
Fundamentals of
magnetism

I.V. Bobkova



ii



Contents

1 Magnetism of atoms. 3
1.1 Mechanical and magnetic moment of an elec-

tron in an atomic orbit. Classical consideration. 3
1.2 Mechanical and magnetic moment of an elec-

tron in an atomic orbit. Quantum consideration. 4
1.3 The Stern-Gerlach experiment. Electron spin.

Intrinsic magnetic moment of an electron. . . . 7
1.4 Electronic states in atoms. . . . . . . . . . . . . 9

1.4.1 Energy levels of an atom of a given elec-
tronic configuration. Hund’s rules. . . . 10

1.5 Magnetic moment of an atom. Lande-factor. . . 11

2 Classification of materials according to their mag-
netic properties. 15
2.1 Diamagnetism. . . . . . . . . . . . . . . . . . . 16
2.2 Paramagnetism. . . . . . . . . . . . . . . . . . . 16
2.3 Spontaneous magnetism. . . . . . . . . . . . . . 17

3 Diamagnetism of systems of weakly interacting
atoms or ions. 19

3.1 Classical consideration. . . . . . . . . . . . . . . 19



iv CONTENTS

3.2 Quantum consideration. . . . . . . . . . . . . . 20
3.3 Comparison with experiment. . . . . . . . . . . 22

4 Langevin paramagnetism. 25
4.1 Semiclassical consideration. . . . . . . . . . . . 25
4.2 Quantum consideration. . . . . . . . . . . . . . 27
4.3 Comparison with experiment. Alkali metal va-

pors. Salts of rare earth elements. . . . . . . . . 30

5 Magnetism of a free electron gas. 35
5.1 Fermi gas of non-interacting electrons. . . . . . 35

5.1.1 Ground state of electron Fermi gas. . . . 35
5.1.2 Fermi gas at finite temperatures. . . . . 39

5.2 Pauli paramagnetism. . . . . . . . . . . . . . . . 41
5.3 Landau diamagnetism. . . . . . . . . . . . . . . 43

5.3.1 Landau quantization. . . . . . . . . . . . 43
5.3.2 Landau diamagnetism. . . . . . . . . . . 45

6 Ferromagnetism and antiferromagnetism. 51
6.1 Exchange interaction . . . . . . . . . . . . . . . 51

6.1.1 Hydrogen molecule. . . . . . . . . . . . . 52
6.1.2 Heisenberg Hamiltonian. . . . . . . . . . 59

6.2 Weiss model. Ferromagnets. . . . . . . . . . . . 63
6.3 Magnetism of itinerant electrons. Stoner insta-

bility . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Weiss model. Antiferromagnets. . . . . . . . . . 76
6.5 Spiral magnetic order. Homework taks. . . . . . 82
6.6 The Heisenberg model beyond the mean field

approximation. Magnons. . . . . . . . . . . . . 83



CONTENTS v

6.6.1 The Heisenberg model. Spin waves. . . . 85
6.7 Anisotropic Heisenberg model. Homework task. 92

7 Magnetic anisotropy. 93
7.1 Magnetocrystalline anisotropy. . . . . . . . . . . 94

7.1.1 Cubic crystal symmetry. . . . . . . . . . 95
7.1.2 Tetragonal and hexagonal symmetry of

the crystal. . . . . . . . . . . . . . . . . 98
7.2 Shape anisotropy. . . . . . . . . . . . . . . . . . 100
7.3 Induced magnetic anisotropy. . . . . . . . . . . 104
7.4 Magnetostriction. . . . . . . . . . . . . . . . . . 105
7.5 Surface anisotropy. . . . . . . . . . . . . . . . . 106

8 Domain structure of magnets. 109
8.1 Domain walls. . . . . . . . . . . . . . . . . . . . 109

8.1.1 The width of the domain wall. . . . . . . 111
8.2 Domains structure . . . . . . . . . . . . . . . . 113

8.2.1 Estimation of the domain width. . . . . 113
8.3 Real domain structure. . . . . . . . . . . . . . . 115



vi CONTENTS



CONTENTS 1



2 CONTENTS



Chapter 1

Magnetism of atoms.

1.1 Mechanical and magnetic moment
of an electron in an atomic orbit.
Classical consideration.

If an electron moves in a circular orbit, then there is a cer-
tain relationship between its magnetic moment and angular
momentum. Let µ be the magnetic moment of the electron,
and J its angular momentum. The vector J is directed per-
pendicular to the orbital plane and is equal in absolute value

J = mvr. (1.1)

The magnetic moment of the same orbit is equal to the
product of the current and the area of the orbit (in the SI
system, in the CGS it must be divided by the speed of light).
Current I = q/(2πr/v), S = πr2. Thus,

µ = IS/c = qvr/2c. (1.2)

The magnetic moment is also directed perpendicular to the
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Figure 1.1: From [2]. Mechanical and magnetic moments of
an electron moving in a circular orbit.

orbital plane. From Eqs.(1.1) and (1.2) we can obtain

µ =
q

2mc
J . (1.3)

Thus, the ratio of the magnetic moment of a moving charged
particle to the mechanical one does not depend on either its
speed or the radius of its orbit. In general, the ratio of the
magnetic moment of a particle to its mechanical moment is
called the gyromagnetic ratio. For an electron it is negative,
because the electron has a negative charge.

1.2 Mechanical and magnetic moment
of an electron in an atomic orbit.
Quantum consideration.

If we consider the atomic nucleus to be infinitely heavy, then
the Hamiltonian of an atom with Z spinless electrons takes
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the form

Ĥ =
Z∑
i=1

( p̂2
i

2m
− Ze2

ri

)
+
∑
i<j

e2

|ri − rj|
. (1.4)

In a static magnetic field p̂i → p̂i − eA(ri)/c, where A(r)
is the vector potential of the magnetic field. If the magnetic
field is spatially homogeneous, then the vector potential can
be chosen in the form A(r) = (1/2)[B × r]. Then

(p− e

c
A)2 = p̂2 − e

c
(Ap̂+ p̂A) +

e2

c2
A2 =

p̂2 − e

c
B l̂ +

e2

4c2
B2r2

⊥, (1.5)

where l̂ = r× p̂ is the angular momentum operator, and r⊥ is
the projection of r onto the plane perpendicular to B. Then
for the system of Z electrons in an atom we obtain

Ĥ = Ĥ0 −
e

2mc
BL̂+

e2

8mc2
B2

Z∑
i=1

r2
i⊥, (1.6)

where L̂ =
Z∑
i=1

ri × p̂i is the operator of the total angular mo-

mentum of the Z electron system. For weak magnetic fields,
the contribution of the third term can be neglected and the
Hamiltonian of the system takes the form Ĥ = Ĥ0 − BM ,

whereM =
Z∑
i=1

µi is the total magnetic moment of the electron

system. Here the magnetic moment of an individual electron
µi is induced by its orbital moment as

µi =
e

2mc
l̂i. (1.7)

Thus, the gyromagnetic ratio in a quantum consideration of
the orbital motion of an electron in an atom is obtained exactly
the same as from an elementary classical consideration.
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Let’s direct the magnetic field along the z axis. Then the
operators H0, L̂2 and Lz have a common set of eigenvectors
|nLM〉, and the eigenvalues of Ĥ0, EnL

0 do not depend on M
and are (2L + 1)-degenerate. The eigenvalue of the operator
Ĥ corresponding to the eigenvector |nLM〉 is

EnLM = EnL
0 −MµBB, (1.8)

where

µB =
e~

2mc
. (1.9)

This quantity is called the Bohr magneton.
Because M can have all integer values from −L to L, then

in a magnetic field the level EnL
0 is split into (2L+ 1) different

equidistant levels (splits into a multiplet consisting of (2L+1)
sublevels). The distance between neighboring sublevels should
be equal to µBB and should not depend on a particular atom.
The splitting of atomic energy levels in a magnetic field is
called the Zeeman effect.

Figure 1.2: From [3]. Zeeman effect for L = 2. On the left
is a degenerate energy level in a zero field, on the right is the
splitting of this level in a non-zero magnetic field.

The experiment only partially confirms these predictions.
There are 2 important deviations:

(1) in atoms with odd Z all multiplets are even, i.e. consist
of an even number of sublevels. It looks like as if L is a half-
integer.
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(2) the distance between neighboring sublevels is equal to
gµBB, where g is the Lande-factor and depends on the specific
multiplet.

1.3 The Stern-Gerlach experiment. Elec-
tron spin. Intrinsic magnetic mo-
ment of an electron.

To eliminate the difficulties described above, it is necessary to
introduce half-integer angular momentum and a gyromagnetic
ratio different from e/2mc. This is obtained if we introduce
the electron spin hypothesis, put forward by Uhlenbeck and
Goudsmit in 1925: each electron has an internal angular mo-
mentum or spin s = (1/2)~, with which a magnetic moment
is associated

µs = gs
e

2mc
s, (1.10)

where gs is some constant. Agreement between theory and
experiment is achieved at gs = 2. This value of gs is derived
from the nonrelativistic approximation of the Dirac equation.

The existence of a half-integer moment is directly estab-
lished in the Stern-Gerlach experiment, which studies the de-
flection of a beam of atoms or molecules having a magnetic
moment µ in a nonuniform magnetic field. If the field is
nonuniform, then the force F = ∇(µB) acts on the center
of mass of the atom. If an atom is in a state with a certain µz
and the field gradient is directed along the z axis, see Fig. 1.3,
then the average force acting on it is F̄ = µzdB/dz.

Let l be the distance traveled by an atom in a magnetic
field, T be the initial kinetic energy of the atom. Then the
velocity of each atom deviates from its initial direction by an
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Figure 1.3: From [4]. The Stern-Gerlach experiment. (a) Gen-
eral experimental design. A non-uniform magnetic field acts
between the poles of the magnet A and A’ and is directed ver-
tically; (b) Cross section of the poles of a magnet, the dotted
lines indicate the magnetic field lines.

angle

ϕ ≈ µz
dBz

dz

l

2T
. (1.11)

The deviation is proportional to µz. If the projection µz could
take The spin magnetic moment of an electron is proportional
to the electron’s own angular momentum (spin) and is equal
toarbitrary values, then a continuous spot elongated in the
direction of the z axis would be observed on the screen. In fact,
a number of discrete, equidistant spots are observed on the
screen. When the field changes, the distance between the spots
changes, but the total number of spots λ remains unchanged.
Thus, this experiment is direct proof of the quantization of µz.
Moreover, in the experiments of Stern and Gerlach with beams
of silver atoms, splitting into 2 separate beams was obtained,
which serves as proof of the half-integer value of the angular
momentum of the corresponding atom.

A brief summary of the relationship between the
magnetic and mechanical moment of an electron:

The magnetic moment of an electron consists of two sources:
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orbital magnetism (due to motion in orbit) and spin mag-
netism

The orbital magnetic moment of an electron is proportional
to the angular momentum of the electron due to its orbital
motion and takes the form

µl = gl
µB
~
l, (1.12)

where gl = 1 - is the Lande-factor of the orbital motion.
The spin magnetic moment of an electron is proportional

to the electron’s own angular momentum (spin) and is equal
to

µs = gs
µB
~
s, (1.13)

where gs = 2 - is the spin Lande-factor.

1.4 Electronic states in atoms.

The magnetic moment of an atom consists of the magnetic
moments of its electron shell and the magnetic moment of
the nucleus. The magnetic moment of a nucleus, in turn,
consists of the magnetic moments of its constituent nucle-
ons. Nucleons (protons and neutrons) also have a spin of ~/2
and an intrinsic magnetic moment of µp = gp(e/2Mpc)sp and
µn = gn(e/2Mnc)sn, respectively. gp ≈ 5.59 and gn ≈ −3.83
are the Lande spin factors of the proton and neutron. Al-
though nuclear magnetism plays an important role in some ef-
fects, it is much weaker than electron magnetism (since Bohr’s
nuclear magneton µnuc = (e~/2Mpc) ≈ µB/1836.5) and in
most magnetic materials, nanostructures and effects do not
play a role, so we will focus on the magnetism of the elec-
tron shell of the atom. To do this, we first consider how the
electronic states in an atom are arranged.
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1.4.1 Energy levels of an atom of a given elec-
tronic configuration. Hund’s rules.

Even for a given electronic configuration, an atom has several
different states. As mentioned above, electrons in an atom
move in the Coulomb field of the nucleus and interact with each
other. In the nonrelativistic approximation, this interaction is
purely electrostatic and does not depend on spin. The field is
centrally symmetric, therefore the total orbital momentum of
the electron system L is conserved, as well as the total spin of
the electron system S. Thus, the degeneracy of each level is
(2L+ 1)(2S + 1).

When taking into account relativistic effects, i.e. spin-orbit
interactionHso ∝ LS, the energy of the atom begins to depend
not only on the values of L and S separately, but also on their
mutual orientation. L and S are not conserved separately,
but only the total momentum of the atom J = L + S is
conserved. J can take values from |L−S| to L+S, i.e. 2S+1
values for L > S and 2L + 1 values for L < S. At the same
time, the spin-orbit interaction is usually weak, so because
of it, a level with given L and S is usually split into very
close sublevels, which are called the fine structure of the level.
The atomic energy level (spectral term) is designated by the
Latin letter S,P,D,F,G,H... according to the value of the total
orbital momentum L = 0, 1, 2, 3, .... The number 2S + 1 is
placed at the top left - multiplicity; at the bottom right is J .
For example, 2P3/2 - atomic level L = 1, S = 1/2, J = 3/2.

There are empirically established Hund’s rules, which de-
termine the state of the atom with the lowest energy (ground
state term) for a given electronic configuration, taking into
account the Pauli principle:

1. For a given electronic configuration, the state with the
highest S has the lowest energy.

2. For this S, the term with the largest L has the lowest
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energy.
3. For given L and S, the state with the minimum possible

J = |L− S| has the lowest energy if the shell is less than half
filled and with the maximum possible J = L+S if the shell is
more than half filled.

Let’s look at examples.
Using Hund’s rules, we determine the ground state term of

the C and N atoms.
Carbon C. Electronic configuration 2s2 2p2. The 2p shell

is not completely filled. It has 2 electrons. By the first Hund
rule S = 1, by the second Hund rule L = 1 (Lz = 1 + 0 = 1,
this projection of the orbital momentum can correspond only
to L = 1, and not to L = 2 , since the action of the raising
operator on this state leads to vanishing of the wave function
due to the Pauli principle). The shell is less than half filled, so
according to Hund’s third rule J = |L− S| =0. Ground state
term 3P0.

Nitrogen N. Electronic configuration 2s2 2p3. The 2p shell
is not completely filled. It has 3 electrons. According to the
first Hund rule S = 3/2, according to the second Hund rule
L = 0. The shell is exactly half filled, so J = |L−S| = L+S =
3/2. Ground state term 4S3/2.

1.5 Magnetic moment of an atom. Lande-
factor.

The resulting magnetic moment of the many-electron shell of
the atom µ will not be strictly opposite to the total orbital
moment J due to the fact that the spin and orbital gyromag-
netic ratios for the electron are different gl 6= gs. This is clear
from Fig. 1.4, which represents a simplified vector model of
the magnetic moment of an atom.
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Figure 1.4: Vector model of the magnetic moment of an atom.

We are only interested in the projection of µ onto the vec-
tor J (µJ), because we consider states with a certain value of
angular momentum.

µJ = µS cos(S,J) + µL cos(L,J). (1.14)

cos(S,J) =
S(S + 1) + J(J + 1)− L(L+ 1)

2
√
S(S + 1)J(J + 1)

,

cos(L,J) =
L(L+ 1) + J(J + 1)− S(S + 1)

2
√
L(L+ 1)J(J + 1)

,

(1.15)

Substituting (1.15) into (1.14), and also taking into account
that µL =

√
L(L+ 1)µB, µS = 2

√
S(S + 1)µB, we get

µJ =
[
1 +

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

]√
J(J + 1)µB =

gJ
√
J(J + 1)µB, (1.16)
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where

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(1.17)

This is the Lande factor of the electron shell. If L = 0 (pure
spin magnetism), then gJ = 2. If S = 0 (pure orbital mag-
netism), then gJ = 1.

Quantum mechanical derivation of the Lande fac-
tor.

From symmetry considerations it is clear that, because in
the absence of an external magnetic field, the only moment
conserved in the system is the total moment J , then the mag-
netic moment operator in the vector sense must be directed
along J . Therefore we can write

µ̂ = ĜĴ , (1.18)

where Ĝ is some scalar operator. By defining the magnetic
moment as the sum of the orbital and spin moments, we ob-
tain:

ĜĴ = −µB(L̂+ 2Ŝ) = −µB(Ĵ + Ŝ). (1.19)

Multiplying this equality by Ĵ , we get:

ĜĴ2 = −µB(Ĵ2 + Ĵ Ŝ) = −µB(Ĵ2 + L̂Ŝ + Ŝ2). (1.20)

The operator L̂Ŝ can be expressed from the relation:

Ĵ2 = (L̂+ Ŝ)2 = L̂2 + 2L̂Ŝ + Ŝ2. (1.21)

As a result, from the equation (1.20) Ĝ can be expressed as

Ĝ = −µB
(

1 +
Ĵ2 − L̂2 + Ŝ2

2Ĵ2

)
. (1.22)
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And in a state with given S, L and J , all operators in this
formula turn into their own values. That’s why

µ̂ = −µB
(

1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)
Ĵ . (1.23)

Assuming the field is directed along z, from

∆E = −〈µ̂z〉B = gµBmJB, (1.24)

where

g = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(1.25)

is the Lande-factor, and mJ is the projection of the total mo-
ment onto the z axis.



