Electrodynamic properties of superconductors: fundamentals and experimental approaches

B.Gorshunov

Moscow institute of physics and technology (national research university), Dolgoprudny, Russia

email: <u>bpgorshunov@gmail.com</u>

Abstract

The most prominent features of a superconductor compared to a regular conductor/metal are the infinitesimal direct current (dc, i.e., at zero frequency, v=0) resistivity, $\rho_{dc}=0$, the presence of an energy gap in the density of states, and the Meissner effect. The first two lead to drastic transformations of the spectra of optical conductivity $\sigma_{opt}(v)$ and permittivity $\varepsilon'(v)$ of a material when the temperature is lowered below the superconducting transition temperature T_c . The dc resistivity is represented in the spectrum of optical conductivity by a delta function, $\sigma_{opt}(v)=1/\rho_{dc}=A\delta(0)$; here A is the spectral weight of the delta function, which can be expressed in terms of the plasma frequency of the Cooper pairs superconducting condensate, $v_{pl}^{SC} = \frac{ne^2}{\pi m}$ (n, e and m are concentration, charge and mass, respectively, of the electrons which are involved in the formation of Cooper pairs). The Kramers-Kronig relationships, which are based on the general causality principle, provide the "dielectric image" of this zero-frequency delta function, $\varepsilon'(v) = v^2 + v^2 + v^2$.

 $-\left(\frac{v_{pl}^{SC}}{v}\right)^2$. Measuring the temperature-dependent dielectric function $\varepsilon'(v,T)$ of a superconductor provides with a unique opportunity to determine its fundamental characteristics, and thus to gain insight into the microscopic mechanisms behind the phenomenon. Optical spectroscopy allows to determine another fundamental characteristic of a superconductor, the energy gap Δ in the density of state, which is detected in the optical conductivity spectrum in the form of a sharp feature indicating breaking of the Cooper pairs by the electromagnetic quantum with the energy $hv \ge 2\Delta$ (h is the Planck's constant). A number of other specific electrodynamic properties of conventional low-temperature superconductors, and of high-temperature superconductors will be discussed, and some examples of spectroscopic studies performed at the MIPT Laboratory of terahertz spectroscopy on various superconducting compounds will be shown.