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Part 1: spin-dependent tunneling
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Exchange interaction in ferromagnetic metal: s − d model

It is assumed that

� delocalized s-electrons provide metallic-type conductivity;

� spins of localized d-electrons are ordered parallel and form nonzero mean

magnetization M(r);

� spins of delocalized s-electrons interact with the mean magnetization by means of local

exchange interaction.

Under these assumptions the e�ective Hamiltonian describing the interaction of spin of a

single electron with the mean magnetization in the s − d model looks like Zeeman term

Ĥs−d = −J m(r) · σ̂ = −J mx(r) · σ̂x − J my (r) · σ̂y − J mz(r) · σ̂z .

Here J > 0 is a constant of exchange interaction and it has dimension of energy (Joule

or eV); m(r) = M(r)/Ms is unit vector parallel to the local magnetization, Ms is the

saturated magnetization; σ̂ =
{
σ̂x , σ̂y , σ̂z

}
is the operator of electron spin (i. e. vector of

the Pauli matrices)

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
.

Thus, electrons tend to align their spins along the magnetization vector m(r).
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Electronic waves in uniformly magnetized ferromagnet

We start with time-dependent matrix Pauli equation for two-component wave function

(also known as spinor), which is natural generalization of the Schroedinger equation

i~ ∂

∂t

(
Ψ(1)

Ψ(2)

)
= Ĥ

(
Ψ(1)

Ψ(2)

)
, where Ĥ = − ~2

2m∗
∆ + U(r)− J m(r) · σ̂,

where Ĥ is single-electron Hamiltonian. The �rst and the second terms correspond to kinetic

and potential energies; the last term −J m(r) · σ̂ is the e�ective exchange interaction in

the s − d model.

We consider the stationary state with the given total energy E‖(
Ψ(1)(r , t)

Ψ(2)(r , t)

)
=

(
ψ(1)(r)

ψ(2)(r)

)
· e−iE‖t/~.

After substituting this function into non-stationary Pauli equation, we get matrix equation

for time-independent component of the wave function

Ĥ

(
ψ(1)(r)

ψ(2)(r)

)
= E‖

(
ψ(1)(r)

ψ(2)(r)

)
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We continue with an analysis of one-dimensional scattering problem for spin-polarized

electron moving along ξ-axis

Ĥξ = − ~2

2m∗
d2

dξ2
+ U0 − J m · σ̂,

where the orientation of the ξ-axis do not relate to the magnetization vector m, U0 is the

mean potential energy, which does not depend of coordinate for uniform ferromagnet.

We introduce the cartesian coordinate system (x , y , z), where z-axis is parallel to m. This

axis can be used as axis of spin quantization, then J m · σ̂ becomes diagonal: J σz .

Only in this case the components of the spinor can be associated with wave functions for

electron with spin-up (ψ(1) = ψ↑) and for electron with spin-down (ψ(2) = ψ↓).

Inside the uniform ferromagnet the matrix Pauli equation is reduced to two independent

scalar di�erential equations for ψ↑ and ψ↓

− ~2

2m∗
·
d2ψ↑
dξ2

+ U0 ψ↑ − J ψ↑ = E‖ ψ↑ and − ~2

2m∗
·
d2ψ↓
dξ2

+ U0 ψ↓ + J ψ↓ = E‖ ψ↓.

General solution of ordinary second-order di�erential equation is a combination of the plane

waves (travelling or exponentially-decaying)

ψ↑ = e±ik↑ξ and ψ↓ = e±ik↓ξ.
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After substituting the general solutions in the set of the independent Pauli equations, we

�nd the dependence of the wave vectors on the energy E‖ along the ξ-axis

k↑ =

√
2m∗

~2
(E‖ − U

0
+ J) and k↓ =

√
2m∗

~2
(E‖ − U

0
− J).