Chapter 2

Classification of materials
according to their magnetic
properties.

Phenomenological classification of magnetic materials is made
according to their magnetic susceptibility. For most magnetic
materials, the magnetizationM in an external fieldH is par-
allel (or antiparallel) to the field and

M = χH , (2.1)

where χ is the magnetic susceptibility. In a more general case,
the magnetization can depend on the field in a nonlinear man-
ner, then a differential susceptibility χ(H) = dM/dH can be
introduced.

Based on different susceptibility behavior, three classes of
magnetic materials can be distinguished:

1) diamagnets;
2) paramagnets;
3) materials with spontaneous magnetic order.
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magnetic properties.

2.1 Diamagnetism.

Diamagnetism is a purely inductive effect. An external mag-
netic field induces magnetic dipoles in a material, which are
oriented opposite to the external field in accordance with Lenz’s
rule. Therefore, the diamagnetic susceptibility is negative
χdia < 0.

Diamagnetism is a property of all materials. But it man-
ifests itself experimentally only in the absence of paramag-
netism and atomic magnetic order, which are much stronger
and mask diamagnetic effects.

Examples of diamagnetic materials:
1) many organic compounds;
2) metals like Hg;
3) inert gases;
4) superconductors at T < Tc. They are ideal diamagnetic

materials because for them, the external magnetic field is com-
pletely screened by the material (Meissner-Ochsenfeld effect).
That is, χ = −1 and B = µ0(H +M ) = µ0(1 + χ)H = 0.

2.2 Paramagnetism.

The susceptibility of paramagnetic materials is positive χpara >
0. A necessary condition for the occurrence of paramagnetism
is the existence of permanent magnetic dipoles (except for
Van Vleck polarization paramagnetism). In an external field,
they are oriented along the field. This orientation is partially
destroyed by thermal fluctuations. Permanent magnetic mo-
ments can be created by localized moments of the inner shells
of an atom, or by collectivized conduction electrons.

Typical examples of materials where paramagnetism is cre-
ated by localized moments of the inner shells of atoms are rare



2.3 Spontaneous magnetism. 17

earth metals, where magnetism is created by 4f electrons of
the inner shells and 5f electrons in actinides. This class of
materials exhibits Langevin paramagnetism, which is charac-
terized by susceptibility behavior that obeys Curie’s law

χLangevin(T ) =
c

T
. (2.2)

Conductivity electrons also have a constant magnetic mo-
ment µB per electron. They also give the material a param-
agnetic response to the field. This paramagnetism is called
Pauli paramagnetism. The corresponding susceptibility is al-
most independent of the temperature ∂χPauli/∂T ≈ 0 and
χPauli � χLangevin.

2.3 Spontaneous magnetism.

This type of magnetism is caused by strong exchange inter-
actions between atomic magnetic moments and can only be
explained using quantum mechanics. Susceptibility can be
highly dependent on temperature, external field, and sample
history. Such materials are characterized by the presence of a
critical temperature, below which the material exhibits spon-
taneous magnetization, not caused by an external field. This
type of magnetism can be caused by both localized magnetic
moments (Gd, EuO, EuS) and itinerant electrons (Fe, Ni, Co).
The spontaneous magnetism can be roughly divided into three
subclasses:

1) Ferromagnetism - there is spontaneous non-zero magne-
tization at 0 < T < Tc due to the preferable orientation of all
atomic magnetic moments in one direction. Tc is called the
Curie temperature.

2) Ferrimagnetism - the crystal lattice is divided into 2
sublattices A and B, in each of which the atoms are arranged
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in a ferromagnetic order, but the magnetizations of these sub-
lattices are not equal to each other MA 6= MB and M =
MA +MB 6= 0 for T < Tc.

3) Antiferromagnetism is a special case of ferrimagnetism,
for whichMA = −MB and, accordingly,M = MA+MB = 0,
i.e. there is no total magnetization, but each of the sublattices
has non-zero spontaneous magnetization at T < TN . In the
case of antiferromagnetism, the critical temperature for the
disappearance of spontaneous magnetic order TN is called the
Néel temperature.

Figure 2.1: From [5]. Dependence of inverse magnetic suscepti-
bility on temperature for materials with spontaneous magnetic
order.

Above the critical temperature, all materials with spon-
taneous magnetic order exhibit paramagnetic properties. An
approximate view of the dependence of magnetic susceptibility
on temperature for all three types of materials with sponta-
neous order is presented in Fig. 2.1.



Chapter 3

Diamagnetism of systems
of weakly interacting atoms
or ions.

3.1 Classical consideration.

Let us assume that a magnetic field is turned on at the location
of the atom. According to Faraday’s law of electromagnetic
induction, when the magnetic field changes, a vortex electric
field will be generated, see Fig. 3.1.

2πrE = − d

dt
(Bπr2)⇒ E = −r

2

dB

dt
. (3.1)

The induced electric field, acting on the electron, creates
a torque eEr, which must be equal to the rate of change of
angular momentum:

dJ

dt
= −er

2

2

dB

dt
. (3.2)
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Figure 3.1: From [6]. An eddy electric field induced by an
alternating magnetic field acting on an electron in an atom.

Integrating Eq. (3.2) over time, starting from B = 0 at t = 0,
we obtain

∆J = −er
2

2
B. (3.3)

This additional angular momentum is transferred to the elec-
tron by turning on the field. The induced magnetic moment is
obtained by multiplying the acquired orbital moment by the
gyromagnetic ratio corresponding to the orbital motion

∆µ =
e

2m
∆J = −e

2r2

4m
B. (3.4)

The minus sign means that the induced magnetic moment is
directed against the field, and this is diamagnetism. Suscepti-
bility is equal to:

χdia = −e
2r2µ0

4m
. (3.5)

3.2 Quantum consideration.

The Hamiltonian of an atom without taking into account the
spin of electrons in a magnetic field has the form (1.6). When
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taking into account the electron spin, an additional term ap-
pears:

Ĥ = Ĥ0 + µB(gLL̂+ gsŜ)B +
e2

8mc2
B2

Z∑
i=1

r2
i⊥, (3.6)

where Ŝ =
Z∑
i=1

ŝi is the operator of the total spin of electrons

in an atom.
Let us consider an atom that has zero orbital and spin

momentum, i.e. L = S = 0. Then the energy of the atom,
which can be calculated as the average value of the operator
Ĥ over a given quantum state, has the form:

E = E0 +
e2

8mc2
B2〈0|

Z∑
i=1

(x2
i + y2

i )|0〉. (3.7)

Here the energy is calculated using perturbation theory. Eq. (3.7)
is the result of a calculation accurate to the first order of per-
turbation theory in the magnetic field, therefore the averaging
is taken not over the exact state in the magnetic field, but over
the state |0〉, which corresponds to zero field.

Atoms and ions with a completely filled shell have a spher-
ically symmetric wave function, so 〈|x2

i |〉 = 〈|y2
i |〉 = (1/3)〈|r2

i |〉
.

∆E = E − E0 =
e2B2

12mc2
〈0|

Z∑
i=1

r2
i |0〉. (3.8)

Magnetic moment per unit volume

M = −n∂∆E

∂B
= −n e

2B

6mc2
〈0|

Z∑
i=1

r2
i |0〉, (3.9)

where n is the concentration of atoms.

χdia = −n e2

6mc2
〈0|

Z∑
i=1

r2
i |0〉. (3.10)
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This is Larmor diamagnetic susceptibility. It does not depend
on temperature, because the average square of the distance
in a given state does not depend on temperature, and other
states are usually quite strongly separated from a given one in
energy and the energy of the thermal motion of surrounding
particles is not enough to transfer a given atom to another
state.

This diamagnetic susceptibility is very small and manifests
itself directly mainly for atoms and ions with completely filled
shells, although in fact it is inherent in absolutely all atoms.
The fact is that atoms with partially filled shells have a per-
manent magnetic moment, due to which they exhibit param-
agnetic properties. Therefore, diamagnetism is masked by a
much larger paramagnetic contribution to the susceptibility.
But for heavy atoms, in which the total spin moment does
not exceed several Bohr magnetons, and the diamagnetic mo-
ments of all electrons add up, the diamagnetic contribution
to the susceptibility can reach 10% of the total susceptibility,
which is already significant.

3.3 Comparison with experiment.

If the atom’s own magnetic moment is zero, then the diamag-
netism of the electron shell comes to the fore. This applies
primarily to inert gases and to vapor of elements of the second
group, in which the ground state has the configuration 1S0.

The susceptibility defined by the formula (3.10) is a dimen-
sionless quantity. The so-called molar susceptibility, which is
determined by the formula (3.10) with the atomic concentra-
tion n replaced by Avogadro’s number NA. This value, when
multiplied by the magnetic field, gives the magnetic moment
of a mole of the substance. It is no longer dimensionless and
is expressed in cm3/mol. A comparison of the molar suscepti-
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bilities of inert gases with the calculation is given in the table
in Fig. 3.2.

Figure 3.2: From [7]. Comparison of experimental results on
the susceptibility of inert (noble) gases with calculations.

Negative halide ions and positive alkali metal ions have an
electron shell similar to that of noble gases, so their suscep-
tibilities can be expected to be close. The experimental ion
susceptibilities are given in the table in Fig. 3.3.

Figure 3.3: From [7]. Comparison of molar susceptibilities of
atoms and similar ions.

The susceptibilities of the corresponding ions and atoms
are indeed close, but the susceptibility of halide ions is greater,
and the susceptibility of alkali metal ions is less than that of
noble gas atoms. This is due to the fact that the nuclear charge
of halogens is less, and that of alkali metal ions is greater than
that of atoms of inert gases; therefore, the orbital radii are
greatest for halogens and least for alkali metals.
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Chapter 4

Langevin paramagnetism.

4.1 Semiclassical consideration.

Let the magnetic field be directed along the z axis, i.e. B =
(0, 0, B). The energy of interaction of the magnetic moment
µ, directed at an angle θ to the z axis (more precisely, located
in the angle range from θ to θ+dθ), with the magnetic field is

E = −µB cos θ. (4.1)

the projection of the magnetic moment onto the z axis is equal
to µz = µ cos θ. The probability of an atom having a magnetic
moment in the angle range from θ to θ + dθ is determined by
the product of the Boltzmann distribution

P (θ) = CeµB cos θ/kT . (4.2)

to the fraction of states in which the magnetic moment lies in
the angle range from θ to θ+ dθ. This fraction is proportional
to the spherical angle lying between the cones with openings
θ and θ + dθ, i.e. 2π sin θdθ/4π:

dw =
1

2
sin θeµB cos θ/kT . (4.3)
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Therefore, the average value of the projection of the magnetic
moment onto the z axis is equal to

〈µz〉 =

∫
µzdw∫
dw

=

π∫
0

1
2
µ cos θ sin θeµB cos θ/kTdθ

π∫
0

1
2

sin θeµB cos θ/kTdθ

. (4.4)

Introducing the notations cos θ = x and (µB)/(kT ) = y, we
obtain

〈µz〉 = µ

1∫
−1

xexydx

1∫
−1

exydx

= µ[coth y − 1

y
] = µL(y), (4.5)

where L(y) is the Langevin function, which is shown in Fig. 4.1.

Figure 4.1: From [5]. Langevin function L(µB/kT ). The dot-
ted line is the approximate linear behavior of the Langevin
function L(y) ≈ y/3 at y � 1.

Assuming that the external magnetic field is small or the
temperature is high, i.e. y � 1, we can approximately write



4.2 Quantum consideration. 27

coth y = 1/y + y/3 +O(y3) and then

L(y) ≈ y

3
, y � 1. (4.6)

Let n be the number of magnetic moments per unit volume,
then the saturation magnetization is equal to Ms = nµ. The
average magnetization along the field takes the form

M = n〈µz〉. (4.7)

At µB/kT � 1

M

Ms

=
µB

3kT
, (4.8)

then we obtain the susceptibility

χ =
M

H
=
µ0µ

2n

3k

1

T
=
C

T
. (4.9)

Thus, the paramagnetic susceptibility of a gas of non-interacting
atoms obeys Curie’s law.

4.2 Quantum consideration.

For a quantum calculation, it is necessary to take into account
that the total angular momentum of a particle J can have inte-
ger or half-integer values. The energy of the magnetic moment
in a magnetic field is E = gJmJµBB. The average value of
the projection of the magnetic moment onto the magnetic field
axis can be calculated as the average over the Gibbs distribu-
tion for states with certain spin projections. First, we find the
average value of the projection of the angular momentum:

〈mJ〉 =

J∑
mJ=−J

mJe
−xmJ

J∑
mJ=−J

e−xmJ

= − 1

Z

∂Z

∂x
, (4.10)
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where x = gJµBB/kT . The magnetization per unit volume
can then be expressed as:

M = −ngJµB〈mJ〉. (4.11)

Let’s calculate the partition function:

Z =
J∑

mJ=−J

e−xmJ = eJx
(
1 + e−x + e−2x + ...+ e−2Jx

)
=

eJx
1− e−(2J+1)x

1− e−x
=
e(2J+1)x/2 − e−(2J+1)x/2

ex/2 − e−x/2
=

sinh[(2J + 1)x/2]

sinh[x/2]
. (4.12)

M

Ms

=
ngJµ

1
Z
∂Z
∂x

ngJµJ
=[2J + 1

2J
coth[

2J + 1

2J
y]− 1

2J
coth[

y

2J
]
]

= BJ(y), (4.13)

where y = Jx = gJJµBB/kT and BJ(y) - is the Brillouin
function, which is shown in Fig. 4.2 for different J .

Consider some limiting cases:
1. J →∞. In this case, for small x coth[y/2J ] = coth[x/2] ≈

2J/y + (1/3)(y/2J) + ... and for BJ(y) we get

B∞(y) ≈ coth y − 1

y
− y

12J2
+ ... ≈ L(y). (4.14)

This means that J →∞ corresponds to the classical limit.
2. J = 1/2. In this case

B1/2(y) = tanh y. (4.15)

Now let’s look at the typical experimental values J = 1/2,
gJ = 2, B = 1T, T = 300K and estimate the characteristic
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Figure 4.2: From [5]. Brillouin function for various values of
J .

value y for these parameters y = µBB/kT ≈ 2 · 10−3 � 1.
Therefore, in most part of experimental situations y � 1 can
be assumed, except in cases of very high fields or very low
temperatures. In the case of y � 1 the Brillouin function can
be simplified

BJ(y) ≈ 2J + 1

2J

( 2J

2J + 1

1

y
+

1

3

2J + 1

2J
y
)
− 1

2J

(2J

y
+

y

6J

)
=

J + 1

3J
y. (4.16)

Susceptibility is equal to

χ =
M

H
=
µ0MsBJ(y)

B
=
µ0ngJµBJ(J + 1)gJJµB

3JkT
=

µ0ng
2
Jµ

2
BJ(J + 1)

3kT
=
nµ0µ

2
eff

3kT
. (4.17)
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Comparing the expression (4.17) with the classical answer for
susceptibility (4.9), we see that they coincide up to the re-
placement µ → µeff = gJµB

√
J(J + 1). Please note that in

this case the saturation magnetization is achieved not by mul-
tiplying µeff by the number of moments per unit volume, but
as Ms = ngJµBJ .

4.3 Comparison with experiment. Al-
kali metal vapors. Salts of rare
earth elements.

The number of possible substances where the law (4.17) is
implemented is small, because Most gases have polyatomic
molecules. Only inert gases and metal vapors are monatomic.
The intrinsic magnetic moment of atoms of noble gases is zero,
so only vapors of metals are suitable for observation.

Experiments were carried out with potassium vapor at T =
600− 800K. It turned out that χK = 0.38/T (per mole). The
theoretical value calculated using Eq. (4.17) gives fairly good
agreement with experiment.

In addition to metal vapors, salts of rare earth elements
are suitable objects in which Langevin paramagnetism can be
observed. For rare earth elements, the inner 4f shell is un-
derfilled, see the table in Fig. 4.3. The magnetic moment is
created by this underfilled shell and this shell is well shielded
from the influence of the electric fields of neighboring atoms
by the filled 5s and 5p shells. Therefore, salts of rare earth ele-
ments can indeed be considered a gas of independent magnetic
moments.

From a comparison of the experimental data presented in
the table in Fig. 4.3 with calculations using the Hund formula
(4.17) it is clear that the agreement is generally good, except
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Figure 4.3: From [7]. Effective magnetic moments of rare earth
ions calculated using Hund’s formula (4.17), Van Vleck’s for-
mula (4.18) and experimental value.

for Sm3+ and Eu3+ ions, for which there is a large discrepancy.
This is because the derivation of (4.17) assumed that all ions
are in their ground state. But they also have higher energy
states (see Fig. 4.4), into which some of the ions can move at
finite temperatures in accordance with the Boltzmann distri-
bution e−ε/kT . As can be seen from the figure, for samarium
and europium the probability of the ion being in excited states
at room temperature is not small, in contrast to other ions, for
which the excited states are separated from the ground state
by a large energy gap. Magnetic susceptibility, taking into ac-
count the excited states of ions, can be calculated using the
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Figure 4.4: From [7]. Diagrams of the energy levels of some
rare earth ions.

