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Introduction
Motivation: Superconducting devices based on proximity effect in
superconductor/magnetic material heterostructures are important objects for
superconducting spintronics. The dependence of the critical temperature of magnetic
material/superconductor/magnetic material trilayers on the angle between the
magnetic layers’ magnetizations leads to a spin-valve effect and gives opportunity to
use such structures for spintronics applications. While superconducting spin valves
with ferromagnets are well-studied, we describe AF/S/AF spin valves.

Neel triplet Cooper pairs: It was demonstrated [1] that the Neel order of the fully
compensated AF makes the conventional singlet pairing to be partially converted into
spin-triplet correlations at AF/S interfaces. Their amplitude flips sign from one lattice
site to the next, just like the Neel spin order in the AF. Thus, they are called Neel
triplet Cooper pairs. Spin-valve effect in AF/S/AF structures [2,3] is caused by
sensitivity of Neel triplet Cooper pairs to mutual orientation of the Neel vectors of the
AFs. Alternating sign of Neel triplets’ amplitude also leads to parity effect [2].

Spin-valve effect, clean case
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Fig.1 Sketch of the AF/S/AF system. The
angle ϕ between the Neel vectors is shown.

Quasiclassical results:
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Fig.2 Tc(ϕ) for the AF/S/AF for fixed
heff = Tc0 and different dS . µS = Tc0.
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Fig.3 Tc(ϕ) for a fixed dS = 0.126ξS and
different heff . µS = Tc0.

BdG results:
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Fig.4 Tc(ϕ) for µS = 0 and different dS .
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Fig.5 Tc(ϕ) for µS = 0.2t and different dS .
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Fig.6 Tc(0) and Tc(π) as functions of dS at
µS = 0.9t. Losc = πvF /µS ≈ 7.

Spin-valve effect, influence of impurities
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Fig.7 Suppression of spin-valve effect by
impurities. ∆Tc,∥ as a function of the
impurity strength δµ.
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Fig.8 ∆Tc,⊥ as a function of the impurity
strength δµ.

The ”0 − π” spin-valve effect ∆Tc,∥ = [Tc(ϕ = 0) − Tc(ϕ = π)]/2 is connected with
Neel triplets and suppressed by impurities.

The "perpendicular” spin-valve effect ∆Tc,⊥ = Tc(ϕ = π/2)−[Tc(ϕ = 0)+Tc(ϕ = π)]/2
is not suppressed by impurities.

Finite-momentum Neel triplet pairing
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Fig.9 Brillouin zone and Fermi surface in the
AF. Finite-momentum triplet pairing between
electrons 2 and 3.

ε = −µ+√
h2 + 4t2(cos pxa+ cos pya+ cos pza)2

δp = |px3 − px1| = 2
√

µ2 − h2/vF

Triplet correlations oscillate with
period:

Losc =
πvF√
µ2 − h2

Parity effect in AF/S/AF and F/S/F
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FIG. 1. Schematic depiction of the system and key underlying
phenomena. (a) A conventional superconductor (S) is sand-
wiched between two compensated antiferromagnetic insula-
tors (AFIs) bearing Néel vectors n1 and n2 that subtend an
angle θ. (b) In an AFI–S bilayer, spatially alternating spin-
splitting induced by the AFI predominantly generates Néel
spin-triplet Cooper pairs characterized by a checkerboard pat-
tern of their amplitude F t

j [37] thus manifesting an alternating
spatial parity. (c) In an AFI–S–AFI trilayer with odd num-
ber (considered 5 here) of S monolayers and θ = 0, the Néel
triplets generated by the two AFIs interfere constructively.
This results in more induced spin-triplets and larger weaken-
ing of the spin-singlet superconductivity. (d) If instead θ = π,
the Néel triplets from the two AFI–S interfaces interfere de-
structively and superconductivity is weakened less. This de-
pendence of the superconducting state on θ is reversed when
the number of S monolayers is even due to the checkerboard
pattern associated with the Néel triplets.

generated Néel Cooper pairs mediate coupling between
the two AFIs’ Néel vectors exhibiting the signature par-
ity effect with the S monolayers number. Our theoreti-
cal results suggest a direct experimental probe of these
recently predicted Néel triplets [37] while enabling anti-
ferromagnetic superconducting spintronics devices.

