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Chapter 1

GMR, TMR and related
phenomena

Progress in nanofabrication techniques has made it possible
to create artificial structures such as magnetic multilayers and
nanocontacts, the characteristic scale length L of which can be
shorter than the spin diffusion length and the mean free path
and can even be close to the Fermi wavelength λF . In these
cases, novel transport phenomena occur: giant magnetoresis-
tance (GMR), tunnel magnetoresistance (TMR), and ballistic
magnetoresistance (BMR) are typical examples. GMR and
TMR both occur when a change in the relative orientation
of the magnetization in different regions causes a change of
the electrical resistance. GMR occurs in structures containing
ferromagnetic regions separated by nonmagnetic conducting
regions, while for TMR the nonmagnetic regions are insulat-
ing. BMR occurs when the scale of the contact region of two
ferromagnets is close to λF .
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1.1 Spin-Dependent Transport in Fer-

romagnetic Metals

One of the most important requirements for MR in nanoscale
ferromagnets is spin dependence of the electrical resistivity.

Few ferromagnetic materials are composed of a single ele-
ment. The exceptions are the transition metals (TMs), such as
Fe, Co, and Ni, and rare earth metals. This is in marked con-
trast to superconductivity, which appears in many pure metals.
In rare earth metals, electrons responsible for transport and
magnetism can be distinguished. However, this distinction is
not clear in TMs, that is, both s- and d-electrons contribute
to transport and magnetism. The electronic structure of TMs
consists of mainly s- and d-orbitals. The relative position of
the Fermi level EF to the s- and d-states depends on the ma-
terial, i.e., the number of s+d electrons per atom.

Figure 1.1: Adopted from [1]. Schematic DOS of Cr, Fe, Co,
and Cu. + and - indicate majority and minority spin states,
identical to up and down spin, respectively, in uniformly mag-
netized materials.

Fig. 1.1 shows the schematic density of states (DOS) of
the typical TMs Cr, Fe, and Co, and the DOS of Cu. The
electronic states are composed of wide s-bands and narrow d-
bands. The d-part of the DOS is high because the d-states are
almost localized near atoms. The s- and d-states hybridize to
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form complicated electronic states. The electronic structures
for TMs give rise to the characteristic features of both mag-
netism and electrical transport. The spin dependence of the
resistivity is governed by the spin dependence of the electronic
states near the Fermi level, and by spin-dependent impurity
potentials in ferromagnetic alloys.

The simplest formula for the electrical conductivity σ is
given by the Drude formula:

σ =
e2nτ

m
, (1.1)

where e, n, τ and m are the electrical charge, carrier den-
sity, lifetime and effective mass of carrier electrons, respec-
tively. For ferromagnets, the spin dependence of these quan-
tities must be taken into account in the Drude formula, since
the electronic states of ferromagnets are spin polarized due
to the number of spin-up and spin-down electrons not being
compensated. Basically, n, τ and m are all spin dependent.
For transition metals the conductivity is mainly due to the s-
electrons exhibiting a small effective mass. Therefore, the con-
centrations and masses of spin-up and spin-down electrons in
Eq. (1.1) are approximately the same according to the s-band
structure in Fig. 1.1. Most important is the spin dependence
of the lifetime, since it affects electron scattering very strongly.

The lifetime is related to the mean free path l via the re-
lation l = vF τ , where vF is the Fermi velocity. For typical
ferromagnetic metals, l is much shorter that the spin-diffusion
length λs, and therefore the spins of the carrier electrons are
well conserved in the time scale τ . In this case, ↑ and ↓ spin
electrons can be treated independently in evaluating the elec-
trical conductivity, that is, σ =

∑
s

σs, where s =↑, ↓. This

assumption is the Mott’s two-current model, which will be
discussed below. Although Mott’s two-current model explains
the experimental results of electrical resistivity in ferromag-
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netic metals, it is rather difficult to confirm the model directly
by experiment, since σ↑ and σ↓ cannot be separated indepen-
dently from the σ data. However, Fert and Campbell [2] have
approached the problem by measuring the residual resistivity
and temperature dependence for various binary and ternary
alloys and succeeded in deducing the ratio α = σ↑/σ↓ for di-
luted alloys of Fe, Co, and Ni metals. The ratio is referred to
as the α-parameter. α-Parameters for TM impurities in Fe are
presented in Fig. 1.2.

Figure 1.2: Adopted from [1]. Experimental values of α-
parameters for 3d, 4d, and 5d TM impurities in Fe [2].

What is the main reason of the spin dependence of the
scattering time? The spin dependence of τ caused by impu-
rity scattering of electrons in ferromagnetic metals may be
evaluated by using the formula:

τ−1
s =

2π

~
NiV

2
s Ds(EF ) (1.2)

which is given by the Born approximation, where Ni, Vs, and
Ds(EF ) are the impurity density, scattering potential, and
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DOS at the Fermi energy EF , respectively. Here, both Vs
and Ds(EF ) are spin dependent. Eq. (1.2) indicates that the
lifetime becomes short as the scattering potential becomes
large and the number of final states of the scattering pro-
cess increases. Let us consider TM impurities in Fe. Since
D↑(EF ) ∼ D↓(EF ) for ferromagnetic Fe, the spin dependence
of the lifetime is caused mainly by Vs. From the other hand,
the spin dependence of τ can also be caused by Ds(EF ). As an
example, one can consider Co, see Fig. 1.1, where the majority
s-electrons cannot be scattered into d-states, what leads to the
increased mobility and the reduced resistance.