Intermediate conclusion: for any E‖ value there are two spin subbands: the lower subband

corresponds to electrons with spin parallel to the magnetization, while the upper subband

corresponds to electrons with spin antiparallel to the magnetization:

E = U0 + h̄2k2/2m∗

k↑ = k↓

Normal metal

E = U0 + h̄2k2/2m∗ ± h0

k↓ k↑

Ferromagnetic metal

↓

↑

General solution for electrons in uniform ferromagnet can be written as follows

ψ↑ = A↑ e
ik↑ξ + B↑ e

−ik↑ξ and ψ↓ = A↓ e
ik↓ξ + B↓ e

−ik↓ξ.
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Tunneling in ferromagnetic junctions: formulation of problem

Slonczewski, Phys. Rev. B, vol. 39, 6995-7002 (1989).

We consider symmetric hybrid structure consisting of two bulk ferromagnetic metals with

uniform distributions of magnetization (M1 and M2) separated by non-magnetic insulator.

Particular orientations of M1 and M2 with respect to the barrier are not important � only

the angle between M1 and M2 is of importance.

Ferromagnetic Insulator Ferromagnetic
metal 1 metal 2

0 w ξ

E||

m1

xy

z x′

y′

z′

θ

m2

d

region 1 region 2 region 3

Stationary Pauli equation can be written in the form

Ĥξ

(
ψ(1)

ψ(2)

)
= E‖

(
ψ(1)

ψ(2)

)
, where Ĥξ = − ~2

2m∗
d2

dξ2
+ U(ξ)− J m · σ̂.
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Qualitative explanation: spin-valve e�ect

parallel orientation antiparallel orientation: no current

U1 − J U1 − J

Ferromagnetic Insulator Ferromagnetic
metal 1 metal 2

↑

m1 m2

U1 + J U1 + J

m1 m2

U1 − J

U1 + J

Ferromagnetic Insulator Ferromagnetic
metal 1 metal 2

↑

m1 m2

U1 + J

U1 − J

m1 m2
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Scattering of ↑-electron on square potential barrier (1)

For simplicity we assume that both ferromagnetic metals have equal remanent magnetization:

|M1| = |M2| = Ms .

Both vectors M1 and M2 are generally non-parallel.

E

k↓ k↑

↓

↑

E

k′↓ k′↑

↓′

↑′

reflection transmission

� Inside the metal 1 (region 1, ξ < 0) the general solution is the superposition of the

incident and two re�ected waves

ψ1↑ = A1↑ e
ik↑ξ + B1↑ e

−ik↑ξ and ψ↓ = B1↓ e
−ik↓ξ.

We consider the z-axis as the axis of spin quantization: signs ↑ and ↓ correspond to parallel

and antiparallel to both the z-axis and the vector and magnetization m1.
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Ferromagnetic Insulator Ferromagnetic
metal 1 metal 2

0 w ξ

E||

m1

xy

z x′

y′

z′

θ

m2

d

region 1 region 2 region 3

� Inside the insulating barrier (region 2, 0 < ξ < w) we can use the same z-axis for

spin quantization. In this region the general solution is the superposition of exponentially

decaying and increasing functions (E‖ < U2)

ψ2↑ = A2↑ e
−κξ + B2↑ e

κξ and ψ2↓ = A2↓ e
−κξ + B2↓ e

κξ.

where κ =
√
2m∗ (U2 − E‖)/~ is the imaginary part of the spin-independent wave vector.

� Inside the metal 2 (region 3, ξ > w) we can choose the z ′-axis (parallel to the

local magnetization) for spin quantization, therefore the general solution due to causality

principle is a combination of outcoming waves running to the right

ψ′3↑ = A3↑ e
ik↑(ξ−w) and ψ′3↓ = A3↓ e

ik↓(ξ−w).
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Density of spin-polarized current: general expression

Let e = −|e| be the elementary charge, then the local electric charge is equal to

Q = e
∑
σ

ψσψ
∗
σ = eψ↑ψ

∗
↑ + eψ↓ψ

∗
↓ .