Van Vleck formula:

χ = n

∑
J

{
g2
Jµ

2
BJ(J + 1)/3kT + bJ

}
(2J + 1)e−εJ/kT∑

J

(2J + 1)e−εJ/kT
. (4.18)

Thermal excitation of atoms and molecules is only one of
the reasons leading to deviations from Hund’s formula (4.17).
Other reasons include the intracrystalline Stark effect, which
will now be briefly discussed, the electrostatic exchange inter-
action of electrons, which in some cases leads to ferromag-
netism and will be discussed in detail later, and the mag-
netic interaction between the magnetic moments of individual
atoms, which is significant only at very low temperatures.

In addition to rare earth elements, there are 4 more groups
of elements in the periodic table in which the internal shells
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are refilled. This
1) group of iron from Sc(Z=21) to Ni(Z=28) - the 3d-shell

is filled;
2) palladium group from Y(Z=39) to Pd(Z=46) - the 4d

shell is filled;
3) platinum group from Lu(Z=71) to Pt(Z=78) - the 5d

shell is filled;
4) group of actinides from Ra (Z=88) to Md (Z=101) - the

6d shell is filled first, and then the 5f shell.
Transition elements are the groups of iron, palladium and

platinum in which the d-shells are filled. It would seem that
their magnetic properties should be determined by the mag-
netic moment of the unfilled d-shell and the susceptibility
should be calculated using the Hund or Van Vleck formulas.
But it is not so. The effective magnetic moment calculated
using Hund’s formula for these materials is consistent with ex-
periment only if the ground state of the atom is the S-state
with zero orbital momentum. For most transition elements,
the calculation can be consistent with experiment, if we as-
sume that only the spin of the atom is oriented in the mag-
netic field, the susceptibility is calculated using the formula
(Stoner’s formula)

χ = n
4S(S + 1)µ2

B

3kT
, (4.19)

that is, the effective magnetic moment is of purely spin nature
µeff = 2

√
S(S + 1)µB. The orbital angular momentum is

frozen and does not participate in the orientation of the mag-
netic moment along the field, and therefore does not contribute
to the susceptibility. The freezing of the orbital momentum oc-
curs under the influence of the electric field of neighboring ions
of the crystal lattice, which removes the degeneracy of energy
levels in ml. This is called the crystalline Stark effect. For
transition element ions, unlike rare earth ions, the unfilled d-
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shell is located on the outside, so the influence of the crystal
field in their case is large.



Chapter 5

Magnetism of a free
electron gas.

5.1 Fermi gas of non-interacting elec-
trons.

5.1.1 Ground state of electron Fermi gas.

Let us consider a system ofN non-interacting electrons located
in volume V . Because electrons do not interact, it is enough
to calculate the energy levels of one electron and fill them with
electrons in accordance with the Pauli principle.

In the absence of interaction, the one-electron wave func-
tion satisfies the Schrödinger equation

− ~2

2m

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = εψ(r). (5.1)

The movement of electrons is restricted by the volume V of the
metal. For sufficiently large volumes, it is natural to expect
that the bulk properties of the electron gas will not depend on
the specific shape of the surface. Therefore, for simplicity, we
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choose a cubic sample with side L = V 1/3 and impose periodic
boundary conditions

ψ(x, y, z + L) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x+ L, y, z) = ψ(x, y, z). (5.2)

The solution of the Schrödinger equation (5.1) has the form

ψ(r) =
1√
V
eikr, (5.3)

where the normalization factor 1/
√
V is chosen so that the to-

tal probability of finding an electron anywhere in the volume V
is equal to unity

∫
dV |ψ(r)|2 = 1. In this case ε(k) = k2/2m.

Obviously, the solution (5.3) is an eigenfunction of the momen-
tum operator corresponding to the eigenvalue ~k. Therefore,
this solution represents a state with a certain momentum ~k
and velocity v = ~k/m.

The wave function (5.3) satisfies the boundary conditions
(5.2) only if the following relations are satisfied:

eikxL = eikyL = eikzL = 1⇒
kx =

2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (5.4)

where nx, ny, nz - are integer numbers. Thus, in k-space only
such wave vectors are allowed whose coordinates along three
axes are integer multiples of 2π/L, see Fig. 5.1.

In the three-dimensional case, the volume region Ω in k-
space contains Nk,V points:

Nk,V =
Ω

(2π/L)3
=

ΩV

(2π)3
. (5.5)

The level density in k-space is equal to

Nk =
V

(2π)3
. (5.6)
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Figure 5.1: From [?]. Points of two-dimensional k-space having
coordinates kx = 2πnx/L, ky = 2πny/L. There is a shaded
volume of (2π/L)2 per point.

We will fill states in k-space with electrons taking into ac-
count the Pauli exclusion principle, i.e. in a state with a given
k, no more than 2 electrons with opposite spin projections on
the quantization axis can be placed. The N-electron state is
a filled sphere in k-space. Let the radius of this sphere be kF .
Then inside the filled sphere there is

V

(2π)3

4πk3
F

3
(5.7)

states, in each of which two electrons can be placed. Therefore,
the Fermi radius kF is related to the total number of electrons
in the system by the relation

N = 2
V

(2π)3

4πk3
F

3
=

k3
F

3π2
V. (5.8)

Thus, if the electron concentration in the system is n, then the
ground state of the electron gas is obtained by filling all one-
electron states up to the Fermi momentum pF = ~kF , which
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is determined from the relation

n =
k3
F

3π2
. (5.9)

States with momenta above pF remain unoccupied.
A sphere with radius kF , inside which filled electronic levels

lie, is called the Fermi sphere, the surface of this sphere is
called the Fermi surface. vF = pF/m and εF = p2

F/2m are
the Fermi velocity and Fermi energy, respectively. The Fermi
velocity is the characteristic velocity of electrons in metals and
is an analogue of the thermal velocity v =

√
3kT/m in classical

gases.
The order of magnitude of the Fermi velocity is 108cm/s.

This is quite a high speed, about 1% of the speed of light.
From the point of view of classical physics, such electron ve-
locities look strange, because we describe the state of the sys-
tem at T = 0, and at zero temperature in a classical gas all
particles have zero velocities. Even at room temperature, the
characteristic velocities of classical particles with the mass of
an electron are only about 107cm/s.

The Fermi energy is on the order of several electronvolts.
Let us find the energy of the ground state of the Fermi gas.

To do this, we need to add up the energies of all one-electron
levels located inside the Fermi sphere:

E = 2
∑
k<kF

~2k2

2m
=

V

(2π)3

∑
k

~2k2

2m
∆k = 2V

∫
d3k

(2π)3

~2k2

2m
. (5.10)

E = 2V

∫
d3k

(2π)3

~2k2

2m
=
V

π2

kF∫
0

k2dk
~2k2

2m
=

V

10π2

~2

m
k5
F . (5.11)

Ground state energy per 1 electron

E

N
=

1/(10π2)(~2/m)k5
F

k3
F/3π

2
=

3

5
εF =

3

5
kTF . (5.12)
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In a classical electron gas at T = 0 E/N = 0, and the energy
(3/5)εF is achieved at T ∼ 104K.

Note that we considered the Fermi energy of the gas as
the product of the energy εk = ~2k2/2m of one state with a
given k by the number of states in a small volume of k-space.
Because the energy εk depends only on the modulus k, then
we can proceed to integration over k, and hence to integration
over the energy ε. It’s done like this

d3k

(2π)3
=

4πk2dk

(2π)3
= g(ε)dε,

g(ε) =
m

2~2π2

√
2mε

~2
=

3

4

n

εF

( ε
εF

)1/2

. (5.13)

The quantity g(ε) is called the energy density of states. Using
the density of states, the expression for the Fermi energy of a
gas can be written as

E = 2

εF∫
0

εdεg(ε). (5.14)

5.1.2 Fermi gas at finite temperatures.

The previous consideration is valid for T = 0. At T > 0,
the density of states remains unchanged, and the probability
of levels being occupied by electrons (distribution function)
changes and is expressed by the Fermi function

f(ε) =
1

e(ε−µ)/kT + 1
. (5.15)

At T = 0

f(ε) =

{
0, ε > µ,
1, ε < µ.

(5.16)
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Figure 5.2: Fermi distribution.

Thus, at T = 0 εF = µ. At non-zero temperatures, the
step in the Fermi function smears, see Fig. 5.2. The width of
the temperature smeared region is ∼ kT . In addition, at non-
zero temperatures the equality εF = µ is violated. The Fermi
energy does not depend on temperature; it is a characteris-
tic of the ground state of the Fermi gas, which is determined
only by the electron density. And chemical potential depends
on temperature. At low temperatures, this dependence has
the form µ = εF − (π2/6)(kT )2(g′(εF )/g(εF )), where g′(εF )
is the derivative of the density of states with respect to en-
ergy, taken at the Fermi energy. The order of magnitude of
the correction to the chemical potential at low temperatures
is ∆µ/µ ∼ (kT/εF )2, which is approximately 10−2 at room
temperature. At very high temperatures T > TF the chemical
potential becomes negative. Under the condition e−µ/kT � 1,
the occupation numbers of fermion states f(ε) become small
for any positive energy value and the Fermi-Dirac distribution
transforms into the Boltzmann distribution.

At non-zero temperatures, the Fermi energy of the gas must
be calculated taking into account the distribution function

E =

∞∫
0

εdεg(ε)f(ε). (5.17)

Note that at T = 0 Eq. (5.17) becomes (5.14).
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5.2 Pauli paramagnetism.

Let us calculate the magnetic moment of the Fermi gas. The
magnetic moment of a unit volume can be calculated as the
product of the magnetic moment of one electron and the dif-
ference in the concentrations of electrons with a magnetic mo-
ment along and against the field

M = µB(n↑ − n↓). (5.18)

The electron concentration n↑,↓ can be calculated similarly to
the Fermi energy of a gas through the density of states and
the distribution function

n↑,↓ =

∞∫
0

dεg↑,↓(ε)f(ε). (5.19)

Next, we should take into account that in the presence of a
magnetic field, the total energy of the electron consists not
only of the kinetic energy εk = k2/2m, but also the potential
energy ∓µBB, i.e. ε↑,↓ = εk ∓ µBB. Therefore, the density of
states is now split along the spin: for the magnetic moment ↑
goes down by −µBB, and for the magnetic moment ↓ goes up
by the same amount, see Fig. 5.3.

Now the density of states g↑,↓(ε) = g(ε±µBB), where g(ε)
is expressed by the formula (5.13). For µBB � kT we can
write g↑,↓(ε) ≈ g(ε)± µBBg′(ε). Then from (5.18) and (5.19)
we get

M = 2µ2
BB

∫
g′(ε)f(ε)dε = −2µ2

BB

∫
g(ε)f ′(ε)dε. (5.20)

For T � εF f ′(ε) ≈ −δ(ε− εF ). That’s why

M = 2µ2
BBg(εF ). (5.21)
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Figure 5.3: Spin splitting of the density of states for a Fermi
gas in a magnetic field.

The magnetic susceptibility of the Fermi gas takes the form

χPauli =
µ0M

B
= 2µ0µ

2
Bg(εF ) =

3nµ0µ
2
B

2εF
. (5.22)

This result depends very weakly on temperature and works
well even for room temperatures. The temperature correction
to the Pauli susceptibility is again of the order of magnitude
(kT/εF )2. Comparing the expression (5.22) with the Langevin
susceptibility χpara = nµ2/3kT , we see that χPauli/χpara ∼
kT/εF . The physical explanation of this fact is that, due to
the Pauli principle, in a Fermi gas, not all electrons tend to line
up along the field, but only those sitting at a distance ∼ kT
from the Fermi energy, because only there are free places in
the density of states with opposite spin. Such electrons exhibit
standard Langevin paramagnetism, but their fraction is only
kT/εF . That is, the Pauli principle suppresses the desire of
electrons to line up in the field much more effectively than
temperature.
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5.3 Landau diamagnetism.

5.3.1 Landau quantization.

Let us consider a gas of non-interacting electrons in an exter-
nal magnetic fieldB = Bez. Then the vector potential of such
a field can be chosen in the form A = (−By, 0, 0). In the pres-
ence of a vector potential, the electron momentum operator is
replaced by p̂→ p̂− (e/c)A. The Hamiltonian of the electron
gas takes the form:

Ĥ =
1

2m

(
p̂x +

eBy

c

)2

+
p̂2
y

2m
+

p̂2
z

2m
+ gµB ŝzB. (5.23)

The operator ŝz commutes with the Hamiltonian, i.e. [Ĥ, ŝz] =
0, therefore sz is preserved in this state and the operator term
in the Hamiltonian −gµB ŝzB can be replaced by the number
−gµBszB, if we consider only electronic states with a certain
sz = ±1/2. Then the electron wave function ψ(r, sz) obeys
the Schrödinger equation

1

2m

[(
p̂x +

eBy

c

)2

+ p2
y + p̂2

z

]
ψ + gµBszBψ = Eψ. (5.24)

Because the Hamiltonian does not depend on the coordinates
x, z, then in these directions the wave function has the form
of a plane wave and the solution of Eq. (5.24) can be found in
the form:

ψ = ei(pxx+pzz)/~ϕ(y). (5.25)

Substituting (5.25) into (5.24), we obtain a one-dimensional
equation for the function ϕ(y), which can be written as:

ϕ′′ +
2m

~2

[(
E − gµBszB −

p2
z

2m

)
− m

2
ω2
B(y − y0)2

]
ϕ = 0,(5.26)

where ωB = eB/mc is the cyclotron frequency and y0 =
−cpx/(eB). Equation (5.26) is the equation of a harmonic
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oscillator, so the energies of the stationary states of this equa-
tion have the form:

En = ~ωB(n+
1

2
) + gµBszB +

p2
z

2m
=

~ωB(n+
1

2
+
g

2
sz) +

p2
z

2m
. (5.27)

The corresponding wave functions of stationary states have
the form:

ϕn =
1

π1/4x
1/4
0

√
2nn!

exp
(
−(y − y0)2

2x0

)
Hn

(y − y0

x0

)
, (5.28)

where x0 =
√
~/mωB. From (5.28) it is clear that y0 has the

value of the y-coordinate of the center of the classical circle
along which the electron moves in a magnetic field.

Any values of px correspond to a given Landau level En, so
formally the Landau level is infinitely degenerate. In fact, the
degeneracy of Landau levels is large, but not infinite. Let’s
find it. Let the sample have dimensions Lx and Ly in a plane
perpendicular to the magnetic field. Then the number of al-
lowed values of the x-component of the electron momentum
lying in the interval ∆px has the form:

Npx =
Lx∆px

2π~
. (5.29)

The y-coordinate of the center of the electron orbit must fall
inside the sample, so 0 < y0 < Ly =⇒ ∆px = eBLy/c. Then
from (5.29) we get:

Npx =
eB

2π~c
LxLy. (5.30)

One can also calculate the number of Landau levels per interval
of values of the z-momentum component ∆pz:

Npx,pz =
eBLxLy

2π~c
Lz∆pz

2π~
=

eBV

(2π~)2c
∆pz. (5.31)
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5.3.2 Landau diamagnetism.

As we know, the magnetic moment of any classical system
of charges in equilibrium is zero. In 1930, Landau showed
that an electron gas has a diamagnetic moment even in the
case of Boltzmann statistics. The point here is precisely the
emergence of quantized stationary states of electron gas in a
magnetic field, which were discussed in the previous section.
Let’s find this diamagnetic moment.

In the case of Boltzmann statistics, the average magnetic
moment of the system can be found as

〈µ〉 =
[∑

l

µlgle
−El/kT

]
/
[∑

l

gle
−El/kT

]
, (5.32)

where µl is the magnetic moment of the system in a given state
l, gl is the number of states with a given energy El. Taking into
account the fact that the energy of the system in a magnetic
field depends on the magnetic moment as El = El,0−µlB, we
can write that

〈µ〉 = kT
dZ/dB

Z
, (5.33)

where Z =
∑
l

gl exp[−El/kT ] is the partition function of the

system. Then the average magnetic moment per unit volume
of the system is

M = nkT
dZ/dB

Z
, (5.34)

where n is the electron concentration.
Let us find the partition function for a gas of non-interacting

charged particles obeying Boltzmann statistics:

Z =
∞∑
ν=0

∞∫
−∞

dpz
2eBV

(2π~)2c
e−[µBB(2ν+1)/kT+p2z/2mkT ]. (5.35)
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Here we used the number of Landau levels (5.31) per interval
of values of the z-momentum component ∆pz. The origin of
the factor 2 is due to the fact that for free electrons g = 2 and
then the spectrum of Landau levels has an additional twofold
degeneracy in the electron spin: En(sz = 1/2) = En+1(sz =
−1/2).

Calculating the integral over pz in (5.35), we obtain:

Z =
2eBV

(2π~)2c

√
2mkTπ

∞∑
ν=0

e−µBB(2ν+1)/kT =

eBV

(2π~)2c

√
2mkTπ

1

sinh[µBB/kT ]
. (5.36)

Substituting the resulting statistical sum into the expression
(5.34), we get

M = −nµB
[
coth

µBB

kT
− kT

µBB

]
. (5.37)

From Eq. (5.37) it follows that in the classical limit the mag-
netic moment actually disappears, because for ~ → 0 µB →
0 =⇒M → 0.