System and theoretical model.—We consider a thin-
film superconductor which on each side is interfacing an
antiferromagnetic insulator, as schematically depicted in
Fig. 1(a). While electron hopping is only allowed within
the S layer, the two AFIs impose a local spin-splitting
via interfacial exchange onto the atomic layer closest to
the S–AFI interfaces [23, 37]. We can thus describe the
system by the Hamiltonian

H =− t
∑

⟨i,j⟩,σ
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2
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Here, c
(†)
j,σ is the annihilation (creation) operator associ-

ated with an electron of spin σ at lattice site j ≡ (jz, jy),
t parametrizes electron hopping between nearest neigh-
bor sites within the S, Sj ≡ ∑

σ,σ′ c
†
j,σσσ,σ′cj,σ′ is the

spin operator for S electrons with σ as the vector of Pauli

matrices, and ∆j ≡ −U⟨cj,↓cj,↑⟩ is the self-consistently
evaluated mean-field superconducting gap [42]. The
chemical potential µ is adjusted to fix the filling frac-
tion, which we assume as n = 0.5 here. We consider the
S lattice to bear the size Nz ×Ny with periodic bound-
ary conditions along z [Fig. 1(a)]. As we consider ideal
insulating antiferromagnets, their thicknesses do not in-
fluence the phenomena investigated here.
A local spin-splitting field JMj/2 is imposed by the

two AFIs onto the S interfacial monolayers (jz, 1) and
(jz, Ny). Here, J parametrizes the AFI–S interfacial ex-
change coupling. As depicted in Fig. 1(a), the magnetic
moments in the first AFI have a fixed orientation corre-
sponding to the Néel vector n1 = z so that M(jz,1) =
(−1)jz−1n1. The Néel vector n2 = [cos(θ)z+sin(θ)y] of
the second AFI leads to rotation of the local spin-splitting
oriented along M(jz,Ny) = (−1)jz−1n2.
We numerically diagonalize the Hamiltonian in Eq. (1)

by solving the Bogoliubov–de Gennes equation [42] self-
consistently:

H =H0 +

′∑

n

Enγ
†
nγn with (2)

H0 =−Nµ−
∑
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|∆j |2
U

− 1

2

′∑

n

En, (3)

where
∑′

n denotes the sum over positive eigenenergies
En > 0 only, {γ†

n} is a set of unique fermion operators,
and N = NzNy is the total number of S lattice sites. The
resulting solution provides complete information on the
superconducting or normal state of the S layer.
Critical temperature control via θ.—In order to exam-

ine the magnetoresistance and S layer’s critical temper-
ature dependence on the AFIs, we numerically compute
the superconducting critical temperature Tc. It is de-
termined using a binary search algorithm locating the
temperature at which the superconducting gap starts
to increase from a near-zero initial guess upon its self-
consistent evaluation [43, 44].
To succinctly capture and present the Tc variation

with θ for different thicknesses Ny of the S layer, we
first parametrize Tc vs. θ on symmetry grounds. This
parametrization is only valid for small changes in Tc. For
a small J , Tc is only weakly altered by the adjacent AFIs
and is expected to bear the dependence:

T̃c(θ) ≡
Tc(θ)

Tc,0
≡ ∆T̃c,∥ cos θ +∆T̃c,⊥ sin2 θ + T̃c,∥, (4)

where Tc,0 is the critical temperature of the same S layer
when it is not coupled to the AFIs, i.e., assuming J = 0
in Eq. (1). From Eq. (4) above, we see that

∆T̃c,∥ = [T̃c(0)− T̃c(π)]/2, T̃c,∥ = [T̃c(0) + T̃c(π)]/2,

∆T̃c,⊥ = T̃c(π/2)− T̃c,∥. (5)

Fig.11 (a) Setup and the angle θ between
the Neel vectors. Spatial variation of the
triplet correlations amplitude F t

j in (b)
AF/S bilayer, (c) AF/S/AF with odd
number of S monolayers and θ = 0 or (d)
θ = π.

