4 inch Gallium Oxide Field-Effect Transistors Array with High-k Ta₂O₅ as Gate Dielectric by Physical Vapor Deposition **Zi Chun Liu**¹, Yuan Xiao Ma^{1,*}, Ye Liang Wang ^{1,*} ¹ Beijing Institute of Technology, Beijing, China *email: yxma@bit.edu.cn; yeliang.wang@bit.edu.cn Field-effect transistors (FETs) with ultra-wide bandgap semiconductor Ga_2O_3 have been fabricated by physical vapor deposition with advantages of low cost, wafer scale, and rapid production. The insulator-like pristine Ga_2O_3 is converted to semiconductor by co-sputtering Sn with post-annealing, which demonstrates a 5.6×10^7 times higher on-state current. Importantly, this Sn-doped Ga_2O_3 sample shows a high breakdown voltage near 500 V. Furthermore, a 4 inch array of Sn-doped Ga_2O_3 FETs with high-k Ta_2O_5 gate dielectric has been fabricated on a silicon substrate, successfully showing a large on-current density of 1.3 mA mm⁻¹, a high I_{ON}/I_{OFF} of 2.5×10^6 , and a low threshold voltage of 3.9 V, which are extracted from the average 350 devices. This work paves a promising way for Ga_2O_3 -based nanoelectronics to serve medium-high voltage with low cost, rapid, and wafer-scale production. (a) The photo of the fabricated 4 inch device array during data measurement. (b) Transfer curves of 350 randomly-measured FETs. The inset in (b) shows the 4 inch device array.