In the case of µBB/kT � 1

χdia =
M

B
= −nµ

2
B

3kT
. (5.38)

When obtaining Eq. (5.38), Boltzmann statistics was used, i.e.
The Pauli exclusion principle was not taken into account. It
is possible to strictly obtain the correct expression for the dia-
magnetic susceptibility of a gas of non-interacting electrons
taking into account the Pauli principle, i.e. using Fermi-Dirac
statistics, but this calculation is computationally quite cum-
bersome and therefore we will obtain the correct answer from
qualitative considerations. The exact calculation can be found,
for example, in the book [10]. In fact, all states up to the Fermi
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energy in an electron gas are occupied by electrons. Therefore,
a magnetic field cannot change the electron distribution func-
tions. Only in a narrow band ∼ kT near the Fermi energy are
there free states. Therefore, the formula we obtained should
be applied only to these electrons. In order of magnitude, the
number of such electrons per unit volume is n′ ∼ nkT/EF . To
get an exact answer, we need to take n′ = 3nkT/2EF . Substi-
tuting this expression for concentration in (5.38), we get

χdia = −nµ
2
B

2EF
. (5.39)

Taking into account the expression (5.22), this formula can be
rewritten as:

χdia = −1

3
χPauli. (5.40)

Thus, for a gas of free electrons, Pauli paramagnetism always
prevails over Landau diamagnetism and the total response of
the gas to a magnetic field is paramagnetic. However, in real
materials this may not be the case. The point is that when
taking into account the interaction of an electron with a pe-
riodic lattice potential, the mass of a free electron must be
replaced by the effective mass m → m∗. This leads to the
fact that in the expression for diamagnetic susceptibility (5.39)
µB → µ∗ = e~/2m∗c = (m/m∗)µB. In the expression (5.22)
for the paramagnetic Pauli susceptibility, such a replacement
does not need to be made, because this includes the electron’s
own (spin) momentum, which is not associated with orbital
motion. Therefore, the final susceptibility of the electron gas
can be written as

χ = χPauli + χdia =
nµ2

B

2EF

(
3− m2

m∗2
)
. (5.41)

This result allows to explain the negative susceptibility of con-
duction electrons of some metals, such as beryllium and bis-
muth. In addition, a situation where Landau diamagnetism
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prevails over Pauli paramagnetism occurs in doped semicon-
ductors, for which m∗ � m in the impurity band. Then,
the susceptibility of a pure semiconductor without impurities,
which is associated with the Landau diamagnetism of the ionic
cores, is first measured, and then it is subtracted from the sus-
ceptibility of the doped semiconductor. The resulting suscep-
tibility is related to the susceptibility of conduction electrons
in the impurity band.

Most metals belong to transition elements; their magnetic
properties are associated with d- or f-shells. Metals that have
completely filled inner shells are called simple intransition met-
als. These include elements of groups I and II, Al, Ga, In and
Ti from group III, Sn and Pb from group IV, As, Sb and Bi
from group V, Te, Po from group VI. Their susceptibility is
determined by the diamagnetic susceptibility of ions and the
susceptibility of conduction electrons.

Figure 5.4: Temperature dependence of the susceptibility of
some metals. From [7].
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The characteristic values and temperature dependence of
the susceptibility of some metals are shown in Fig. 5.4. It
can be seen that for most non-transition and even some tran-
sition metals the temperature dependence of susceptibility is
weak, i.e. their behavior is qualitatively described by the free
electron model. Quantitative comparison is difficult due to
the contribution of the diamagnetic susceptibility of the ions,
which can only be determined from indirect data.
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Chapter 6

Ferromagnetism and
antiferromagnetism.

6.1 Exchange interaction

The main feature of ferromagnets is the presence of sponta-
neous magnetization without the application of an external
magnetic field. The basic properties of ferromagnets are satis-
factorily explained if we assume that there is some interaction
leading to a gain in energy when the electron spins are oriented
in parallel. The energy of such interaction per particle should
be A1 ∼ 0.1 eV.

The simplest assumption about the nature of this interac-
tion - the interaction of magnetic dipoles - is not suitable for
quantitative reasons. Indeed, the energy of such interaction is
∼ µ2

B/a
3
B ∼ 10−16erg ∼ 10−4eV.

We know of only two types of forces that play a significant
role in atomic phenomena - magnetic and electric. It remains
to assume that the interaction between the spins of electrons
in a ferromagnet is caused by electric forces. The energy of
electrostatic interaction of electrons in an atom is ∼ e2/aB ∼
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10−12erg ∼ 1eV. Even a small part of it is enough to achieve
the desired effect.

It seems strange that electrostatic interaction can change
magnetic properties. In addition, it is known that in the
ground state of a Fermi gas the minimum energy is achieved
when electrons occupy all the lower energy levels with opposite
spins. But in 1926, Frenkel and Heisenberg independently sug-
gested that, under certain conditions, a minimum electrostatic
energy would be achieved for parallel orientation of electron
spins. The theory of ferromagnetism they proposed was a gen-
eralization of the simplest problem of quantum chemistry - the
problem of the properties of the hydrogen molecule. Therefore,
this task will be considered in the next paragraph.

6.1.1 Hydrogen molecule.

The hydrogen molecule consists of two protons and two elec-
trons. The designations of all distances between these particles
in a hydrogen molecule are shown in Fig. 6.1.

Figure 6.1: Definition of distances in a hydrogen molecule.
From [7].

Due to the large mass of the nuclei, they can be consid-
ered immobile. The task is to determine the energy of the
system depending on the distance R between the nuclei. The
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Schrödinger equation for the entire molecule is:{
∆1 + ∆2 +

2m

~2
[E − V (R, r, ra1 , ra2 , rb1 , rb2)]

}
ψ = 0, (6.1)

where V = e2/R + e2/r − e2/ra1 − e2/ra2 − e2/rb1 − e2/rb2 ,
ψ = ψ(x1, y1, z1, x2, y2, z2) depends on the coordinates of both
electrons. ∆1,2 = ∂2/∂x1,2 + ∂2/∂y1,2 + ∂2/∂z1,2.

It is impossible to solve Eq. (6.1) exactly, so we will solve
it approximately. As a zero approximation, we choose the case
of nuclei at infinity R = ∞. Then the problem splits into 2
problems about the hydrogen atom. Let E0 be the energy of
the lowest level of the hydrogen atom. Let us assume that
the first electron is located near the nucleus a, then the wave
function depends only on the coordinates of the first electron
q1 = (x1, y1, z1). The wave function of the lowest level obeys
the Schrödinger equation:[

∆1 +
2m

~2
(E0 −

e2

ra1
)]
]
ψa(q1) = 0. (6.2)

For the second electron, which is located near the b nucleus,
the Schrödinger equation takes the form:[

∆2 +
2m

~2
(E0 −

e2

rb2
)]
]
ψb(q2) = 0. (6.3)

If we consider these two individual atoms as a single system,
then its total wave function is ψ(q1, q2) = ψa(q1)ψb(q2), and
its energy is E = 2E0. But a state is also possible when the
second electron is near the nucleus a, and the first electron
is near the nucleus b. The wave function of such a state is
ψb(q1)ψa(q2), and the energy is still 2E0. Due to the principle
of superposition, an arbitrary state of the system is described
by a wave function of the form

ψ0 = αψa(q1)ψb(q2) + βψb(q1)ψa(q2). (6.4)
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We will consider the functions ψa,b(q) to be normalized, i.e.∫
dq|ψa,b(q)|2 = 1. (6.5)

We will also consider them orthogonal, i.e.∫
dqψ∗a(q)ψb(q) = 0. (6.6)

The assumption of orthogonality is based on the fact that the
wave functions ψa,b decrease quite rapidly with distance from
the nucleus. As the nuclei come closer, they begin to overlap,
see Fig. 6.2 and the orthogonality condition is not satisfied
exactly, but this correction is small.

Figure 6.2: Overlap of electron wave functions in the hydrogen
molecule. From [7].

Let’s move on to consider the first approximation. When
the nuclei come closer, the terms of the potential energy of
interaction of electrons with each other and with the nuclei
not taken into account in (6.2)-(6.3) will lead to a change in
the eigenvalues of the energy of the system E = 2E0 + E ′.
Substituting the wave function (6.4) and the energy 2E0 +E ′

into the complete Schrödinger equation (6.1) leads to

α
[
E ′ − e2

R
− e2

r
+
e2

rb1
+
e2

ra2

]
ψa(q1)ψb(q2) +

β
[
E ′ − e2

R
− e2

r
+
e2

ra1
+
e2

rb2

]
ψa(q2)ψb(q1) = 0. (6.7)
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By multiplying the equation (6.7) by ψ∗a(q1)ψ∗b (q2) and inte-
grating over q1,2, and then multiplying the same equation (6.7
) on ψ∗a(q2)ψ∗b (q1) and again integrating over q1,2, we obtain
two algebraic equations:

α(E ′ − C)− βA = 0, (6.8)
αA− β(E ′ − C) = 0, (6.9)

where

C =
e2

R
+

∫ (e2

r
− e2

rb1
− e2

ra2

)
|ψa(q1)|2|ψb(q2)|2dq1dq2 (6.10)

is the conventional electrostatic energy of interaction, because
e|ψ(q)|2 expresses the electric charge density at a given point.

A =

∫ (e2

r
− e2

ra1
− e2

rb2

)
ψ∗a(q1)ψb(q1)ψ∗b (q2)ψa(q2)dq1dq2 (6.11)

cannot be interpreted in a similar simple way. Obviously, this
is also some kind of energy of electrostatic interaction, which
has no classical analogue. Its appearance is associated with the
indistinguishability of electrons in quantum mechanics. The
quantity A is called the exchange energy or exchange integral.

A nontrivial solution of the system (6.9) with respect to α
and β is possible if its determinant is zero.

det

(
E ′ − C −A
A −(E ′ − C)

)
= 0⇒ (6.12)

E ′ = C ± A, α = ±β. (6.13)

Consequently, the solution to the Schrödinger equation (6.1)
in this approximation takes the form

ψ
(1)
0 = α

[
ψa(q1)ψb(q2) + ψa(q2)ψb(q1)

]
, E(1) = 2E0 + C + A (6.14)

ψ
(2)
0 = α

[
ψa(q1)ψb(q2)− ψa(q2)ψb(q1)

]
, E(2) = 2E0 + C − A. (6.15)
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The degenerate ground state of the zeroth approximation splits
into two. Depending on the sign of the exchange integral, any
of them can be energetically more favorable.

In our derivation, we did not take into account the elec-
tron’s spin and magnetic moment, but only the electrostatic
interaction. However, it turns out that each of the wave func-
tions (6.15) is associated with a certain value of the total elec-
tron spin. The full wave function must depend not only on
the coordinates, but also on the spins of the electrons. Let
σ1,2 be the spin quantum numbers of electrons, showing the
projection of their spins onto the quantization axis. Then the
total wave system of two electrons is

ψ(q1, q2, σ1, σ2) = ψ0(q1, q2)ϕ(σ1, σ2). (6.16)

The total electron wave function must be antisymmetric with
respect to the pairwise permutation of any electrons, i.e. in
our case, two electrons change sign with a simultaneous rear-
rangement of the spatial and spin coordinates of the electrons.
This requirement is a consequence of the principle of particle
indistinguishability in quantum mechanics. The Pauli princi-
ple follows from it as a special case, because the antisymmetric
function vanishes when the coordinates coincide. The require-
ment that the total wave function be antisymmetrical leads to
the fact that, with a symmetric coordinate wave function, the
spin function must be antisymmetric and vice versa.

If the total spin of two electrons is equal to unity, then
the spin wave function will be symmetric. If zero, then anti-
symmetric. Therefore, the state ψ(1)

0 , which has a symmetric
coordinate wave function, corresponds to zero total electron
spin, and the solution ψ

(2)
0 , whose wave function is antisym-

metric, corresponds to a total spin equal to one. Thus, the
energy of a hydrogen molecule turns out to be related to the
mutual arrangement of electron spins in the molecule. De-
pending on the sign of the exchange integral, either the total
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spin zero or the total spin one may be more advantageous. It
should be emphasized once again that the indicated difference
in energies is associated not with the magnetic interaction of
electrons, but with the electrostatic one.

Figure 6.3: The energy of interaction between two hydrogen
atoms. From [7].

Figure 6.3 shows the dependence of the energy of a hy-
drogen molecule on the distance between nuclei, expressed in
Bohr radii. For a hydrogen molecule at distances greater than
the Bohr radius A < 0, therefore the more favorable state is
E(1), corresponding to zero total spin of the electrons. The
minimum of this energy determines the equilibrium distance
between nuclei and the dissociation energy of the molecule.
For comparison, the dotted line shows the experimental de-
pendence of the ground state energy on the distance between
nuclei. There is good agreement with our simplified calcula-
tion. At very small distances between nuclei, the exchange
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integral changes sign and a state with a total electron spin of
1 becomes more favorable. But in practice, too high pressures
are required to achieve this state.

Now we will consider the hydrogen molecule as a two-level
system, i.e. let us assume that the molecule can only be in the
states E(1) ≡ Es and E(2) ≡ Et, all other excited states of the
molecule are too high in energy and it practically cannot go
there. Let us write the Hamiltonian of such a two-level system,
acting only on the spin degrees of freedom of the electrons. It
is obvious that the eigenstates of such a Hamiltonian will be
states with total spin Stot = 0 and total spin Stot = 1 and when
acting on a state with Stot = 0 the Hamiltonian must produce
an eigenvalue Es, and when acting on a state with Stot = 1 -
Et. We will look for the Hamiltonian in the form:

Ĥspin = M1 +M2ŝ1ŝ2, (6.17)

where M1,2 are the constants that need to be found, and ŝ1,2

are the spin operators of the first and second electrons.
The scalar product ŝ1ŝ2 has a certain value in a state with

a certain total spin of two electrons. Let’s find it.

ŝ1ŝ2 =
1

2

[
(ŝ1 + ŝ2)2 − ŝ2

1 − ŝ2
2

]
. (6.18)

Taking the average value of this operator over a state with a
certain value Stot, we obtain:

〈ŝ1ŝ2〉 =
1

2

[
Stot(Stot + 1)− 2s(s+ 1)

]
, (6.19)

where s = 1/2 is the spin of one electron. From (6.19) we get:

〈ŝ1ŝ2〉 = −3

4
, Stot = 0

〈ŝ1ŝ2〉 =
1

4
, Stot = 1. (6.20)
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Taking into account Eqs. (6.20), we can find the constants M1

and M2 from the conditions 〈Stot = 0|Ĥ|Stot = 0〉 = Es and
〈Stot = 1|Ĥ|Stot = 1〉 = Et:

Ĥspin =
1

4
(Es + 3Et)− (Es − Et)ŝ1ŝ2. (6.21)

6.1.2 Heisenberg Hamiltonian.

Heisenberg’s original calculations were a direct generalization
of the problem of the hydrogen molecule. A system consisting
of N hydrogen-like atoms whose electrons are in the S-state
was considered. The Hamiltonian of such a system has the
form:

Ĥ = − ~2

2m

N∑
α=1

∇2
α +

∑
α,i

gi(qα) +
∑
α<α′

Vαα′(|qα − q′α|), (6.22)

where gi(qα) is the energy of interaction of the αth electron
with the nucleus i, and Vαα′(|qα−q′α|) is the energy interactions
of α and α′ electrons with each other.

As in the case of the hydrogen molecule, the solution is
carried out by the method of successive approximations. In the
zero approximation, a system of isolated atoms is considered.
The Schrödinger equation for each of them has the form:[

− ~2

2m
∇2
α + gi(qα)

]
ϕi(qα) = E0ϕi(qα). (6.23)

The general solution of Eq. (6.23) is represented as a linear
combination of products of functions ϕi(qα). Its substitution
in (6.22) allows us to find the next approximation for the en-
ergy of electronic states taking into account their interaction.
The total energy of the system will differ from the energy of
the zero approximation by the electrostatic energy of electron
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interaction and exchange energy. The exchange integral for
two atoms i and j will have the form:

Aij =

∫
ϕ∗i (q)ϕ

∗
j(q
′)ϕi(q

′)ϕj(q)×[
Vij(|q − q′|) + gi(q

′) + gj(q)
]
dqdq′. (6.24)

The contribution to the Hamiltonian from the total energy of
the exchange interaction has the form:

Ĥex = −2
∑
ij

Aij ŝiŝj. (6.25)

The expression (6.25) is called the Heisenberg Hamiltonian.
The original Heisenbang-Frenkel theory of calculating exchange
integrals is too oversimplified to be required to be in quanti-
tative agreement with experiment. However, two important
fundamental conclusions follow from it: 1) if the exchange
integrals are positive, then a state with spontaneous magneti-
zation - ferromagnetism - can arise. 2) The energy of exchange
interaction is sufficient for the existence of ferromagnets with
a Curie temperature of ∼ 1000K.

Let us consider under what conditions the exchange inte-
gral will be positive. The interaction energy of charges of the
same sign is Vij(|q− q′|) > 0, and the interaction energy of the
opposite charges gi(q) is negative. Therefore, the following
condition must be met:∣∣∣∫ ϕ∗i (q)ϕ

∗
j(q
′)ϕi(q

′)ϕj(q)Vij(|q − q′|)dqdq′
∣∣∣ >∣∣∣∫ ϕ∗i (q)ϕ

∗
j(q
′)ϕi(q

′)ϕj(q)[gi(q
′) + gj(q)]dqdq

′
∣∣∣. (6.26)

The fulfillment of this condition depends on the form of the
wave functions of an individual electron ϕi(q). If the wave
functions ϕi and ϕj are large near the nuclei, then the right-
hand side of the expression (6.26) is also large, because gi
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has large values near the core. In this case, the condition
for the exchange integral to be positive is not satisfied. That
is, for it to be positive, the wave functions near the nuclei
must have a smaller value. This condition is satisfied by the
wave functions of quantum states with large orbital numbers
l. Of course, a shell with a large l value can contain several
electrons, but it does not have to be completely filled so that
its spin momentum is not zero. These requirements are met
by atoms of transition elements.