F/S/F trilayers

FIG. S1. (a) Schematic depiction of a system where the compensated AFIs are replaced with

ferromagnetic insulators (FIs) with magnetization along m1 and m2 that subtend an angle θ.

The normalized critical temperature T̃c variation with θ is plotted for (b) stronger and (c) weaker

interfacial exchange coupling J . Contrary to the AFI/S/AFI system, the variation is no longer

reversed when the number of S monolayers Ny changes from even to odd. The weaker exchange (b)

results in variation of Tc as per Eq. (4) in the main text. In both panels, Nz = 402 and U/t = 1.

In (b), J/t = 0.08. In (c), J/t = 0.02.
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Fig.10 (a) Setup. Normalized critical
temperature T̃c(θ) for (b) stronger and (c)
weaker interfacial exchange coupling J . Ny is
the number of S monolayers
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FIG. 2. Normalized critical temperature T̃c variation with θ
for (a) stronger and (b) weaker interfacial exchange coupling
J . The variation is reversed when the number of S monolayers
Ny changes from even to odd. A complete suppression of
Tc is observed for the stronger J case (a), while the weaker
exchange (b) results in variation of Tc as per Eq. (4). (c) By

fitting the numerically evaluated T̃c(θ) to Eq. (4) for different

thicknesses Ny, ∆T̃c,∥ and ∆T̃c,⊥ are obtained and studied

for their thickness Ny dependence. The parity effect of ∆T̃c,∥
with respect to Ny results from the alternating sign of Néel
triplets’ amplitude, as discussed in Fig. 1. In all panels, Nz =
202. In (a), U/t = 1 and J/t = 0.08. In (b), U/t = 1 and
J/t = 0.02. In (c), U/t = 1.3 and J/t = 0.08.

In Eq. (4), the ∆T̃c,∥ cos θ term is expected due to the
interference of zero-spin Néel triplets generated by the
two AFI–S interfaces [37], as briefly outlined in Fig. 1.
It is analogous to the cos θ dependence in F–S–F tri-
layers [11, 12] and bears the symmetry of vectorial ad-
dition of the spin-splitting fields from the two AFIs.
The ∆T̃c,⊥ sin2 θ term is expected from the generation
of equal-spin triplets via the noncollinearity between n1

and n2 [38–41] as it is finite only when the two magnetic
orders are noncollinear. In Eq. (4), ∆T̃c,∥ characterizes
the Tc difference between parallel and antiparallel config-
urations. When it is positive (negative), the Tc is larger
for the parallel (antiparallel) configuration of the mag-
netic orders. On the other hand, ∆T̃c,⊥ represents the
change in Tc when going from parallel to perpendicu-
lar configurations. Together, ∆T̃c,∥ and ∆T̃c,⊥ provide a
succinct parametrization to study and present Tc vs. θ in
our system. We emphasize that our numerical evaluation
of Tc does not depend on or assume this parametrization
[Eq. (4)].

