Spin-valve effect and parity effect in AF/S/AF systems V.M. Gordeeva¹, G.A. Bobkov¹, I.V. Bobkova^{1,2}, A.M. Bobkov¹, L. J. Kamra^{3,4}, S. Chourasia³, A. Kamra³ ¹MIPT, Dolgoprudny, Russia; ²HSE, Moscow, Russia; ³Universidad Autónoma de Madrid, Madrid, Spain; ⁴MIT, Cambridge, Massachusetts, USA

Introduction

Superconducting devices based proximity Motivation: effect in on superconductor/magnetic material heterostructures are important objects for superconducting spintronics. The dependence of the critical temperature of magnetic material/superconductor/magnetic material trilayers on the angle between the magnetic layers' magnetizations leads to a spin-value effect and gives opportunity to use such structures for spintronics applications. While superconducting spin valves with ferromagnets are well-studied, we describe AF/S/AF spin values.

Neel triplet Cooper pairs: It was demonstrated [1] that the Neel order of the *fully* compensated AF makes the conventional singlet pairing to be partially converted into spin-triplet correlations at AF/S interfaces. Their amplitude flips sign from one lattice site to the next, just like the Neel spin order in the AF. Thus, they are called Neel triplet Cooper pairs. Spin-valve effect in AF/S/AF structures [2,3] is caused by sensitivity of Neel triplet Cooper pairs to mutual orientation of the Neel vectors of the AFs. Alternating sign of Neel triplets' amplitude also leads to **parity effect** [2].

Fig.9 Brillouin zone and Fermi surface in the AF. Finite-momentum triplet pairing between electrons 2 and 3.

Parity effect in AF/S/AF and F/S/F

$$H = -t \sum_{\langle ij \rangle, \sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} (\Delta_{i} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} + H.c.) - \mu \sum_{i\sigma} \hat{n}_{i\sigma} - \frac{J}{2} \sum_{i,\alpha\beta} \hat{c}_{i\alpha}^{\dagger} (h_{i}\sigma)_{\alpha\beta} \hat{c}_{i\beta}$$

Anomalous Green's function:

$$F_{\boldsymbol{i},\alpha\beta}(\omega_m) = \sum_{n} \left(\frac{u_{n,\alpha}^{\boldsymbol{i}} v_{n,\beta}^{\boldsymbol{i}\star}}{i\omega_m - \varepsilon_n} + \frac{u_{n,\beta}^{\boldsymbol{i}} v_{n,\alpha}^{\boldsymbol{i}\star}}{i\omega_m + \varepsilon_n} \right)$$

Sin

$$F_{\boldsymbol{i}}^{s,t}(\omega_m) = F_{\boldsymbol{i},\uparrow\downarrow}(\omega_m) \mp F_{\boldsymbol{i},\downarrow\uparrow}(\omega_m)$$

$$F_{\boldsymbol{i}}^t = \sum_{\omega_m > 0} F_{\boldsymbol{i}}^t(\omega_m)$$

$$AF/S/AF$$
 trilayers

 $L_{osc} = \frac{\pi v_F}{\sqrt{\mu^2 - h^2}}$

Fig.11 (a) Setup and the angle θ between the Neel vectors. Spatial variation of the triplet correlations amplitude F_i^t in (b) AF/S bilayer, (c) AF/S/AF with odd number of S monolayers and $\theta = 0$ or (d) $\theta = \pi$.

$$F_{\mathbf{i},\alpha\beta}(\omega_m) = \sum_{n} \left(\frac{u_{n,\alpha}^{\mathbf{i}} v_{n,\beta}^{\mathbf{i}\star}}{i\omega_m - \varepsilon_n} + \frac{u_{n,\beta}^{\mathbf{i}} v_{n,\alpha}^{\mathbf{i}\star}}{i\omega_m + \varepsilon_n} \right)$$

$$F_{\mathbf{i}}^{s,t}(\omega_m) = F_{\mathbf{i},\uparrow\downarrow}(\omega_m) \mp F_{\mathbf{i},\downarrow\uparrow}(\omega_m)$$

$$F_{\boldsymbol{i}}^t = \sum_{\omega_m > 0} F_{\boldsymbol{i}}^t(\omega_m)$$

Fig.3 $T_c(\phi)$ for a fixed $d_S = 0.126\xi_S$ and different h_{eff} . $\mu_S = T_{c0}$.

Fig.6 $T_c(0)$ and $T_c(\pi)$ as functions of d_S at $\mu_{S} = 0.9t. \ L_{\rm osc} = \pi v_{F} / \mu_{S} \approx 7.$

Normalized critical $\mathbf{Fig.10}$ Setup. (a)temperature $T_c(\theta)$ for (b) stronger and (c) weaker interfacial exchange coupling J. N_y is the number of S monolayers

Conclusions

(i) Neel triplet correlations in AF/S/AF lead to spin-value effect. The results demonstrate suppression of the value effect at larger d_S and possibility of absolute value effect for larger values of h_{eff} .

(ii) Presence of impurities suppresses Neel triplets, which leads to disappearing of the " $0 - \pi$ " spin-value effect.

(iii) Away from half-filling $\mu_S = 0$ the difference $T_c(\pi) - T_c(0)$ oscillates as a function of d_S due to the interference of finite-momentum Neel triplets generated by the S/AF interfaces.

Fig.12 Normalized critical temperature $T_c(\theta)$ for (a) stronger and (b) weaker interfacial exchange coupling J. The variation is reversed when the number of S monolayers N_y changes from even to odd.

Fig.7 Suppression of spin-valve effect by impurities. $\Delta T_{c,\parallel}$ as a function of the impurity strength $\delta\mu$.

Fig.8 $\Delta T_{c,\perp}$ as a function of the impurity strength $\delta\mu$.

The "0 – π " spin-value effect $\Delta T_{c,\parallel} = [T_c(\phi = 0) - T_c(\phi = \pi)]/2$ is connected with Neel triplets and suppressed by impurities.

The "perpendicular" spin-value effect $\Delta T_{c,\perp} = T_c(\phi = \pi/2) - [T_c(\phi = 0) + T_c(\phi = \pi)]/2$ is not suppressed by impurities.

(iv) For larger d_S critical temperature manifests non-monotonic dependence on the misorientation angle due to appearance of equal-spin correlations and interference effects.

(v) Angle dependence of AF/S/AF critical temperature shows the parity effect, which provides a distinct signature of the Neel triplets.

References

[1] G. A. Bobkov et al., Phys. Rev. B **106**, 144512 (2022). [2] L. J. Kamra et al., Phys. Rev. B **108**, 144506 (2023). [3] G. A. Bobkov et al., Phys. Rev. B **109**, 184504 (2024).

The work was supported by Grant from the ministry of science and higher education of the Russian Federation No. 075-15-2024-632.