Further, the wave functions ϕi(q) fall off quite rapidly with
distance, so the value of those entering into (6.26) is mainly de-
termined by the value of the integrand at the maximum point
of the product ϕ∗i (q)ϕ∗j(q′)ϕi(q′)ϕj(q). In order for the ex-
change integral to be positive, this maximum must be located
away from the nuclei, i.e. The atoms of the ferromagnetic
substance must be located sufficiently far from each other.

Figure 6.4: The A(V ) dependence calculated by Bethe for the
d-state. From [7].

In practice, all ferromagnetic elements belong to the tran-
sition category. Ferromagnetic alloys and compounds contain
transition elements. But only a few transition elements are
ferromagnetic. This is explained by the fact that only for a
small number of elements the distance between atoms is suf-
ficiently large. More precisely, one should consider the ratio
of this distance to the diameter of the inner orbits. Let’s de-
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note it V . All ferromagnetic elements have V > 1.5. Fig. 6.4
shows the dependence A(V ) calculated by Bete. It can be seen
that for good ferromagnets Fe, Co, Ni, these calculations give
a positive value of the exchange integral. For gadolinium and
some other rare earth elements, V is already too high, so the
exchange integral in them, although positive, is small and the
Curie points are low.

Manganese has too small interatomic distance, but is on
the verge of changing the sign of the exchange integral, so a
small increase in the lattice constant of manganese should turn
it into a ferromagnet. Indeed, the addition of small nitrogen
impurities to manganese leads to the appearance of ferromag-
netism. Some alloys of transition elements and intermetallic
compounds are also ferromagnetic. For example, Mn-Cu-Al
alloys (Heusler alloys), MnSb, MnBi compounds have ferro-
magnetic properties.

Because in all cases of the appearance of ferromagnetism
it is associated with transition elements, Heisenberg’s original
consideration of atoms with S electrons is a very rough ap-
proximation. However, in most transition metals, magnetism
is due only to spin degrees of freedom due to the crystalline
Stark effect, which leads to the splitting of electronic states
along the projection of the orbital momentum. As a result,
the orbital momentum is frozen, i.e. the orbital moments of
individual ions do not have the opportunity to reorient. In
addition, it must be taken into account that many ferromag-
nets are metals, which leads to the need to consider the mag-
netism of conduction electrons and the interaction of s- and
d-electrons.
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6.2 Weiss model. Ferromagnets.

Ferromagnetism is characterized by the presence of sponta-
neous magnetization even without the application of an exter-
nal field. The part of the Hamiltonian of a ferromagnet that
describes magnetism, taking into account the external field,
has the form:

Ĥ = −
∑
ij

JijŜiŜj + gJµB
∑
i

ŜiB, (6.27)

where Ŝi is the spin operator localized at a given site. Absolute
value of spin is S. The exchange integral is Jij > 0 and is
nonzero only for the nearest neighbors. Let’s start with the
approximation known as the Weiss model: the interaction of a
magnetic ion with its neighbors is described as the appearance
of some effective field Bmf acting on it:

Ĥ = gJµB
∑
i

Ŝi(B +Bmf ), Bmf = λM . (6.28)

Let us find the relation betweenBmf and the exchange integral
Jij = Jex:

−
∑
ij

JijŜiŜj = −
∑
i

(Jex
∑
j

Ŝj)Ŝi. (6.29)

Next, the operator sum in parentheses in (6.29) is replaced by
its average value, i.e. classic expression. Then the exchange
contribution to the Hamiltonian for the ith electron can be
written as:

Ĥi,mf = −gJµBŜi
Jex
∑
j

gJµBSj

g2
Jµ

2
B

= gJµBŜi
JexZ〈µj〉
g2
Jµ

2
B

=

gJµBŜi
JexZM

ng2
Jµ

2
B

= gJµBŜiBmf , (6.30)
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where Z is the number of nearest neighbors of ion i. From
(6.30) one can find the value of the effective field

Bmf =
JexZM

ng2
Jµ

2
B

= λM , λ =
JexZ

ng2
Jµ

2
B

. (6.31)

In the Weiss model we have a situation similar to a param-
agnet in the fieldB+Bmf . Therefore, according to Eq. (4.13),
the magnetization of a ferromagnet obeys the equation

M

Ms

= BJ(y), (6.32)

where

BJ(y) =
2J + 1

2J
coth

[2J + 1

2J
y
]
− 1

2J
coth

[ y
2J

]
, (6.33)

y =
gJµBJ(B + λM)

kT
. (6.34)

Figure 6.5: Graphical solution of Eq. (6.32) at B = 0. From
[5].
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In the absence of an external field B = 0, magnetization
obeys Eq. (6.32), in which y = gJµBJλM/(kT ). The graphical
solution of this equation is presented in Fig. 6.5. It is repre-
sented by the points of intersection of the Brillouin function
and the straight line M/Ms = (kT/gJµBJλMs)y. The solu-
tion M = 0 always exists. In addition to this, for sufficiently
small slopes of the straight line M/Ms = (kT/gJµBJλMs)y
there are also 2 non-zero solutions for magnetization, which
are equal in magnitude, but have opposite signs. The slope of
the straight line is determined by temperature, so a non-zero
solution, i.e. spontaneous magnetization exists below a certain
critical temperature Tc - the Curie temperature. Let’s find it.
It is obvious that the Curie temperature is determined by the
slope of the straight line, which coincides with the slope of the
Brillouin function at y = 0. Therefore, to find it, we need to
solve the equation

d(M/Ms)

dy
=
dBJ(y)

dy

∣∣∣
y=0

. (6.35)

Because BJ(y) ≈ [(J +1)/3J ]y for y → 0, then from (6.35) we
obtain

Tc =
(J + 1)gJµBλMs

3k
. (6.36)

Using expressions for saturation magnetization Ms = ngJµBJ
and effective magnetic moment µeff = gJµB

√
J(J + 1), the

formula for the critical temperature can be rewritten as

Tc =
nλµ2

eff

3k
. (6.37)

The molecular (effective) Weiss field can be estimated through
the critical temperature:

Bmf = λMs =
3kTc

gJµB(J + 1)
. (6.38)
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Using typical values of J = 1/2, Tc = 103K, we obtain Bmf =
1500T. This is a very high magnetic field, clearly indicating
the strength of the exchange interaction between spins.

Figure 6.6: Magnetization of a ferromagnet in the Weiss model
as a function of temperature for different values of the total
angular momentum of the magnetic ion J . From [5].

The result of the numerical solution of Eq. (6.32) in the
absence of an external field is shown in Fig. 6.6. Analytically,
one can find the behavior of magnetization near the critical
temperature and near zero temperature. Let’s do it. First
consider M(T ) for T → Tc. Moreover, M → 0 =⇒ y → 0.
The expansion of the Brillouin function for small values of y
has the form:

BJ(y) =
J + 1

3J
y − (J + 1)(2J2 + 2J + 1)

90J3
y3. (6.39)

Substituting y = (3J/J + 1)(M/Ms)(Tc/T ) into (6.39), from
(6.32) we obtain the following equation for finding magnetiza-
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tion:

M

Ms

=
M

Ms

Tc
T

(
1−

(M
Ms

)2(Tc
T

)2 3(2J2 + 2J + 1)

10(J + 1)2

)
, (6.40)

from which we obtain the answer for magnetization near the
critical temperature:(M

Ms

)2

=
10(J + 1)2

3(J2 + (J + 1)2)

(
1− T

Tc

)( T
Tc

)2

. (6.41)

Thus, we find that at T → Tc the magnetization behaves as
M/Ms ∝

√
1− T/Tc.

Now let’s find the behavior of magnetization at T → 0.
y = (3J/J + 1)(M/Ms)(Tc/T ) → ∞ for T → 0. Using the
asymptotic behavior of the cotangent cothx ≈ 1 + 2e−2x for
x→∞, we obtain:

M

Ms

≈ 1− 1

J
e−

3TcM
(J+1)TMs = 1− 1

J
e−c/T . (6.42)

Thus, at low temperatures in the Weiss model, the deviation
of magnetization from its value at zero temperature is expo-
nentially small.

Let us find in the Weiss approximation the susceptibility
of the ferromagnet at T > Tc. Let a weak external field B
be applied. Then the argument of the Brillouin function y is
small and we can use the expansion BJ(y) ≈ [(J + 1)/3J ]y.
Then we get:

M

Ms

=
gJµB(J + 1)

3k

B + λM

T
=

Tc
λMs

B + λM

T
=⇒

M

Ms

=
TcB

λMs

1

T − Tc
. (6.43)

Where do we get the Curie-Weiss law for susceptibility:

χ =
Tc
λ

1

T − Tc
=

c

T − Tc
. (6.44)
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Figure 6.7: Graphical method for determining magnetization
in the presence of an external field. From [5].

Figure 6.8: Magnetization of a ferromagnet in the Weiss model
as a function of temperature for J = 1/2 and different values
of the external field. From [5].

If we now give up the condition of a small external mag-
netic field, then Eq. (6.32) for magnetization can again be
solved graphically. The difference with the case B = 0 is that
now we are looking for intersections of the Brillouin function
with the lineM/Ms = (kT/gJµBJλMs)y−B/(λMs), not pass-
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ing through the origin, see Fig. 6.7. It is obvious that in this
case a non-zero solution for magnetization exists at any tem-
perature. Thus, in an external field the phase transition at
T = Tc disappears.

6.3 Magnetism of itinerant electrons.
Stoner instability

The Heisenberg Hamiltonian discussed above describes a sys-
tem of localized spins. However, it is obvious that there must
be an exchange interaction of the same nature between itiner-
ant electrons in metals. To accurately calculate the electronic
spectra and magnetic properties of a metal taking into account
this exchange interaction, it is necessary to know the exact
many-particle wave function of itinerant electrons, which is a
very difficult task. However, the basic magnetic properties of
a system of itinerant electrons can be understood within the
framework of a molecular field model similar to that discussed
above for a system of localized spins. Let us assume that each
electron of a free Fermi gas is acted upon by an effective field
proportional to the magnetization of this gas Heff = λM
and study the problem of the possibility of the occurrence of
spontaneous magnetization in such a system.

In order for a magnetic moment to arise in the system, it
is necessary for some of the electrons to flip their spin and,
accordingly, move from the ↓ spin subband to the ↑ spin sub-
band, see Fig. 6.9. This is accompanied by a loss in the kinetic
energy of the system. Indeed, each of the transferring electrons
with energy EF − δε increases its energy by 2δε. If electrons
transfer in the δE band, then the total change in the kinetic
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Figure 6.9: Toward the calculation of spontaneous splitting of
the density of states of electrons in a Fermi gas without the
application of an external magnetic field. From [5].

energy of electrons

∆Ekin = 2

δE∫
0

d(δε)
g(EF )

2
δε =

g(EF )

2
δE2, (6.45)

where g(EF ) is the total density of states at the Fermi level per
2 spins. This redistribution of electrons leads to a difference
in electron concentrations for spins up and down:

n↑,↓ =
1

2
n± 1

2
g(EF )δE, (6.46)

which, in turn, generates non-zero magnetization in the sys-
tem:

M = µB(n↑ − n↓) = µBg(EF )δE. (6.47)

In the molecular field model, magnetization generates an ef-
fective field in which the magnetic moment of the gas acquires
potential energy

∆Epot = −1

2
M (λM) = −1

2
Ug2(EF )δE2, (6.48)
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where the notation U = λµ2
B is introduced. The total change

in the energy of the Fermi gas as a result of the occurrence of
spontaneous magnetization:

∆E = ∆Ekin + ∆Epot =
1

2
g(EF )(1− Ug(EF ))δE2. (6.49)

Magnetization occurs spontaneously if ∆E < 0 =⇒

Ug(EF ) ≥ 1. (6.50)

This condition represents a criterion for the instability of a
conduction electron gas with respect to the occurrence of fer-
romagnetism (Stoner instability criterion). It is worth noting
that, in contrast to the Weiss model for localized spins, where
spontaneous magnetization appears at any arbitrarily small
value of λ, even at low temperatures, here at small values of
λ ferromagnetism does not appear, because the energy gain
due to potential energy is compensated by the loss in kinetic
energy, which is absent in the localized spin model.

In the case of Ug(EF ) < 1, spontaneous magnetization
does not occur, but, nevertheless, the magnetic susceptibility
differs from its paramagnetic value. Indeed, let an external
magnetic field B be applied to the system. Then the total
change in the energy of the system due to the occurrence of
magnetization:

∆E =
1

2
g(EF )(1− Ug(EF ))δE2 −MB =

M2

2µ2
Bg(EF )

(1− Ug(EF ))−MB. (6.51)

From the condition ∂E/∂M = 0 it follows

M =
µ2
Bg(EF )B

1− Ug(EF )
, (6.52)
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that is

χ =
µ2
Bg(EF )

1− Ug(EF )
=

χPauli
1− Ug(EF )

. (6.53)

That is χ > χPauli due to the Coulomb interaction. This is
called Stoner’s susceptibility enhancement.

Figure 6.10: Values of the Stoner parameter U , density of
states at the Fermi level and their product for the first 50
elements in arbitrary units. From [5].

The values of the Stoner parameter U , the density of states
at the Fermi level and their product are shown in Fig. 6.10 for
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the first 50 elements. It can be seen that only Fe, Co and
Ni, which are indeed ferromagnetic metals, directly satisfy the
Stoner criterion. An example of an “almost” ferromagnetic
metal is Pd, which is close to the Stoner instability threshold
and therefore has a large paramagnetic susceptibility value.
Even a small amount of Fe is enough to make PdFe alloy fer-
romagnetic.

From the data presented it is clear that the fulfillment of
the Stoner criterion is ensured, first of all, by the large value
of the density of states at the Fermi level in a given metal. In
transition metals, two groups of electrons can be convention-
ally distinguished, which are called s-electrons or conduction
electrons and d-electrons or localized electrons responsible for
magnetism. Due to the strong overlap of the electron shells
of individual atoms, both groups of electrons are collectivized
and their energy spectrum forms bands. Each group of elec-
trons can be described by the Bloch wave function

ψs(k, r) = eikrus(k, r),

ψd(k, r) = eikrud(k, r). (6.54)

Periodic functions us(k, r) are delocalized, and ud(k, r) are
highly localized and have pronounced probability density max-
ima at the locations of ions. Accordingly, the energy bands
corresponding to s-electrons are wide and the density of states
in them is low, and the d-bands are narrow and the density of
states in them is of great importance. Further, in the simplest
approximation in the so-called “hard band” model, different
elements, having different numbers of itinerant electrons per
atom, differ only in the location of the Fermi level. In transi-
tion elements, the Fermi level usually falls in the d-band, see
Fig. 6.11. If it falls in the middle of the d-band, then the den-
sity of states at the Fermi level is maximum and the Stoner
criterion is satisfied. In non-transition elements, the Fermi
level does not fall into the d-band, the density of states at the



74 Ferromagnetism and antiferromagnetism.

Fermi level is small and the Stoner criterion is not satisfied.

Figure 6.11: Density of states of electrons in overlapping s-
and d-bands. (a)-transition metal, the Fermi level lies in the
d-band; (b)-non-transition metal, the Fermi level lies in the
s-band outside the d-band. The areas filled with electrons at
T = 0 are shaded. From [11].

When spontaneous magnetization occurs in equilibrium,
the filling levels in both spin subbands should be shifted with
respect to each other, but as a result of the appearance of the
electron potential energy in the effective field, the bottom of
the spin subbands shifts by ±δE, see Fig. 6.12. If the Stoner
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Figure 6.12: Shifting of the spin subbands of itinerant electrons
in a metal under the influence of exchange interaction. From
[11].

instability does not occur, the bottom of the bands does not
shift despite the presence of a nonzero exchange interaction,
Fig. 6.12(a) and (d). If Stoner instability occurs, but the value
of δE is less than a certain critical value, Fig. 6.12(b) and
(e), the density of electronic states in the conduction band is
nonzero for both spin subbands. If the magnitude of the ex-
change interaction is so great that the separation of the bands
is large and the density of states at the Fermi level is nonzero
only in one of the spin subbands, as in Fig. 6.12(c) and (f),
then this is the case of a halfmetal, when all conducting carri-
ers have the same spin.

Often d-electrons in transition metals are considered to be
completely localized. Localized electrons are thought to be re-
sponsible for magnetism, and collective s-electrons are thought
to be responsible for conductivity. Then, in the Hamiltonian
of the system, the interaction of d-electrons with each other
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is taken into account within the framework of the Heisen-
berg model, but in addition, their exchange interaction with
s-conduction electrons is taken into account. This approach is
called the s-d model and is widely used, in particular, in spin-
tronics to describe the effects of controlling the magnetization
of a magnet by electric currents.