We use time-dependent Pauli equations and calculate the rate of local charge variations

∂Q

∂t
= e

ψ∗↑
i~

(
i~
∂ψ↑
∂t

)
+ e

ψ↑
i~

(
i~
∂ψ∗↑
∂t

)
+ e

ψ∗↓
i~

(
i~
∂ψ↓
∂t

)
+ e

ψ↓
i~

(
i~
∂ψ↓
∂t

)
=

=
e

i~

(
− ~2

2m∗

) {
ψ∗↑ ∇2ψ↑ − ψ↑∇2ψ∗↑ + ψ∗↓ ∇2ψ↓ − ψ↓∇2ψ∗↓

}
.

It can be reduced to the following form

∂Q

∂t
+ div j = 0, ãäå j =

(
e~
m∗

) {
Im
(
ψ∗↑ ∇ψ↑

)
+ Im

(
ψ∗↓ ∇ψ↓

)}
.

Reminder: z − z∗ = (a + ib)− (a− ib) = 2i Im z

For planar layered system the current density does not depend on the coordinate ξ. To

calculate the tunnel current density, we will consider region 3 behind the barrier, since there

are only two types of electron waves, and not three or four (as in regions 1 and 2).
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Rotation of the axis of spin quantization

To matching wave functions at the left and right sides of the barrier, it is necessary to use

the same quantization axis (for example, z), therefore the components of the wave function

in the region 3 should be be modi�ed using standard formulas for spinor transformation.

Reminder: the connection between the spinor components when the spin quantization axis

rotates around the x , y and z axes respectively, is given by the following matrix relation(
ψ(1)

ψ(2)

)
= Ŝ

(
ψ(1),′

ψ(2),′

)
,

where

Ŝx =

(
cosϕ/2 i sinϕ/2

i sinϕ/2 cosϕ/2

)
, Ŝy =

(
cosϕ/2 sinϕ/2

− sinϕ/2 cosϕ/2

)
, and

Ŝz =

(
e iϕ/2 0

0 e−iϕ/2

)
,

ϕ is the rotation angle between z and z ′ axes.

Landau and Lifshits, Quantum mechanics. Non-relativistic theory
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Ferromagnetic Insulator Ferromagnetic
metal 1 metal 2

0 w ξ

E||

m1

xy

z x′

y′

z′

θ

m2

d

region 1 region 2 region 3

In our case, the coordinate system (x ′, y ′, z ′) is rotated by an angle α around the y axis

relative to the system (x , y , z), therefore, to determine the components of the wave function

in the (x , y , z) axes in metal 2, we have to use the rotation matrix

Ŝy =

(
cosα/2 sinα/2

− sinα/2 cosα/2

)
, where α = arccos (m1 ·m2).

Thus, we come to the following expressions

ψ3↑ = ψ′3↑ cos
α

2
+ ψ′3↓ sin

α

2
= A3↑ e

ik↑(ξ−w) cos
α

2
+ A3↓ e

ik↓(ξ−w) sin
α

2
,

ψ3↓ = −ψ′3↑ sin
α

2
+ ψ′3↓ cos

α

2
= −A3↑ e

ik↑(ξ−w) sin
α

2
+ A3↓ e

ik↓(ξ−w) cos
α

2
.

For α 6= 0 and π the spin-up and spin-down components become mixed.
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Scattering of ↑-electron on square potential barrier (2)

In order to determine the amplitude of all waves we need to apply boundary conditions � the

requirements of the continuity of the components of the spinors and their �rst derivatives

at the left and right edges of the barrier:

ξ = 0 : A1↑ + B1↑ = A2↑ + B2↑, ik↑ A1↑ − ik↑ b1↑ = −κ A2↑ + κ B2↑,

B1↓ = A2↓ + b2↓, −ik↓ B1↓ = −κ A2↓ + κ B2↓

ξ = w : A2↑ e
−κw + B2↑ e

κw = A3↑ cos
α

2
+ A3↓ sin

α

2
,

− κ A2↑ e
−κw + κ B2↑ e

κw = ik↑ A3↑ cos
α

2
+ ik↓ A3↓ sin

α

2
,

A2↓ e
−κw + B2↓ e

κw = −A3↑ sin
α

2
+ A3↓ cos

α

2
,

− κ A2↓ e
−κw + κ B2↓ e

κw = −ik↑ A3↑ sin
α

2
+ ik↓ A3↓ cos

α

2
.