In Fig. 2(a), we depict the T̃c variation when the in-
terfacial exchange is strong and results in a complete Tc

suppression for certain θ. When the number of S mono-
layers Ny = 2, the Néel triplets generated by the two
AFI–S interfaces interfere destructively for θ = 0. This
results in a weakening of the effect due to the AFIs and a
larger Tc at θ = 0. For Ny = 3, the interference becomes
constructive for θ = 0 [Fig. 1(c)] due to the checkerboard
pattern of the Néel triplets [Fig. 1(b)] and the Tc vs. θ
trend is reversed. When the exchange coupling J is small
enough to avoid a complete suppression of Tc, the numer-
ically evaluated T̃c(θ) [Fig. 2(b)] is found to perfectly fit
Eq. (4). The reversal of trends between Ny = 2 and 3
remains as before and is attributed to the interference
and checkerboard effects.

Considering a filling fraction n = 0.6, we found a neg-
ligible dependence of Tc on θ. This is consistent with
a much weaker generation of Néel triplets away from
n = 0.5 corresponding to µ = 0 [41]. Furthermore,
for a direct comparison, we discuss plots analogous to
Figs. 2(a) and (b) for a trilayer comprising ferromagnetic
insulator (FI) instead of AFI in the Supplemental Mate-
rial (SM) [45]. The FI–S–FI trilayer is found to exhibit
a weaker Tc dependence, lack of an abrupt jump to 0
seen in Fig. 2(a), and no reversal of Tc variation between
Ny = 2 and 3. This emphasizes the several unique fea-
tures of our investigated AFI–S–AFI system. Here, we
have considered AFIs with zero net magnetic moments.
In the presence of a finite magnetic moment due to cant-
ing [41], we expect the Tc variation to bear a small con-
tribution reminiscent of the FI–S–FI case investigated in
the SM [45].

Finally, Fig. 3(c) shows the dependence of ∆T̃c,∥ and

∆T̃c,⊥ on Ny obtained by fitting the numerically eval-

uated data to Eq. (4). ∆T̃c,∥, found to be an order of

magnitude larger than ∆T̃c,⊥, exhibits a parity effect
with Ny due to the checkerboard pattern of Néel triplets
[Fig. 1(b)] and the resulting interference effects [Figs. 1(c)
and (d)]. This further validates the argument presented
above that the ∆T̃c,∥ cos θ term stems from the Néel zero-

spin triplets [37, 41]. As ∆T̃c,⊥ stems from the regular
equal-spin triplets generated by the noncollinearity be-
tween n1 and n2 [38–40], it exhibits a simple decay with
Ny without any alternation of its sign.

The results presented above (Fig. 2) show that an in-
finite magnetoresistance [18], resulting from a switching
between the normal resistive and superconducting states
using an applied magnetic field, is achievable in the con-
sidered AFI–S–AFI trilayer by reorienting the Néel vec-
tor of one AFI with respect to the other. Recent ex-
periments already demonstrate manipulation of the Néel
vector in an easy-plane AFI, such as hematite above the
Morin transition [46], using small magnetic fields [47].
Furthermore, a complete suppression of Tc [Fig. 1(a)] en-
ables such a device at arbitrarily low temperatures. An
observation of the parity effect with Ny [Fig. 2(c)] will
additionally provide evidence in favor of these recently

Fig.12 Normalized critical temperature
T̃c(θ) for (a) stronger and (b) weaker
interfacial exchange coupling J . The
variation is reversed when the number of S
monolayers Ny changes from even to odd.

Conclusions
(i) Neel triplet correlations in AF/S/AF lead to spin-valve effect. The results
demonstrate suppression of the valve effect at larger dS and possibility of absolute
valve effect for larger values of heff .
(ii) Presence of impurities suppresses Neel triplets, which leads to disappearing of the
”0− π” spin-valve effect.
(iii) Away from half-filling µS = 0 the difference Tc(π)− Tc(0) oscillates as a function
of dS due to the interference of finite-momentum Neel triplets generated by the S/AF
interfaces.
(iv) For larger dS critical temperature manifests non-monotonic dependence on the
misorientation angle due to appearance of equal-spin correlations and interference
effects.
(v) Angle dependence of AF/S/AF critical temperature shows the parity effect, which
provides a distinct signature of the Neel triplets.
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