6.4 Weiss model. Antiferromagnets.

For an antiferromagnet, the exchange integral between the
nearest neighbors has a negative sign. Antiferromagnetism
can be described by dividing the ion lattice into 2 sublattices.
Inside each of the sublattices, the magnetic ordering is ferro-
magnetic. The orientation of the magnetic moments between
the sublattices is antiparallel. This situation is schematically
illustrated in Fig. 6.13.

Figure 6.13: The representation of the antiferromagnetic lat-
tice as the sum of two sublattices, inside each of which there
is a ferromagnetic ordering. From [5].

Let’s start with a simplified consideration of the case when
an external magnetic field is not applied and the effective Weiss
field acting on each of the sublattices is proportional to the
magnetization of the second sublattice:

B
(1)
mf = −|λ|M2,

B
(2)
mf = −|λ|M1. (6.55)
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In this case, the magnetization of each of the sublattices obeys
the equation:

M1,2 = MsBJ(−gJµBJ |λ|M2,1

kT
). (6.56)

For antiferromagnet |M1| = |M2| = M . With this in mind, it
follows from (6.56)

M = MsBJ(
gJµBJ |λ|M

kT
). (6.57)

Thus, in this approximation, the magnetization of each lattice
behaves exactly the same as for a ferromagnet and disappears
at the Neel temperature TN , which is determined by the for-
mulas (6.36)-(6.37).

The magnetic susceptibility at temperature T > TN can be
found from the equation:

M

Ms

=
J + 1

3J

gJµBJ(B − |λ|M)

kT
=

TN
|λ|Ms

B − |λ|M
T

, (6.58)

from which we get

M

Ms

=
TNB

|λ|Ms

1

T + TN
. (6.59)

Magnetic susceptibility obeys the Curie-Weiss law for antifer-
romagnets:

χ ∝ 1

T + TN
. (6.60)

In the following approximation, it is also necessary to take into
account the effective Weiss field from its own sublattice

B
(1)
mf = v1M1 + v2M2,

B
(2)
mf = v2M1 + v1M2, (6.61)
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where v2 < 0. At B = 0 we have M1 = −M2 =⇒

M1

Ms

= BJ

(gJµBJ(v1 − v2)M1

kT

)
, (6.62)

and we can find the temperature of the Neel in this approxi-
mation:

TN =
gJµB(J + 1)(v1 − v2)Ms

3k
=

n(v1 − v2)µ2
eff

3k
= c(v1 − v2). (6.63)

Let’s apply a small external magnetic field at T > TN and find
the magnetic susceptibility in this approximation:

BJ ≈
J + 1

3J

gJµBJ

kT
[v1M1 + v2M2 +B]. (6.64)

M1 =
c

T
(v1M1 + v2M2 +B),

M2 =
c

T
(v2M1 + v1M2 +B), (6.65)

where c = (gJµB(J + 1)Ms)/(3k). Due to the fact that B 6= 0,
the condition M1 + M2 = 0 is no longer fulfilled. Adding
up the equations (6.65), for the total magnetization M =
M1 +M2 we get:

M =
c

T
(2B + (v1 + v2)M ), (6.66)

which leads to

M =
2cB

T − c(v1 + v2)
. (6.67)

For the magnetic susceptibility we obtain:

χ =
2c

T −Θ
, Θ = c(v1 + v2). (6.68)
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Thus, there are 2 characteristic temperatures for an antiferro-
magnet: TN is the temperature of disappearance of sublattice
magnetization and Θ is the characteristic temperature enter-
ing into susceptibility. Their ratio is

TN
Θ

=
v1 − v2

v1 + v2

. (6.69)

These temperatures merge into one TN = −Θ only if we ne-
glect the effective field of our own sublattice, i.e. put v1 = 0.

Now let’s consider the behavior of an antiferromagnet at
B 6= 0 in a weak field at T < TN . We consider the limit of
zero temperature, when thermal fluctuations of magnetization
relative to the average value can be ignored. The ground state
of the system can be found from the minimum energy condi-
tion. Given that 〈S(ν)

i 〉 = −Mν/(gJµBn), where ν is the index
of the sublattice, and i is the site number in this sublattice,
the expression for the energy of the antiferromagnet can be
written in the form of:

E = −(M1 +M2)B − 1

2
v1(M2

1 +M2
2 )− v2M1M2. (6.70)

If a weak magnetic field is directed parallel to the magnetiza-
tion of one of the sublattices and, accordingly, antiparallel to
the second, then this is equivalent to the fact that the internal
effective field acting in each of the sublattices becomes slightly
different in magnitude, but due to the smallness of the external
field, this does not affect the values and direction of magneti-
zation. Thus, the susceptibility of the system with respect to
the parallel field χ‖ = 0 at T = 0. This susceptibility becomes
nonzero at nonzero temperatures due to thermal fluctuations.
Let’s consider a more interesting case when the external field
is applied perpendicular to the initial direction, along which
the magnetization of both sublattices is aligned.

Let’s assume that |M1| = |M2| = M . The external field
tends to align the magnetizations along with the direction of
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Figure 6.14: The canting of the magnetizations of the sub-
lattices to the direction of the external field in the case of a
perpendicular orientation of the field and the initial direction
of the magnetizations. From [5].

the field, and the exchange interaction tends to keep them
in an antiparallel state. As a result of the competition of
these factors, it is possible to establish a state in which both
magnetizations form a certain angle with their initial position.
For symmetry reasons, these angles should be the same. Let’s
denote them α, see Fig. 6.14. It is possible to investigate the
energy profitability of such a state and find the value of the
angle α from the equation (6.70). For the configuration shown
in Fig. 6.14 the energy is equal to:

E⊥ = −2MB sinα− v1M
2 + v2M

2 cos 2α. (6.71)

From the condition dE⊥/dα = 0 we obtain

cosα(B + 2v2M sinα) = 0, (6.72)

then it can found that the energy minimum corresponds to

sinα = − B

2v2M
, 0 ≤ B ≤ −2v2M,

cosα = 0, B ≥ −2v2M. (6.73)

Thus, a non-zero value of the magnetization of the antiferro-
magnet arises along the direction of the field, i.e. perpendic-
ular to the initial direction of the sublattice magnetizations.
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This value is equal to

M⊥ = 2M sinα = −B
v2

, 0 ≤ B ≤ −2v2M,

M⊥ = 2M, B ≥ −2v2M. (6.74)

The corresponding susceptibility of an antiferromagnet in a
perpendicular field is

χ⊥ =
dM⊥
dB

= − 1

v2

. (6.75)

This value coincides with the susceptibility at the Néel temper-
ature. We have found that the susceptibility of the antiferro-
magnet at T < TN is anisotropic. For polycrystalline samples,
for which different directions of the Néel vector (sublattice
magnetization) in different domains are equally probable, sus-
ceptibility is obtained as a result of averaging:

χpoly =
1

3
χ‖ +

2

3
χ⊥. (6.76)

Figure 6.15: Temperature dependences of magnetic suscepti-
bility and reverse magnetic susceptibility. From [5].

The qualitative behavior of all χ‖, χ⊥ и χpoly susceptibili-
ties depending on temperature is shown in Fig. 6.15.
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6.5 Spiral magnetic order. Homework
taks.

Spiral magnetic order often occurs in rare earth metals, which
have a layered structure. These materials are characterized
by ferromagnetic ordering within each layer, but the magne-
tization directions of two adjacent layers form an angle θ, see
Fig. 6.16.

Figure 6.16: Spiral magnetic order. Within each layer there is
ferromagnetic ordering, leading to the appearance of uniform
magnetization. The magnetization vectors of adjacent layers
make an angle θ with each other.

To describe the spiral magnetic order, we consider the
model Heisenberg Hamiltonian, which takes into account the
interaction between the nearest neighboring layers with the
exchange integral J1 and the next nearest neighboring layers
with the exchange integral J2. Each layer is described by a
spin Si. Within the framework of classical consideration, the
corresponding energy has the form:

E = −
∑
ij

JijSiSj = −2NS2(J1 cos θ + J2 cos 2θ), (6.77)

where N is the number of layers, S is the absolute value of the
spin of the layer, which is considered here as a classical vector.

It is obvious that at J1 > 0 and J2 > 0 interlayer ferro-
magnetic order is established in the system. But if J1 and
J2 are of different signs, then the main state of the system is
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not so obvious, because the tendency to establish, say, ferro-
magnetic ordering between nearby layers competes with the
system’s tendency to arrange its next nearest neighbors in an
antiferromagnetic manner. This is the simplest example of a
frustrated system.

By minimizing the energy of the system, obtain a phase
diagram of the system states in the (J1, J2) plane. Identify re-
gions of ferromagnetic, antiferromagnetic and helical ordering.
Write equations for the boundaries of these areas.

6.6 The Heisenberg model beyond the
mean field approximation. Magnons.

In general, the Hamiltonian of the Heisenberg model is written
as:

Ĥ = −
∑
ij

JijŜiŜj (6.78)

Let Jij = J 6= 0 only for the nearest neighbors. The Heisen-
berg Hamiltonian can be written as:

Ĥ = −J
∑
ij

[α(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ) + βŜzi Ŝ

z
j ]. (6.79)

Let D be the dimension of the spin vector. Then for D =
1(α = 0, β = 1) The Heisenberg Hamiltonian is called the
Ising model. For for D = 2(α = 1, β = 0) is the XY-model.
For the case D = 3, the name Heisenberg model is retained.

In addition to the dimension of the spin vector, there is
also the dimension of the space d. The results produced by
the described models depend significantly on the dimension of
the space. Consider the Ising model.
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Figure 6.17: A one-dimensional Ising chain with a single de-
fect.

The case of D = 1, d = 1 (one-dimensional Ising chain of
N + 1 spins).

Ĥ = −2J
N∑
i=1

Ŝzi Ŝ
z
i+1, J > 0 (6.80)

In the ground state, all spins are lined up in parallel, the energy
of the ground state E0 = −2JN 1

2
1
2

= −1
2
NJ . Consider 1

defect, see Fig. 6.17. The energy of a system with a defect
E = E0 + J . The entropy of a system with a single defect is
S = k lnN . Therefore, F = E − TS → −∞ for N → ∞ and
T 6= 0. It follows that an ordered state cannot exist in this
model at T > 0. That is, there is no phase transition, Tc = 0.

Figure 6.18: A defect in the two-dimensional Ising model.
From [5].

The case of D = 1, d = 2 (two-dimensional Ising model).
A possible defect is shown in Fig. 6.18. E −E0 ∝ l, where l is
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the length of the defect boundary. The entropy also increases
proportionally to the length of the boundary. This implies the
advantage of an ordered state at T < Tc. There is a phase
transition in the two-dimensional Ising model.

Exact solutions were obtained for the one-dimensional and
two-dimensional Ising models.

6.6.1 The Heisenberg model. Spin waves.

The Heisenberg Hamiltonian in the external field has the form:

Ĥ = −1

2

∑
ij

JijŜiŜj − gµBH
∑
i

Ŝz,i. (6.81)

Ground state of the Hamiltonian:

|0〉 =
∏
i

|S〉i = |S〉1|S〉2...|S〉N . (6.82)

To make sure that this is the eigen state of the Hamiltonian, we
introduce the raising and lowering operators Ŝ±,i = Ŝx,i±iŜy,i.

Ŝ±,i|Sz〉i =
√

(S ∓ Sz)(S + 1± Sz)|Sz ± 1〉i (6.83)

Via the raising and lowering operators, the Hamiltonian can
be written as:

Ĥ = −1

2

∑
ij

JijŜz,iŜz,j − gµBH
∑
i

Ŝz,i −
1

2

∑
ij

JijŜ−,iŜ+,j. (6.84)

Since Ŝ+,i|Sz,i〉|Sz,i=S = 0, then |0〉 - is the eigenvector of
Hamiltonian (6.84). The energy corresponding to this own
state

E0 = 〈0|Ĥ|0〉 = −1

2
S2
∑
ij

Jij −NgµBHS. (6.85)
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It can be shown that E0 is the minimum energy of the system
(a task for an independent solution). It follows that |0〉 is the
ground state of a ferromagnet.

Now let’s find the low-lying excited states of the ferromag-
net. At T = 0, the ferromagnet is in the ground state, all its
spins are lined up in parallel, and the magnetization is equal
to the saturation magnetization M = gµBnS. At T 6= 0, to
find the average magnetization, it is necessary to average the
average magnetizations in all excited states with the Gibbs
factor e−E/T . To construct low-lying excited states, consider
the state

|i〉 =
1√
2S
Ŝ−,i|0〉. (6.86)

This state corresponds to a spin projection reduced by 1 on
the z axis at the i site. The action of the raising operator does
not turn this state to zero Ŝ+,i|i〉 6= 0, and the action of the
operator Ŝ−,jŜ+,i moves the reduced spin from the site i to the
site j:

Ŝ−,jŜ+,i|i〉 =
1√
2S
Ŝ−,jŜ+,iŜ−,i|0〉 =

Ŝ−,jŜ+,i|SSS... S − 1︸ ︷︷ ︸
i

...SSS〉 =
√

2SŜ−,j|0〉 = 2S|j〉. (6.87)

Therefore, the state |i〉 is not an eigenstate of the Heisenberg
Hamiltonian. Besides,

Ŝz,j|i〉 =

{
S|i〉, i 6= j,
(S − 1)|i〉, i = j.

(6.88)
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Taking this into account we obtain:

Ĥ|i〉 =
(
−1

2
S2
∑
ij

Jij −NgµBHS
)
|i〉+ gµBH|i〉+

S
∑
j

Jij

(
|i〉 − |j〉

)
=

E0|i〉+ gµBH|i〉+ S
∑
j

Jij

(
|i〉 − |j〉

)
, (6.89)

this means that |i〉 is no longer an eigenstate of the Heisen-
berg Hamiltonian, but Ĥ|i〉 is a linear combination of states
in which the projection value of one of the spins has decreased
by 1. We can find such a combination of states |i〉, which is
a proper one for the Hamiltonian Ĥ. You can search for it in
the form

|k〉 =
1√
N

∑
l

eikl|l〉. (6.90)

It is necessary that |k〉 be an eigenstate of the Hamiltonian,
i.e. that Ĥ|k〉 = Ek|k〉. Let’s act with a Hamiltonian on the
state |k〉:

Ĥ|k〉 = (E0 + gµBH)|k〉+
S√
N

∑
lj

Jlje
ikl
(
|l〉 − |j〉

)
=

(E0 + gµBH)|k〉+ S
∑
l−j

Jlj

(
1− eik(l−j)

)
|k〉. (6.91)

Thus,

Ek = (E0 + gµBH) + 2S
∑
i−j

Jij sin2 k(i− j)
2

. (6.92)

Energy, which is necessary to excite state |k〉 is:

εk = Ek − E0 = gµBH + 2S
∑
i−j

Jij sin2 k(i− j)
2

. (6.93)
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Now consider the physical interpretation of the state |k〉:
1) |k〉 - is a superposition of states with spin NS − 1.
2) The probability of detecting a reduced spin value at the

site i: Pi = |〈k|i〉|2 = 1/N , which implies that the reduced
spin can equally likely belong to any magnetic ion.

3) Transverse correlation function:

〈k|Ŝ⊥(i)Ŝ⊥(j)|k〉 = 〈k|Ŝx,iŜx,j + Ŝy,iŜy,j|k〉 =

2S

N
cos[k(i− j)], i 6= j. (6.94)

Therefore, any spin has a small transverse component, on av-
erage equal to

√
2S/N , the orientations of the transverse com-

ponents of the two spins at a distance of i − j make up the
angle k(i− j).

Figure 6.19: (а) A chain of spins in the ferromagnetic state;
(b) in the spin wave state. From [8].

The magnetization distribution in the |k〉 state is shown in
Fig. 6.19. This is a state with a spin wave or a magnon with
a wave vector k and energy εk. Such single-magnon states are
the exact eigenstates of the Heisenberg Hamiltonian. When
calculating low-temperature properties, it is often assumed
that higher-lying excited states of the Hamiltonian can be con-
structed as multimagnon states with an energy equal to the
sum of the energies of individual magnons. For photons in a
harmonic crystal, such states, as well as single-photon ones, are
the exact eigenstates of the Hamiltonian, but for spin waves
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this is only approximate due to the interaction of magnons.
However, a multimagnon approximation (when higher excited
states are assumed to have energy εk1 + εk2 + ...+ εkN) is used
and correctly reproduces the basic term of magnetization at
low temperatures. Therefore, we will use it to calculateM(T ).

Since each spin wave reduces the total spin of the system
by 1, the magnetization of the system at low temperature T
has the form:

M(T ) = M(0)
[
1− 1

NS

∑
k

nk

]
, (6.95)

where nk = 1/(eεk/kT − 1) is the average number of magnons
with the wave vector k. At low temperatures, only spin waves
with low energy are excited, so k � 1 and then

εk ≈
S

2

∑
i−j

Jijk
2(i− j)2 ∝ k2. (6.96)

Cosequently dε/dk ∝ k ∝
√
ε.∑

k

nk =

∫
d3k

(2π)3

1

eεk/kT − 1
=

4π

(2π)3

∫
k2dk

eεk/kT − 1
=

1

2π2

∫ k2dε 1
dε/dk

eε/kT − 1
=

∫
g(ε)dε

eε/kT − 1
, (6.97)

where g(ε) ∝
√
ε. Thus,

∑
k

nk = A

∞∫
0

(kT )3/2

√
xdx

ex − 1
∝ T 3/2. (6.98)

Therefore, for low-temperature magnetization we obtain

M(T )

M(0)
= 1− cT 3/2. (6.99)
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Figure 6.20: Dependence of the ratio of the spontaneous mag-
netization of gadolinium (Tc = 293K) to the saturation mag-
netization at T = 0 from (T/Tc)

3/2. From [8].

