϕL < E‖ < µ− |e|ϕR

−|e|(ϕL − ϕR) at E‖ < µ− |e|ϕL

·dE‖
Let us put for de�niteness ϕL = U è ϕR = 0, then

j ' 2|e|
2π~

m∗

2π~2

∫
T (E‖) ·


0 at E‖ > µ

(µ− E‖) at µ− |e|U < E‖ < µ

|e|U at E‖ < µ− |e|U

 · dE‖
or

j ' 2|e|
2π~
· m∗

2π~2
· |e|U

max{µ−|e|U,0}∫
0

T (E‖) dE‖+

+
2|e|
2π~
· m∗

2π~2

µ∫
max{µ−|e|U,0}

T (E‖) · (µ− E‖) dE‖.
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Taking into account the symmetry between the emitter and the collector, we can write the

expression valid for an arbitrary sign of U

j ' sign U ·

 |e|
2m∗

2π2~3
|U|

max{µ−|eU|,0}∫
0

T (E‖) dE‖+

+
|e|m∗

2π2~3

µ∫
max{µ−|eU|,0}

T (E‖) · (µ− E‖) dE‖

 .

At |U| → 0 the second term is a value of a higher-order smallness and can be omitted.

At |eU| � µ one can get a universal linear dependence of the tunneling current I = j · S
on applied voltage U (here S is the area on tunneling junction). The conductance of the

tunnel junction is equal to

G ≡ I

U
= S · |e|

2m∗

2π2~3

µ∫
0

T (E‖) dE‖,

We can use the expression for low-transmission square barrier (see lecture 1) and get

T (E‖) =
16 k1 κ2 k3

(k2

1
+ κ2)(κ2 + k2

3
)
e−2κw =⇒ G ' S · e2

4π2~
T (µ)

κ(µ)

w
,
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Cold electron emission

Cold electron emission or �eld emission is the process of emission of electrons from a solid

under the action of an electric �eld, in contrast to thermoelectron emission, occurring at

high temperatures. The regime of cold �eld emission is essentially the process of tunneling

in a strong electric �eld.

We assume for de�niteness ϕL = U > 0 è ϕR = 0.

Trapezoidal potential barrier

V (z) = −|e|U + µ+ W + |e|U z/w for 0 ≤ z ≤ w ,

where w is the width of the barrier, W is work

function.

Under the condition |eU| > µ+ W the trapezoidal

barrier can be viewed as a triangular one.

The expression for the tunneling current (see page

17)

j ' sign U · |e|m
∗

2π2~3

µ∫
0

T (E‖)
(
µ− E‖

)
dE‖.

fL(E)

µ − |e|ϕL

fR(E)

µ − |e|ϕR

ϕL > 0 ϕR < 0
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The transmission coe�cient of the triangular barrier can be estimated by means of the

WKB theory

T (E‖) = exp

−2

~

b∫
a

∣∣p(z)
∣∣ dz
 =

= exp

−2
√
2m∗

~
w

|e|U

b∫
a

√
−|eU|+ µ+ W + z ′ − E‖ dz

′

 =

= exp

{
−4

3

√
2m∗

~
w

|eU|
(
µ+ W − E‖

)
3/2
}
,

where a = 0 and b = w · (µ+ W − E‖)/|eU| are classical turning points for U < 0 and

a = w − w · (µ+ W − E‖)/|eU| and b = w are classical turning points for U > 0.

Let us assume that the work function and, accordingly, the height of the potential barrier

for electrons are su�ciently large, which allows us to consider the limit µ− E‖ �W(
µ+ W − E‖

)
3/2

'W 3/2

(
1 +

3

2

(µ− E‖)

W

)
'W 3/2 +

3

2
W 1/2 (µ− E‖),

T (E‖,U) = exp

{
−4

3

√
2m∗ w

~|eU| W 3/2

}
exp

{
−2
√
2m∗W w

~|eU|
(
µ− E‖

)}
.
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We introduce a dimensionless parameter B = 2
√
2m∗W

0
µw/(~|eU|) and rewrite the

expression for the current density as follows

j = signU · |e|m
∗

2π2~3

µ∫
0

(
µ− E‖

)
T (E‖) dE‖ =

= signU · |e|m
∗

2π2~3
exp

{
−4

3

√
2m∗ w

~|eU| W 3/2

}
µ2

1∫
0

(
1− E

)
e−B (1−E) dE .

Taking into account the following standard integral

1∫
0

(1− E) e−B (1−E) dE =
1

B2
− e−B (1 + B)

B2
'
{

1/2− B/3, B < 1;

1/B2, B � 1,

for B & 1 we come to the Fowler�Nordheim relationship (1926), which describes non-linear

dependence of the tunneling current on the bias voltage U

j ' sign U × |e|
16π2~W

|eU|2

w2
exp

(
−4

3

√
2m∗ w

~|eU| W 3/2

)
.