We get a system of 8 linear equations with 8 unknowns (B1↑, B1↓, A2↑, A2↓, B2↑, B2↓,

A3↑ è A3↓) for the given amplitude of the incident wave A1↑.
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Solution of scattering problem for ↑-electron

Coe�cients B1↑, B1↓, A2↑ and A2↓ can be expressed through the amplitude of the incident

wave A1↑ and the coe�cients B2↑, B2↓

B1↑ = A2↑ + B2↑ − A1↑, B1↓ = A2↓ + B2↓,

A2↑ = −
2ik↑

(κ − ik↑)
a1↑ +

(κ + ik↑)

(κ − ik↑)
B2↑, and A2↓ =

(κ + ik↓)

(κ − ik↓)
B2↓

For low-transmission barrier (eκw � e−κw ) we get the coe�cients for the wave functions

inside the barrier

B2↑ ' −
2ik↑ e

−2κw
[
κ2 + k↑k↓ + iκ(k↑ − k↓) cosα

]
(κ − ik↑)

2(κ − ik↓)
A1↑,

B2↓ '
2κk↑ e−2κw (k↓ − k↑) sinα

(κ − ik↑)
2(κ − ik↓)

A1↑,
and behind the barrier

A3↑ ' −
4ik↑κ e−κw

(κ − ik↑)
2
· cos

α

2
· A1↑ and A3↓ ' −

4ik↑κ e−κw

(κ − ik↑)(κ − ik↓)
· sin

α

2
· A1↑.

For non-parallel con�guration (α 6= 0 and π) ↑- and ↓-components becomes interacting.
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Scattering of ↓-electron on square potential barrier

Now consider the scattering of a spin-down particle in a similar system. The general solution

in all three areas should have the following form

ψ1↑ = B1↑ e
−ik↑ξ, ψ1↓ = A1↓ e

ik↓ξ + B1↓ e
−ik↓ξ.

ψ2↑ = A2↑ e
−κξ + B2↑ e

κξ, ψ2↓ = A2↓ e
−κξ + B2↓ e

κξ.

ψ′3↑ = A3↑ e
ik↑(ξ−w), ψ′3↓ = A3↓ e

ik↓(ξ−w).

E

k↓ k↑

↓

↑

E

k′↓ k′↑

↓′

↑′

reflection transmission
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The conditions for the continuity of the components of the spinors and their �rst derivatives

of the left and right edges of the barrier have the following form

ξ = 0 : B1↑ = A2↑ + B2↑,−ik↑ B1↑ = −κ A2↑ + κ B2↑,

A1↓ + B1↓ = A2↓ + B2↓, ik↓ A1↓ − ik↓ B1↓ = −κ A2↓ + κ B2↓,

ξ = w : A2↑ e
−κw + B2↑ e

κw = A3↑ cos
α

2
+ A3↓ sin

α

2
,

− κ A2↑ e
−κw + κ B2↑ e

κw = ik↑ A3↑ cos
α

2
+ ik↓ A3↓ sin

α

2
,

A2↓ e
−κw + B2↓ e

κw = −A3↑ sin
α

2
+ A3↓ cos

α

2
,

− κ A2↓ e
−κw + κ B2↓ e

κw = −ik↑ A3↑ sin
α

2
+ ik↓ A3↓ cos

α

2
.