This expression is called the Bloch law of T 3/2. The law of
T 3/2 is well confirmed by the results of experiments in isotropic
ferromagnets, see Fig. 6.20.

Thus, magnons make a significant contribution to the mag-
netization of the magnet, leading to a cardinal difference be-
tween the magnetization at low temperatures and the mean
field model, in which the difference between the magnetiza-
tion and its value at zero temperature turns out to be expo-
nentially suppressed, see the formula (6.42). Magnons have an
even more drastic effect on magnetization in two-dimensional
and one-dimensional cases. In the 1D and 2D Heisenberg
models, the magnetization is zero at any temperature T > 0,
i.e. ferromagnetism does not exist. This statement is called
the Mermin-Wagner theorem. The reason for the absence of
spontaneous magnetization is that the number of low-energy
magnons that can be excited at arbitrarily low temperatures
diverges and they destroy any magnetic order. Let’s show this
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in the case of d = 2.∑
k

n2D
k =

∫
d2k

(2π)2

1

eεk/kT − 1
∝
∫

kdk

eεk/kT − 1
∝

∫ kdε 1
dε/dk

eε/kT − 1
∝
∫

dε

eε/kT − 1
. (6.100)

Thus, ∑
k

nk ∝
∞∫

0

dx

ex − 1
, (6.101)

which diverges logarithmically at the lower limit. However, 2D
ferromagnets and antiferromagnets exist and in recent years
this field of physics has been rapidly developing, many relevant
materials have been discovered, which are obtained mainly by
separating monolayers from van der Waals layered crystals [9].
The point here is that the divergence of the low-temperature
magnon number in 2D is essentially based on the gapless na-
ture of the magnon spectrum in the isotropic Heisenberg model
(6.96), i.e. based on the fact that magnons can be excited at
arbitrarily close to zero energies. In fact, all two-dimensional
materials are in a three-dimensional environment (lying on a
substrate), which causes anisotropy of their properties. In the
anisotropic case, magnetic moments cannot rotate in any di-
rection with an infinitesimal change in energy. As a result, a
gap opens in the magnon spectrum

εk = ∆ +Bk2, (6.102)

which leads to the fact that the number of magnons excited at
low temperatures becomes finite:∑

k

n2D,an
k ∝

∞∫
∆

dε

eε/kT − 1
. (6.103)

This result provides the possibility of the appearance of ferro-
magnetism in 2D systems at T > 0.
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6.7 Anisotropic Heisenberg model. Home-
work task.

Consider anisotropic Heisenberg Hamiltonian

Ĥ = −1

2

∑
ij

[
Jz,ijŜz,iŜz,j + Jij(Ŝx,iŜx,j + Ŝy,iŜy,j)

]
,

where Jz,ij > Jij. Show that the ground state and the state
with one spin wave, constructed in the lecture, remain the
eigenstates of this Hamiltonian, but the excitation energies of
spin waves increase by a certain amount (a gap in the spec-
trum). Find it. Show that spontaneous magnetization at low
temperatures differs from saturation magnetization by an ex-
ponential value depending on −1/T .



Chapter 7

Magnetic anisotropy.

Previously, only magnetically isotropic systems were consid-
ered, for which the free energy does not depend on the di-
rection of magnetization F = F (|M |). In particular, for the
isotropic Heisenberg Hamiltonian, the energy levels do not de-
pend on the direction of M . Real magnetic materials are
not isotropic. Magnetic anisotropy can have various physical
causes. The most important classes of magnetic anisotropies
are listed below:

1. Magnetocrystalline anisotropy - the magnetization is
oriented along certain axes in the crystal.

2. Shape anisotropy - the direction of magnetization is
determined by the shape of the sample.

3. Induced magnetic anisotropy - certain directions of mag-
netization can be stabilized by temporarily placing the sample
in a magnetic field.

4. Magnetostriction - anisotropy associated with sponta-
neous deformation of the sample.

5. Surface anisotropy
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7.1 Magnetocrystalline anisotropy.

This type of anisotropy is caused by the spin-orbit interaction
of E ∝ LS. After averaging, the electronic orbitals are elon-
gated along certain axes in the crystal, and there are preferable
directions for the orbital moment. Therefore, the magnetiza-
tion determined by the spin moment also tends to lie along
the crystal axes. The spin-orbit interaction can be calculated
from first principles, but it is simpler to use a phenomeno-
logical approach. Within the framework of this approach, a
phenomenological expression is written for the contribution to
the free energy of the system, based on symmetric considera-
tions.

We introduce the direction cosines of the magnetization
vector:

α1 =
Mx

M
= sin θ cosφ, (7.1)

α2 =
My

M
= sin θ sinφ, (7.2)

α3 =
Mz

M
= cos θ, (7.3)

where θ is the polar angle and φ is the azimuthal angle of the
spherical coordinate system. α2

1 + α2
2 + α2

3 = 1. The energy of
magnetic anisotropy can be decomposed in a series according
to the components of magnetization (direction cosines):

Ecrys = E0 +
∑
i

biαi +
∑
ij

bijαiαj +
∑
ijk

bijkαiαjαk +∑
ijkl

bijklαiαjαkαl + ... (7.4)

The anisotropy energy does not depend on the change in the
sign of magnetization E(M) = E(−M ), which implies that
the coefficients before the odd degrees of the direction cosines
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are zero. Further meaningful advances can be obtained for
specific crystallographic systems.

7.1.1 Cubic crystal symmetry.

Due to the symmetry of E(αi) = E(−αi), it follows that
the terms ∝ αiαj with i 6= j are zero, and, in general, the
terms in which αi is contained in any odd degree are also zero.
Moreover, for cubic symmetry, all three crystal axes x, y, z
aligned with the edges of the cube are equivalent. Therefore,
b11 = b22 = b33, which gives∑

ij

bijαiαj = b11(α1
1 + α2

2 + α2
3) = b11, (7.5)

∑
ijkl

bijklαiαjαkαl = b1111(α4
1 + α4

2 + α4
3) +

6b1122(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3). (7.6)

Taking into account (7.5) and (7.6), from (7.4) we obtain:

Ecrys = E0 + b11 + b1111(α4
1 + α4

2 + α4
3) +

6b1122(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + ..., (7.7)

taking into account 1 = (α1
1 + α2

2 + α2
3)2 = α4

1 + α4
2 + α4

3 +
2(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3) it can be rewritten as:

Ecubic
crys = K0 +K1(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3) +K2α

2
1α

2
2α

2
3 + ... (7.8)

Let’s look at how energy surfaces look depending on the
direction in a cubic crystal. For the main crystallographic
directions in a cubic crystal (see Fig. 7.1) we have:

[100] : α1 = 1, α2 = α3 = 0

E100 = K0, (7.9)
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Figure 7.1: Top row: the main crystallographic directions
for cubic symmetry crystals (Fe,Ni) and hexagonal symmetry
crystals (Co). Bottom row: The magnetization curves of the
corresponding single crystals along the main crystallographic
directions. From [7].

[110] : α1 = α2 = 1/
√

2, α3 = 0

E110 = K0 +
1

4
K1, (7.10)

[111] : α1 = α2 = α3 = 1/
√

3,

E111 = K0 +
1

3
K1 +

1

27
K2. (7.11)

The values of the anisotropy constants for single crystals
of Fe, Ni and Co are shown in the table in Fig. 7.2. The table
shows that the most important constant is K1. Considering
only this constant, we obtain that for K1 > 0, the direction
[100] is the axis of easy magnetization, and the direction [111]
is the heavy axis. An example of the relevant material is Fe.
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Figure 7.2: The magnetocrystalline anisotropy constants for
Fe, Ni and Co at T = 4.2K. From [5].

Figure 7.3: Energy surfaces. From [5].

On the contrary, for K1 < 0, the direction [111] is the axis
of easy magnetization, and the direction [100] is the heavy
axis. An example is Ni. The energy surfaces for Fe and Ni
are shown in Fig. 7.3. The value of the anisotropy constant
also determines the rate at which saturation magnetization is
achieved when the sample is magnetized in a field of a certain
direction. The corresponding magnetization curves are shown
for Fe, Ni and Co in the lower row in Fig. 7.1.

If the constants K1 and K2 are of the same order of mag-
nitude, as sometimes happens (for example, for Ni in a certain



98 Magnetic anisotropy.

Figure 7.4: Температурная зависимость констант
магнитокристаллической анизотропии для Ni. Из книги
[5].

temperature range), then taking into account K2 can greatly
change the picture of the magnetic anisotropy energy. For ex-
ample, the [110] direction can become both a easy and a heavy
axis. The anisotropy constants depend significantly on tem-
perature, see Fig. 7.4, including the directions of the easy and
heavy axes may change with temperature changes.

7.1.2 Tetragonal and hexagonal symmetry of
the crystal.

Tetragonal symmetry. As in the case of a cubic crystal, E(αi) =
E(−αi), which implies that the terms ∝ αiαj with i 6= j van-
ish. But in this case, the symmetry of the crystal decreases
because one of the crystal axes is not equivalent to the other
two. Therefore, only the indices i = 1 and 2 are indistinguish-
able. In this case∑

ij

bijαiαj = b11(α2
1 + α2

2) + b33α
2
3. (7.12)



7.1 Magnetocrystalline anisotropy. 99

Using α1
1 + α2

2 = 1− α2
3, from (7.12) we get∑

ij

bijαiαj = b11 + (b33 − b11)α2
3 = a0 + a1α

2
3. (7.13)

∑
ijkl

bijklαiαjαkαl = b1111(α4
1 + α4

2) + b3333α
4
3 +

6b1122α
2
1α

2
2 + 12b1133α

2
3(α2

1 + α2
2). (7.14)

Substituting (7.13) and (7.14) into(7.4), получим:

Etetra
crys = K0 +K1α

2
3 +K2α

4
3 +K3(α4

1 + α4
2) + ... =

K0 +K1 cos2 θ +K2 cos4 θ +K3 sin4 θ(sin4 φ+ cos4 φ) =

K ′0 +K ′1 sin2 θ +K ′2 sin4 θ +K ′3 sin4 θ cos 4φ+ ... (7.15)

The term ∝ cos 4φ reflects the presence of a 4th order symme-
try axis.

Hexagonal symmetry. Let us present without derivation
the expression for the anisotropy energy of a hexagonal crystal:

Ehex
crys = K0 +K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +

K4 sin6 θ cos 6φ+ ... (7.16)

From (7.15) and (7.16) it is clear that Etetra
crys has cylindrical

symmetry up to second order in sin θ, and Ehex
crys up to 4th

order. Up to these orders of accuracy (as a rule, such accuracy
is sufficient for good agreement with experiment), tetragonal
and hexagonal crystals are equivalent to crystals with single-
axis magnetic anisotropy.

So, for tetragonal and hexagonal crystals

Ecrys = K0 +K1 sin2 θ +K2 sin4 θ. (7.17)

When K1 > 0 and K2 > 0 [001] is the easy axis. This is called
an easy-axis type magnet. When K1 < 0 and K2 < 0 [001] is
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a hard axis. The magnetization tends to lie in the xy plane
and such a magnet is called an easy-plane type magnet. If
one of the constants is positive and the other is negative, then
at sin2 θ = −K1/2K2, a magnetic transition from one type to
another occurs.

Figure 7.5: Temperature dependence of the magnetocrys-
talline anisotropy constants for Co. From [5].

An example of a uniaxial crystal of the easy-axis type can
be Co at low temperature, see the table in Fig. 7.2. At high
temperatures ∼ 500−600K, Co transitions from the easy-axis
type to the easy-plane type due to the temperature dependence
of the anisotropy constants, see Fig. 7.5.

7.2 Shape anisotropy.

Polycrystals without a preferred orientation of granules do not
have magnetocrystalline anisotropy. However, if the sample
is not spherical, one or more easy axes arise, determined by
the shape. This effect is due to the magnetic dipole-dipole
interaction of the magnetization vectors in different parts of



7.2 Shape anisotropy. 101

the sample. Indeed, in the simplest example of the interaction
of two dipoles

U = −µ1B1

2
− µ2B2

2
=
µ0

4π

(µ1µ2

r3
− 3(µ1r)(µ2r)

r5

)
(7.18)

It can be seen that the energy of the interaction depends on
the relative position of the magnetic moments and their ori-
entation relative to the axis connecting them. For example,
(µ0/4π)µ1µ2/r

3 (in unstable configuration ↑↑) or−(µ0/2π)µ1µ2/r
3

(in stable configuration →→). For a ferromagnet, which can
be represented as a set of dipoles, the energy of the dipole-
dipole interaction has the form:

U = −1

2

∑
i

∑
i 6=j

µiBi =

−1

2

∑
i

µi
∑
i 6=j

µ0

4π

(3(µirij)rij
r5
ij

− µi
r3
ij

)
. (7.19)

Turning to the integral in this expression, we get:

U = −1

2

∫
d3rM (r)

∫
d3r′B(r, r′), (7.20)

where

B(r, r′) =
µ0

4π

(3[M(r′)(r − r′)](r − r′)
|r − r′|5

− M (r′)

|r − r′|3
)
.(7.21)

This expression contains a divergence inside the body, so when
calculating the magnetic field B(r) we use the following tech-
nique:

B(r) =

∫
Ω

d3r′B(r, r′) +
∑
j∈ω

Bij, (7.22)

where ω is a sphere of radius R around the magnetic moment
mi (Lorentz sphere), and Ω is the rest of the volume of the
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body without the Lorentz sphere. The radius of the Lorentz
sphere is chosen much smaller than the characteristic scale
of the magnetization change, but much larger than the inter-
atomic distance.

Inside a material we haveB = µ0(H+M ). FromMaxwell’s
equation we get:

∇B = 0⇒∇H = −∇M = ρM , (7.23)

which, together with the second Maxwell equation rotH = 0,
defines the standard electrostatic problem for the fieldH for a
given magnetic charge distribution ρM = −∇M . The solution
of this problem has the form:

H(r) = − 1

4π

∫
Ω

d3r′
[∇′M (r′)(r − r′)]

|r − r′|3
. (7.24)

Thus, in a finite sample the volume relation B = µ0M stops
working and magnetic charges appear on its surface, which cre-
ate stray fields outside the sample and a "demagnetizing" field
H inside the sample, which is not aligned with the magneti-
zation and leads to a dependence of the energy of the dipole-
dipole interaction from the direction of magnetization.

The term
∑
j∈ω
Bij in Eq. (7.22) disappears for a cubic

lattice, and for a non-cubic one it can be included in the mag-
netocrystalline anisotropy, because it does not depend on the
shape of the sample. Then we get that the anisotropy energy
of the shape has the form:

U = −µ0

2

∫
d3rMH . (7.25)

All terms of ∝
∫
d3rM2, and therefore independent of the di-

rection of magnetization of the sample, are omitted here. Cal-
culating the demagnetization field H for samples of arbitrary
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shape is a rather difficult task. But for uniformly magnetized
ellipsoidal samples, the demagnetization field is also homoge-
neous and has the form:

Hi = −NijMj, (7.26)

where the matrix N̂ with components Nij is a demagnetization
tensor. TrN̂ = 1. Then the shape anisotropy energy (also
called the energy of stray fields or the energy of the dipole-
dipole interaction) takes the form:

U =
µ0

2

∫
d3r(M )T N̂M . (7.27)

The energy of stray fields is always positive. If we select the
coordinate axes along the main axes of the ellipsoid a, b, c, then
the demagnetization tensor acquires a diagonal structure and
the energy of the stray fields can be written as:

Estr = U =
µ0

2
M2V

(
Naα

2
a +Nbα

2
b +Ncα

2
c

)
. (7.28)

In the case of sphere, the demagnetization tensor is isotropic
Ni = 1/3 for i = a, b, c and all directions of magnetization are
energetically equivalent.

For rotational ellipsoid, i.e. a body having symmetry with
respect to rotation around the c axis:

Na = Nb, Nc = 1− 2Na, (7.29)

Estr =
µ0

2
M2V

(
Na sin2 θ + (1− 2Na) cos2 θ

)
=

µ0

2
M2V

(
Na + (1− 3Na) cos2 θ

)
. (7.30)

For infinitely long cylinder Na = Nb = 1/2, Nc = 0.

Estr =
µ0

4
M2V sin2 θ. (7.31)
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For infinite flat plate Na = Nb = 0, Nc = 1.

Estr =
µ0

2
M2V cos2 θ. (7.32)

This result is very important for thin films and multilayers.
For them, if we write

Estr = K0 +Kshape sin2 θ, (7.33)

then Kshape ∝M2 < 0. In addition, the shape anisotropy usu-
ally dominates the magnetocrystalline anisotropy. Therefore,
in films, the magnetization lies in the plane of the film.(a) Ran-
dom distribution of atoms in a binary alloy; (b) ideal isotropic
long-range order; (c) anisotropic short-range order with a pre-
ferred bond direction, formed as a result of annealing in a
magnetic field.

7.3 Induced magnetic anisotropy.

For magnetic alloys having a cubic crystal structure, uniaxial
anisotropy can be achieved by annealing in a magnetic field.
The necessary ingredients for this are the chaotic arrangement
of atoms of various substances in the alloy lattice and high crit-
ical temperatures, which allow the atoms to exchange places
in the crystal lattice through thermal diffusion.