Fowler�Nordheim plot is the dependence ln I on U, allowing us to estimate work function

ln I ' const + ln |U|2 − 4

3

√
2m∗ w

~|eU| W 3/2.
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Reminder: resonant tunneling in a double-barrier structure

t̂(0) = t̂2 t̂1

t̂(1) = t̂2r̂
′
1r̂2 t̂1

U1(z)

U2(z)

z

E||

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

E/U0

T
(E

)

a)

t =
t1t2

1− r ′
1
r
2

and T =

∣∣∣∣ t1t2
1− r ′

1
r
2

∣∣∣∣2 =
T1 T2

1 +R
1
R

2
− 2
√
R

1
R

2
cos (arg r ′

1
+ arg r

2
)
,

where R1,2 and T1,2 are coe�cients of re�ection and transmission through the �rst and

second barriers, correspondingly.
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Quantum-size e�ects in tunneling: resonant-tunneling diode

In order to study quantum-size e�ects in tunneling, we consider double-barrier structure

with a single localized level with the energy E0 < µ:

No current

0 0 0

µ µ
E0

Appearance of current

0
−|e|U/2

−|e|U

µ

µ− |e|U
E ′

0

Increase of current

0

−|e|U/2

µ

µ− |e|U

E′
0

No current

0

−|e|U/2

µ

µ− |e|U

E ′
0

Criteria for appearance and disappearance of the current:

E0 − |e|U/2 > µ− |e|U è E0 − |e|U/2 < 0.
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Current-voltage dependence: qualitative arguments

k||

k⊥

2 |E0 − µ| 2E |eU |

|I|

Necessary condition for resonant tunneling in double-barrier structure

E‖ =
~2k2

‖

2m∗
= E0 −

|e|U
2

=⇒ k‖ =

√
2m∗ (E

0
− |e|U/2)

~

Sectional area of Fermi sphere of the radius k =
√

k2

F − k2

‖ determines the number of

resonant electrons

S = πk2 = π
2m∗

~

(
µ− E0 +

|e|U
2

)
for 2|E0 − µ| < |eU| < 2E0.
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Current-voltage dependence: numerical arguments

Energy spectrum of quasi-two-dimensional gas: E = ~2k2

⊥/2m
∗ + E0.

We use Tsu-Esaki formula to calculate the density of tunneling current in planar structure

at low temperatures

j ' 2e

2π~

∞∫
max{e(ϕ

R
−ϕ

L
),0}

T (E‖) ·
m∗

2π~2
· kBΘ · ln

{
1 + e

−(E‖−µ−eϕL)/kBΘ

1 + e
−(E‖−µ−eϕ

R
]/k

B
Θ

}
dE‖ =

=
em∗

2π2~3

µ∫
0

T (E‖) · (µ− E‖) dE‖.

For de�niteness we assume ϕL = 0 and ϕR = U. The transmission coe�cient for double-

barrier structure is equal to

T (E‖) ' Tmax ·
Γ2[

E‖ − (E
0
− |e|U/2)

]
2

+ Γ2

,

where Γ = ~/τ is the linewidth (see lecture 2), τ is the life time of the quasistationary

localized state, Tmax is the maximal transmission of the double-barrier structure, depending

on partial transmissions of the left and right barrier.
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For particular case of two symmetric and low-transmission barriers (Γ = ~/τ → 0 and

Tmax → 1), the Lorentz shape of the dependence T (E‖) can be roughly considered as

a narrow rectangle of unit height and width 2~/τ → 0 (in order to keep the integral

transmission), positioned at E‖ = E0 − |e|U/2, or even as delta-function (formally).

Using mean value theorem for de�nite integrals, we get

j =
em∗

2π2~3

µ∫
0

T (E‖) (µ− E‖) dE‖ =

=
em∗

2π2~3

µ∫
0

2~
τ
δ

(
E‖ −

(
E0 −

|e|U
2

))
(µ−E‖) dE‖ = − e2m∗

2π2~2τ

{
U − 2(E0 − µ)

|e|

}
.

2 |E0 − µ| 2E |eU |

|I|
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In general case for �nite τ one can get the following expression

j =
em∗

2π2~2τ

{(
µ− E0 −

eU

2

) (
arctg

(µ− E0 − eU/2)

~/τ
+ arctg

(E0 + eU/2)

~/τ

)
−

− ~
2τ

ln
(µ− E0 − eU/2)2 + ~2/τ2

(E
0

+ eU/2)2 + ~2/τ2

}
.

0 0.5 1 1.5 2 2.5 3
|e|U/µ

0

1

2

3

j/
j 0

E0/µ = 1.2 h̄/(µτ) = 0.001

0.02

0.1

The voltage interval with negative di�erential resistance dI/dU points to that such double-

barrier structure can be a source of electromagnetic radiation (in THz range).
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Resonant tunneling in semiconductor heterostructures

Sollner, Goodhue, Tannenwald, Parker and Peck, Appl. Phys. Lett., vol. 43, 588-590 (1983)
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Resonant tunneling in metallic thin �lms
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Tunneling interferometry for thin Pb(111) �lms
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Visualization of subsurface defects in thin Pb(111) �lms
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Oscillations of visible height of monatomic Pb(111) step
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A. Yu. Aladyshkin, Oscillatory bias dependence of the visible height of the monatomic Pb(111)

steps: consequence of the quantum-size e�ect in thin metallic �lms // Journal of Physical Chemistry

C, vol. 127 (27), pp. 13295�13301 (2023)
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