For low-transmission barrier (eκw � e−κw ) we get the coe�cients for the wave functions

behind the barrier

A3↑ '
4iκk↓ e−κw

(κ − ik↓)(κ − ik↑)
· sin

α

2
· A1↓ and A3↓ ' −

4iκk↓ e−κw

(κ − ik↓)
2
· cos

α

2
· A1↓.

For non-parallel con�guration (α 6= 0 and π) ↑ − and ↓ −components becomes interacting.
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Density of spin-polarized current behind the barrier

We have shown that the incident spin-polarized particles induces the following spin-polarized

components in a right-handed ferromagnetic metal (ξ > w)

ψ′↑ = A3↑ e
ik↑(ξ−w), ψ′↓ = A3↓ e

ik↓(ξ−w).

This corresponds to the ξ−component of the tunneling current density

j =

(
e~
m∗

) {
Im
(
A∗3↑ (ik↑)A3↑

)
+ Im

(
A∗3↓ (ik↓)A3↓

)}
=

=

(
e~
m∗

) {
k↑ |A3↑|2 + (Re k↓) |A3↓|2

}
.

1. When ↑-electron is scattered, the wave amplitudes in the region behind the barrier are

determined by the relations

A3↑ ' −
4ik↑κ e−κw

(κ − ik↑)
2
· cos

α

2
· A1↑ and A3↓ ' −

4ik↑κ e−κw

(κ − ik↑)(κ − ik↓)
· sin

α

2
· A1↑.

This corresponds to an electric current density equal to

j↑ = e

(
~k↑
m∗
|A1↑|2

)
·

16 k↑κ2k↑ e
−2κw

(κ2 + k2↑)(κ2 + k2↑)
·

{(
cos

α

2

)
2

+
(Re k↓)

k↑

(κ2 + k2↑)

(κ2 + k2↓)

(
sin

α

2

)
2

}
.
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2. When ↓-electron is scattered, the wave amplitudes in the region behind the barrier are

determined by the relations

A3↑ ' +
4iκk↓ e−κw

(κ − ik↓)(κ − ik↑)
· sin

α

2
· A1↓ and A3↓ ' −

4iκk↓ e−κw

(κ − ik↓)
2
· cos

α

2
· A1↓.

This corresponds to an electric current density equal to

j↓ = e

(
~k↓
m∗
|A1↓|2

)
·

16k↓κ2k↓ e
−2κw

(κ2 + k2↓)(κ2 + k2↓)
·

{
k↑
k↓

(κ2 + k2↓)

(κ2 + k2↑)

(
sin

α

2

)
2

+
(

cos
α

2

)
2

}
.

3. Let us de�ne the transmission coe�cients as the ratio of the current density to the

probability �ux of the incident particle

T↑ =
16 k↑κ2k↑ e

−2κw

(κ2 + k2↑)(κ2 + k2↑)
·

{(
cos

α

2

)
2

+
(Re k↓)

k↑

(κ2 + k2↑)

(κ2 + k2↓)

(
sin

α

2

)
2

}
,

T↓ =
16k↓κ2k↓ e

−2κw

(κ2 + k2↓)(κ2 + k2↓)
·

{
k↑
k↓

(κ2 + k2↓)

(κ2 + k2↑)

(
sin

α

2

)
2

+
(

cos
α

2

)
2

}
.

Compare these expressions with the transmission of non-magnetic barrier (see lecture 1)

Alexey Yu. Aladyshkin Tunneling phenomena in solids. L-6 July 19, 2024 (BIT, Beijing) 19 / 30



Part 2: tunneling magnetoresistance and spin-polarized STM
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Tunneling conductance: case of low bias and low temperature

For simplicity, we will assume that ferromagnetic metals are the same with equal e�ective

masses, Fermi energies, work function and magnetization.