The mechanism for the formation of induced single-axis
anisotropy is as follows. The magnetic field orients the mag-
netization at T < Tc. The binding energy of two neighboring
atoms in a magnetized crystal depends on the angle between
the straight line connecting the atoms and the direction of
magnetization E ∝ l cos2 φ, where φ is the angle between the
straight line connecting the atoms and the direction of mag-
netization and l is a constant depending on the type of bond
(in a binary alloy AA, AB or BB) and temperature. A pair
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Figure 7.6: (a) Random distribution of atoms in a binary alloy;
(b) ideal isotropic long-range order; (c) anisotropic short-range
order with a preferred bond direction, formed as a result of
annealing in a magnetic field. From [5].

of atoms forming a bond tends to extend the axis along or
across the magnetization, depending on the sign of l. If the
temperature is high and diffusion of atoms is possible, then the
atoms are rearranged in the field so as to minimize this energy.
This process is illustrated by the transition from Fig. 7.6(a)
to Fig. 7.6(c). When cooled in a field, this order is frozen,
resulting in uniaxial anisotropy.

7.4 Magnetostriction.

Until now, the crystal lattice was considered rigid. Let us
introduce an elastic degree of freedom.

For a cubic lattice, the energy of magnetocrystalline anisotropy
has the form Ecubic

crys = Kcubic
1 ·O(α4), and for tetragonal anisotropy

Etetra
crys = Ktetra

1 · O(α2) = Ktetra
1 sin2 θ. As a rule, Ktetra

1 >
Kcubic

1 , so lattice deformation that transforms the crystal from
cubic to tetragonal symmetry is beneficial. This deformation
is limited by elastic energy. In the simplest case, when defor-
mation is possible along one axis, the energy of the system,
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including the contribution of the energy of tetragonal mag-
netic anisotropy (we neglect cubic anisotropy in comparison
with tetragonal and elastic energies), has the form:

E = K1ε(1− α2
3) +

cε2

2
, (7.34)

where ε is the relative change in length along a given direction.
For a fixed direction of magnetization, the minimum energy of
the system is achieved at

ε = −K1

c
(1− α2

3). (7.35)

Substituting this value into (7.34), we get:

E = −K
2
1

2c
(1− α2

3)2, (7.36)

that is, magnetostrictive deformation leads to the appearance
of uniaxial anisotropy of the easy plane type. In the general
case, it is necessary to introduce a deformation tensor and
an elasticity tensor. One or more easy axes may also appear
in a crystal as a result of magnetostrictive deformations. The
characteristic values of magnetostrictive strain are of the order
of ε ∼ 10−5.

7.5 Surface anisotropy.

Until now, all types of anisotropy have been associated with
the bulk properties of crystals. For low-dimensional systems,
the contribution to the anisotropy energy associated with the
presence of the sample surface also plays a significant role.
In thin films, the effective anisotropy constant contains both
a volume contribution, determined by the shape anisotropy
energy, and a surface contribution (Ean = Keff sin2 θ):

Keff = KV + 2KS/d, (7.37)
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where KV is the shape anisotropy constant, KS is the surface
anisotropy constant, d is the film thickness. As the film thick-
ness increases, the contribution of surface anisotropy to the
effective constant decreases ∝ 1/d, which leads to the appear-
ance of a corresponding factor in (7.37). The factor of 2 arises
from the presence of 2 surfaces on the film.

Figure 7.7: Magnetic anisotropy in a thin Co film in a Co/Pd
multilayer as a function of Co film thickness. The slope of the
line gives KV , and the approximation of the linear function to
dCo = 0 gives 2KS. From [5].

The physical cause of surface anisotropy is again the spin-
orbit interaction. Due to the breaking of symmetry with re-
spect to inversion relative to the surface of the sample, an ef-
fective electric field arises near the surface, as a result of which
the electron orbitals of surface atoms are extended along the
normal to the surface. This causes the spin of the electron
shell, as a rule, to also elongate along the normal, as a re-
sult of which KS gives an anisotropy of the easy axis type
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and leads to a change in the equilibrium orientation of mag-
netization from parallel to the film plane to perpendicular in
ultrathin films at a critical film thickness dc = −2KS/KV , see
Fig. 7.7.



Chapter 8

Domain structure of
magnets.

An unmagnetized ferromagnetic sample below Tc consists of
domains - regions of uniform magnetization, the magnetiza-
tion in each of which is directed along the easy axis of this
domain. The magnetization of a macroscopic sample averaged
over all domains is zero. The boundaries between neighbor-
ing domains are called domain walls. The domain concept
explains many properties of magnetic materials. For example:
(i) zero average magnetization of a non-magnetized magnet;
(ii) the sufficiency of very weak magnetic fields B ∼ 10−6T in
soft magnetic materials to achieve magnetization µ0M ∼ 1T .
This is explained by the fact that a weak external field does
not reorient all magnetic moments, but only moves the domain
walls.

8.1 Domain walls.

First of all, domain walls can be classified by the angle that
the magnetizations of neighboring domains make with each
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other. The most common are 180-degree and 90-degree walls,
see Fig. 8.1. What type of domain wall is realized depends on
the magnetocrystalline anisotropy:

1) Uniaxial anisotropy. An example is Co. - 180◦-walls.
2) Triaxial material. An example is Fe. It has three easy

axes along [100], [010] and [001] - 180◦ and 90◦ walls.
3) Quadriaxial material. An example is Ni. It has easy

axes along [111] directions - 180◦, 109◦ and 71◦ walls.

Figure 8.1: (a) 180◦-domain wall; (b) 90◦-domain wall. From
[5].

The most common 180◦-domain walls can be further di-
vided into:

1) Bloch’s walls, in which the rotation of the magnetization
occurs in the plane of the wall;

2) Néel walls, in which the rotation of the magnetization
occurs in a plane perpendicular to the plane of the wall.

Figure 8.2: (a) Rotation of the magnetization of the Bloch
wall; (b) rotation of the magnetization of the Neel wall. From
[5].

The Bloch and Neel walls are shown in Fig. 8.2. Bloch
walls are realized mainly in bulk crystals, since the magneti-
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zation, which does not leave the plane of the domain interface,
minimizes stray fields. Neel walls are realized in thin films,
where, due to the anisotropy of the magnetization shape, it is
not advantageous to go out of the film plane.

8.1.1 The width of the domain wall.

Let’s consider how the width of the domain wall is determined
and evaluate it. In the classical limit, the energy of the ex-
change interaction of two spins has the form:

E = −2JS1S2 = −2JS2 cos δϕ ≈ −2JS2 + JS2δϕ2. (8.1)

The last approximate equality is, of course, valid if the angle
between the two spins is δϕ � 1. Let N spins participate in
the reversal of magnetization by π. Then δϕ = π/N . Energy
is required to flip one spin per π per N steps

E = NJS2δϕ2 = π2JS2/N. (8.2)

There are 1/a2 spins per unit wall area, where a is a lattice
constant. Therefore, the exchange contribution to the energy
of the wall per unit area of the wall has the form:

Ew
ex =

π2JS2

Na2
. (8.3)

This energy tends to stretch the wall, its minimum is reached
at N →∞. However, it is also necessary to take into account
the energy of the magnetocrystalline anisotropy, which tends
to shorten the wall. The result of the competition of these two
factors determines the final width of the wall. The energy of
the magnetocrystalline (uniaxial) anisotropy per unit volume
of the material has the form:

Ecrys = K sin2 ϕ, (8.4)
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where ϕ is the total angle of deviation of a given spin from
the anisotropy axis. Then the total energy of the crystalline
anisotropy, summed over the entire wall, per unit area of the
wall:

Ew
crys =

N∑
1

Ka sin2 ϕ =

π∫
0

adϕN

π
K sin2 ϕ =

a

2
NK. (8.5)

The total energy of the wall is given by the sum of the ex-
change contribution and the contribution of anisotropy Ew =
Ew
ex +Ew

cry. Minimizing this energy by the number of spins N
involved in the formation of the wall, we obtain

dE

dN
= 0 =⇒ 1

2
aK − JS2 π2

a2N2
= 0, (8.6)

and consequently

N = πS

√
2J

a3K
. (8.7)

Let’s introduce the parameter A = 2JS2/a, which is called
the exchange stiffness and is a measure of the stiffness of the
exchange forces when the magnetization is rotated. Then the
width of the domain wall can be represented as:

δ = Na = π

√
A

K
. (8.8)

It can be seen that, indeed, the exchange forces tend to stretch
the domain wall, and the anisotropy energy tends to compress.
The characteristic width scales of the Bloch domain walls are
on the order of several tens of nanometers (for Fe∼ 40nm).
The width of the Neel domain wall in thin films can be larger,
up to 1µm due to the weakness of the uniaxial anisotropy
constant.
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8.2 Domains structure

8.2.1 Estimation of the domain width.

Now let’s estimate the width of the magnetic domain itself.
For simplicity, consider domains in the form of parallel layers.
Let d be the width of the domain. It is again determined by
the competition of two energies. At the edges of the magnet,
a stray magnetic field emerges from it, see Fig. 8.3. To min-
imize these fields, and hence their energy, the domain width
must be reduced. On the other hand, positive energy is asso-
ciated with each domain wall, which acts, on the contrary, in
the direction of reducing the number of domains and, accord-
ingly, increasing the width of each domain. The competition
of these factors stabilizes the final domain width. Let’s make
quantitative estimates.

Figure 8.3: The distribution of stray fields in space. (a) A
single-domain sample; (b) the same sample in a two-domain
state; (c) A multi-domain state. From [5].

Substituting Na from (8.8) into the expression for the en-
ergy of the domain wall, we obtain for the energy of the surface
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tension of the domain wall

Ew = σb = π
√
AK = M2∆, (8.9)

where ∆ = π
√
AK/M4. Then the total energy of all domain

walls in the sample of the width L takes the form:

Eb = σb
L

d
= M2∆

L

d
. (8.10)

The energy of the stray fields is of the order of magnitude

Estr = κM2d, (8.11)

where κ is some coefficient of the order of 1. This simple
estimate is obtained as the energy of magnetic charges with
a surface density of σ ∼ M distributed on the surface of the
magnet Estr ∼ σϕ, where the potential of the magnetic charge
field is ϕ ∼Md.

Figure 8.4: A schematic representation of the branching pro-
cess of the domain at the surface of the sample.

Minimizing the total energy E = Eb + Estr by d, we get:

d =
√

∆L/κ. (8.12)
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Thus, the width of the domains increases with increasing sam-
ple size as

√
L. But this law obviously cannot be true for

arbitrarily large values of L. The width of the domains at
their exit to the surface cannot exceed a certain limit value,
which is determined only by the properties of the ferromagnet
itself and does not depend on the shape and size of the sam-
ple. It is determined by the moment when, as d increases, it
becomes thermodynamically advantageous to split the domain
to a depth of the order of d. Such a moment necessarily comes
with the growth of d, because the energy of the output of one
domain grows as d2, and the energy of the surface tension of
the domain boundary as d. Thus, as the size of the sample
increases, progressive branching of the domains should occur
when they approach the surface. With sufficiently large sam-
ple sizes, branching continues until the width of the domains
formed at the very surface becomes comparable to the width
of the domain wall, see Fig. 8.4.

8.3 Real domain structure.

1. Crystals with strong uniaxial anisotropy demonstrate branch-
ing of domains at the surface in accordance with the theory
described in the previous paragraph, see Fig. 8.5-8.6.

2. Crystals with weak uniaxial anisotropy form closing do-
mains on the surface, see Fig. 8.7, in which the magnetization
near the surface does not coincide with the easy axis, but is
located parallel to the surface to minimize the energy of stray
fields.

3. In crystals with non-uniaxial anisotropy the detailed do-
main pattern depends on the orientation of the surface with
respect to the easy axes. If we move from the simplest case of
a crystal surface coinciding with one of the crystal planes and
containing two easy axes to a surface oriented at a large angle
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Figure 8.5: Domains on the side surface of the Co crystal.
From [5].

to the crystal planes, the domain structure becomes more and
more complex. Let’s look at the examples.

a) Two easy axes in the plane of the surface. This situation
occurs, for example, for (100)- Fe surfaces, see Fig. 8.8. The
picture is easily interpreted - the magnetization in the domains
is directed along one of the two easy axes lying in the plane
of the surface. Locally, there is a slightly marked direction
in each place of the sample due to local tensions or induced
anisotropy. After complete demagnetization and subsequent
magnetization, see Fig. 8.8(b), the domain structure changes
somewhat, but the preferred directions remain.

b) One easy axis in the plane of the surface. This situation
occurs, for example, for (110)- Fe surfaces, see Fig. 8.9. The
domain structure consists of domains elongated along an easy
axis.

c) A slightly misoriented surface, i.e. when the nearest easy
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Figure 8.6: The domain structure of a wedge-shaped film of
monocrystalline Co. The easy axis is directed perpendicular
to the surface of the film. The film thickness increases from
left to right. It can be seen that at the same time, the domain
size is growing in accordance with the theory outlined above,
but the degree of branching of domains at the surface is also
growing. From [5].

Figure 8.7: Closing domains on the crystal surface with weak
uniaxial anisotropy, in which the magnetization is not parallel
to the easy axis to minimize the energy of stray fields. From
[5].
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Figure 8.8: Domain structure for (100)- Fe surfaces. All do-
mains are magnetized along one of the two easy axes lying in
the plane of the surface. (b) The same sample after the next
demagnetization. From [5].

Figure 8.9: Domain structure for (110)- Fe surfaces. All do-
mains are magnetized along a light axis lying in the plane of
the surface. From [5].

axis is an angle of no more than 5◦ with the surface plane.
The main domain structure corresponds to an ideal crystal.
But "shadow domains" are superimposed on it, in which the
magnetization is located along another easy axis, see Fig. 8.10.

d) Strongly misoriented surface with easy axes. In this
case, the domain structure is very complex, see Fig. 8.11.
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Figure 8.10: A fir tree domain structure with shadow domains
on a slightly disoriented Fe surface. From [5].

Figure 8.11: A domain structure on a strongly misoriented Fe
surface. From [5].

4. The domain structure of a soft magnetic material with-
out magnetocrystalline anisotropy, the shape of the sample is
determined. It is constructed in such a way as to minimize
the appearance of magnetic charges on the surface of the sam-
ple. In order for magnetic charges to disappear, the following
requirements should be met:

1) divM = 0 - absence of bulk magnetic charges in the
sample;
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2) The magnetization should be oriented parallel to the
sample surfaces in order to avoid the appearance of surface
charges.

Figure 8.12: (a) The state of a square sample with continuous
magnetization. (b) The Landau state with 4 domains and 90◦

domain walls. From [5].

Let’s consider a rectangular shape sample. From Fig. 8.12(a)
it can be seen that the continuous magnetization field does not
satisfy all these requirements. It is divergent-free in volume,
but the magnetization does not lie parallel to the entire surface
of the sample. All conditions are met for the so-called Lan-
dau state, see Fig. 8.12(b). The magnetization in this state
has discontinuities, which are domain walls. The magnetiza-
tion is parallel to the entire surface of the sample and at the
boundaries of the domains perpendicular to the surface mag-
netization component remains continuous, which ensures the
absence of magnetic charges at these boundaries.

It is possible to formulate rules for constructing a domain
structure that makes magnetic charges zero for a particle of
arbitrary shape:

1) It is necessary to build circles that lie inside the sample
and touch the surface at two or more points. The centers of
these circles lie on the domain wall;

2) In each circle, the magnetization vector is perpendicular
to the radius of contact;
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Figure 8.13: The domain structure of soft magnetic elements
of various shapes. For a description of figures (a)-(c), see the
text. Figures (d)-(e) correspond to the possible stable and
metastable states of the disc-shaped particle. (d) - magnetic
vortex; (e) domain state, which is obtained using the algorithm
described in the text, but with an additional thought cut of
the sample in the middle, as shown in Fig. (f). From [5].

3) If the circle touches the surface at more than two points,
its center is the point of merging of the domain walls;

These rules are illustrated in Fig. 8.13(a)
4) If the circle coincides with the surface in a certain area,

then the domain wall ends at its center and it serves as the
central point of the domain with continuous rotation of mag-
netization. This rule is illustrated in Fig. 8.13(b);

5) If the sample contains a tip, then the domain wall is
extended to it, see Fig.8.13(c).

The above rules lead to a state in which the energy of
the stray fields is minimized. As a rule, this state is most
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Figure 8.14: (a) A rectangular sample. (b)-(d) Elliptical
Co particles of different sizes. For larger particles, a state
with concentric magnetization and domain walls (b) is real-
ized, constructed in accordance with the algorithm described
in the text, or a three-domain state (c). For smaller parti-
cles, the formation of domain walls is not advantageous and a
single-domain state in a parallel field or a concentric state (as
metastable) in a perpendicular field is realized. From [5].

favorable for samples of sufficiently large sizes, when the loss
in the energy of the formation of domain walls is compensated
by the gain in minimizing the energy of stray fields. However,
if the size of a magnetic particle decreases, then the formation
of domain walls in it becomes unfavorable, because the energy
of the stray fields is too small (recall that the energy of the
domain wall grows as the sample size, and the energy of the
stray fields as the square of the sample size). Therefore, when
the sample size decreases, it becomes favorable for the sample
to switch to a single-domain state. This process is illustrated
by the experimental results shown in Fig. 8.14.
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