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Abstract. We address a learning-based quantum error mitigation method, which utilizes deep neural
network applied at the postprocessing stage, and study its performance in presence of different types of
quantum noises. We concentrate on the simulation of Trotterized dynamics of 2D spin lattice in the regime
of high noise, when expectation values of bounded traceless observables are strongly suppressed. By using
numerical simulations, we demonstrate a dramatic improvement of data quality for both local weight-1
⟨Z⟩ and weight-2 ⟨ZZ⟩ observables for the depolarizing and inhomogeneous Pauli channels. At the same
time, the effect of coherent ZZ crosstalks is not mitigated, so that in practise crosstalks should be at first
converted into incoherent errors by randomized compiling.
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Noisy intermediate-scale quantum (NISQ) devices rep-
resent the current edge of quantum computing technol-
ogy [1]. Particularly, such processors can be useful for
solving evolutionary problems. However, the simulation
of the dynamics of such systems at long times requires
a large number of Trotter decomposition steps of evolu-
tion operator. This leads to the fact that a large num-
ber of quantum gates are required for simulation, which
means that the outcomes from the quantum computer be-
come too noisy. To address these limitations, advanced
quantum error mitigation strategies like probabilistic er-
ror cancellation and zero noise extrapolation have been
developed and are proving critical in enhancing the util-
ity of NISQ machines.

Figure 1: The schematic view of the DNN structure. The
number of input (output) neurons is Kin (Kout). Several
hidden layers can be used. In our illustrative simulations
we used three hidden layers each consisting of 1000 neu-
rons. The sigmoid activation function after both hidden
and output layers is utilized, while ReLu activation func-
tion is used for hidden layers.
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In our earlier work, we proposed a learning-based
method to mitigate quantum errors using deep neural
networks (DNNs) [2]. This method focuses on optimiz-
ing error reduction in quantum circuits, specifically those
employed in Trotterized quantum simulations. The fun-
damental concept involves training a deep neural network
(see Fig. 1) with data from shallower, less noisy circuits,
and then applying this model to deeper, noisier circuits.
In order to get noisy data for training we artificially in-
crease of the quantum circuits depth by incorporation
of fictitious Trotter blocks formally equivalent to iden-
tity gates into the circuit (see Fig. 2). Their role is to
increase noise level due to the hardware imperfections
while preserving the circuit’s general structure and its
relevant features.

The main goal of this study is to thoroughly evaluate
the performance of our neural network-based approach
for quantum error mitigation under various noise condi-
tions [3]. We focus on conducting detailed numerical sim-
ulations to differentiate between distinct types of quan-
tum noises, which is particularly crucial for understand-
ing the complex dynamics in superconducting quantum
devices. Our study specifically investigates the impact of
several noise channels, including depolarizing and inho-
mogeneous Pauli noises, as well as ZZ crosstalk, which is
particularly challenging in fixed-frequency superconduct-
ing qubits. The ultimate goal is to demonstrate marked
improvements in data quality for all these noise channels.
This research aims to establish a robust method that ef-
fectively combines machine learning with quantum error
mitigation techniques to significantly improve the accu-
racy and practicality of NISQ devices.

Model. As a test case, we consider the dynamics of 2D
spin lattice described by the transverse-field Ising model
Hamiltonian

H = −
∑
j

hjXj −
∑
<ij>

JijZiZj , (1)



where hj are local transverse fields and Jij are coupling
constants which are nonzero only for nearest neighbors
and randomly distributed according to the Gaussian dis-
tribution.

Figure 2: Schematic view of the method. (a) - Generation
of ideal or quasi-ideal data using classical computation or
the same quantum computer corresponding toN1 Trotter
layers and different initial conditions. (b) - DNN training
by addingN2−N1 ”empty” Trotter layers to the quantum
circuit and transforming such noisy data towards their
ideal counterparts. (c) - applying DNN to the noisy data
corresponding to N2 Trotter layers.

The dynamics of the system starting from a given ini-
tial state can be simulated digitally using Trotter decom-
position of the evolution operator. The total evolution
time T can be discretized into N time steps δt = T/N .
The evolution operator for each Trotter layer can be writ-
ten in a standard way as a product of two operators given
by

e−iHZZδt =
∏
<ij>

RZiZj
(2Jijδt), (2)

e−iHXδt =
∏
i

RXi
(2hiδt),

where RZiZj and RXi are ZZ and X rotation gates, re-
spectively.

Results. As demonstration, we consider weight-1 ob-
servables, such as individual magnetizations of spins in
z direction, ⟨Zj⟩. We perform simulations for the 2D
square lattice containing n = 9 spins.
In Fig. 3 we show the mean magnetization ⟨Z⟩ =

1/n
∑

j⟨Zj⟩ for a particular realization of disorder as a
function of time for Trotter step numbers N2 = 32 (a),
N2 = 64 (b).
We see a dramatic improvement of the data quality

by the DNN despite of the fact that the raw observ-
ables are strongly suppressed by the noise and for very
large N2 tend to cluster around 0. The quality of error
mitigation for very large N2 becomes limited essentially
by the statistic uncertainties associated with the proba-
bilistic nature of measurement (shot noise). DNN natu-

Figure 3: The dependence of a mean magnetization in z
direction ⟨Z⟩ of 9-spin system on time for Trotter layer
numbers N2 = 32 (a), N2 = 64 (b) starting from the
initial condition |000111000⟩ at h̄ = 2J̄ .

rally amplifies the shot noise, since it also amplifies the
whole signal. However, the shot noise produces no bias,
in contrast to quantum gate errors, which do produce
bias. Note that the shot noise on mitigated curves can
be additionally smoothed by using some other technique.

Conclusion. In this study, we evaluated the effective-
ness of a DNN-based quantum error mitigation method.
Our results showed significant improvements in data
quality for incoherent noises, such as depolarizing and
inhomogeneous Pauli channels. However, coherent errors
due to ZZ crosstalks are not mitigated. We concluded
that such noises should be converted into incoherent er-
rors by randomized compiling before using of our method.
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