Let us consider electrons located in ferromagnetic metal 1 (emitter) in a narrow energy

band from EF − δE to EF (where δE = |e δV |). Such electrons will tunnel with almost the

same probability and create the current in ferromagnetic metal 2 (collector) equal to

δI = const ·
{
T↑ + T↓

}
E=E

F

· δV =⇒ G =

(
δI

δV

)
V→0

= const ·
{
T↑ + T↓

}
E=E

F

,

where the numerical coe�cient takes into account the contribution of geometric factors,

the shape of barriers and density of states near EF .

E

EF

EF − |e|V↓

↑

E

↓′

↑′
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In the general case, both spin subbands can be occupied and, therefore, we need to take

into account the contributions of incident particles with spin up and spin down

G = const ·
{
T↑ + T↓

}
E=E

F

=

= const ·16κ2 e−2κw (κ2 + k↑k↓)
2(k↑ + k↓)

2

(κ2 + k2↑)2(κ2 + k2↓)2
·

{
1 +

(κ2 − k↑k↓)
2 (k↑ − k↓)

2

(κ2 + k↑k↓)
2(k↑ + k↓)

2
cosα

}
.

We introduce the e�ective spin polarization

P =
(k↑ − k↓) (κ2 − k↑k↓)

(k↑ + k↓) (κ2 + k↑k↓)
and |P| < 1.

Important conclusion: the tunneling current for given tunneling voltage depends on the

mutual orientation of the magnetization vectors as 1 + P2 cosα

0 90 180
α, deg

0

1

2

G
/G

0

P = 1

0.5

0.01
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Resulting tunneling conductance: summation over all modes

Slonczewski, Phys. Rev. B, vol. 39, 6995-7002 (1989).

If we take into account all numerical factors, then

� the case of single occupied sub-band:

G =
κ
~w

[
|e|
π

κk↑ e−κw

(κ2 + k2↑)

]
2

E=E
F

·
(
1 + cosα

)
;

� the case of two occupied sub-bands:

G =
κ
~w

[
|e|κ
π

(κ2 + k↑k↓) (k↑ + k↓) e
−κw

(κ2 + k2↓) (κ2 + k2↑)

]
2

E=E
F

·
(
1 + P2 cosα

)
,

where P =
(k↑ − k↓) (κ2 − k↑k↓)

(k↑ + k↓) (κ2 + k↑k↓)
is the e�ective spin polarization
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Spin-polarized scanning tunneling spectroscopy

Spin-dependent tunneling and tunneling magnetoresistance (TMR): ∆G/G0 ' 14%

Julliere, Phys. Lett. A, vol. 54, 225-226 (1975).
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Tunneling magnetoresistive element

Pashen'kin, Sapozhnikov, Gusev et al. Magnetoelectric E�ect in CoFeB/MgO/CoFeB Magnetic

Tunnel Junctions // JETP Letters, v. 111, 690-693 (2020)
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Spin-polarized scanning tunneling spectroscopy: an idea

Possible modes of operation:

1. Tunneling microscopy in the regimes of given current or given height: z(x , y) → M(x , y)

2. Scanning tunneling spectroscopy: z(x , y) and dI/dV (x , y) → M(x , y)

3. Modulation technique: z(x , y) + m(t) → M(x , y)

m

m
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Spin-polarized scanning tunneling spectroscopy:
imaging of terraces with di�erent magnetization

Wiesendanger, G�untherodt, G�untherodt, Gambino, Ruf. Phys. Rev. Lett., vol. 111, 247-250 (1990)
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Spin-polarized scanning tunneling spectroscopy:
imaging of ferromagnetic domains

Kleiber, Bode, Ravli�c, Wiesendanger. Phys. Rev. Lett., vol. 85, 4606-4609 (2000)
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Spin-polarized scanning tunneling spectroscopy:
imaging of ferromagnetic nanoparticles

von Bergmann, Bode, and Wiesendanger, J. Magn. Magn. Mater. vol. 305, 279 (2006)
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Spin-polarized scanning tunneling spectroscopy:
imaging of single magnetic atoms

Meier, Zhou, Wiebe, Wiesendanger, Science, vol. 320, 82�86 (2008)
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