1.2 GMR

Magnetic multilayers are composed of an alternating stack of
thin magnetic and nonmagnetic layers. The thickness of each
layer is a few nanometers. Trilayers, where a nonmagnetic
layer is sandwiched by two magnetic layers, can also be con-
sidered to be multilayers. Some magnetic multilayers show
large MR. When the nonmagnetic layers are metals, the MR
is called giant MR (GMR) and when the nonmagnetic layer in
a trilayer is an insulator, the MR is called tunnel MR (TMR).

Magnetic multilayers have the following two important char-
acteristics:

1. The alignment of the magnetization of the magnetic
layers is easily controlled by an external magnetic field, since
the coupling between the magnetization of the magnetic layers
is weakened by the presence of the nonmagnetic layer between
them.

2. Each layer is thin enough for carrier electrons to feel a
change in the magnetization direction of the magnetic layers
(the spin does not have enough time to relax within a layer).

GMR and TMR depend strongly on the type of magnetic
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and nonmagnetic layers, and their combination.

1.2.1 Experiments on GMR.

The basic structure of magnetic multilayers composed of a
ferromagnetic A metal and a nonmagnetic B metal is shown
in Fig. 1.3. The thickness of each layer is 1 − 10 nm and
the number of layers ranges from 3 (for trilayers) to about
100. Fe, Co, Ni, and their alloys are frequently used for the
ferromagnetic A layers, while nonmagnetic TMs such as Cr
and Ru or noble metals Cu, Ag, and Au are used for the
nonmagnetic B layers.

Figure 1.3: Adopted from [1]. Schematic picture of magnetic
multilayers with ferromagnetic A and nonmagnetic B layers.
d and d’ indicate the layer thickness.

The first observation of antiparallel (AP) coupling between
magnetic layers was reported by Grunberg et al. [3] for Fe/Cr
trilayers. They also observed negative MR, that is, a resistivity
reduction under an external magnetic field. The magnitude of
the MR of Fe/Cr trilayers was observed to be a few percent.
Two years later, Fert’s group [4] reported MR as large as 40%
for Fe/Cr multilayers. This MR was the largest so far observed
for magnetic metal films and was called giant MR (GMR).
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After the discovery of GMR, many experimental works have
been performed.

Figure 1.4: Adopted from [1]. Resistivity change due to an
external magnetic field for Fe/Cr multilayers [4].

Fig. 1.4 shows the experimental results for Fe/Cr multilay-
ers [4]. The resistivity decreases with increasing magnetic field
due to a change in the alignment of the magnetization of the
Fe layers. The resistivity is high when the alignment is AP
and is low when the alignment is parallel (P). The magnitude
of the MR is expressed by the so-called MR ratio, defined as:

MR =
ρAP − ρP
ρAP

(1.3)

or

MR =
ρAP − ρP

ρP
. (1.4)

Tables 1.5 show MR ratios observed for several combina-
tions of magnetic and nonmagnetic metals. We see that the
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Figure 1.5: MR ratios.

MR ratio depends on the combination of metals. Thus, an is-
sue to be clarified is the material dependence of GMR and the
relation between the MR ratio and the electronic structures of
the constituent metals of the magnetic multilayers.

GMR appears when the AP alignment of the magnetiza-
tion is changed to P alignment by an external magnetic field.
Therefore, AP alignment of the magnetization is a prerequisite
for GMR. A detailed study of the alignment of magnetization
has found that the coupling of magnetization in magnetic lay-
ers changes as a function of the nonmagnetic layer thickness.



1.2 GMR 9

The coupling between magnetic layers is called interlayer ex-
change coupling. Fig. 1.6 shows an experimentally determined
oscillation of coupling energy as a function of layer thickness
[5].

Figure 1.6: Oscillation of coupling energy as a function of
nonmagnetic layer thickness in NiCo/Ru/ NiCo multilayers
[5].

The period of the oscillation is rather long and the mag-
nitude decays as the thickness of the nonmagnetic layer in-
creases. The effect has the same origin as the so-called Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between magnetic
impurities in metals. That is, one of the magnetic layers po-
larizes the conducting electrons in the nonmagnetic spacer,
and the polarization of the conductivity electrons interacts by
the exchange mechanism with the magnetization of the other
layer. The decay of the magnitude for multilayers is propor-
tional to L2, where L is the nonmagnetic layer thickness, in
contrast to r3 for the RKKY interaction.

Multilayers with thicker nonmagnetic layers have nearly
zero exchange coupling; however, the magnetization direction
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of the magnetic layers may be controlled by using the difference
in the coercive force between magnetic layers of different met-
als. An example is Co/Cu/NiFe multilayers shown in Fig. 1.7,
in which NiFe is a soft magnet with a magnetization easily
changed by a weak external magnetic field.

Figure 1.7: Adopted from [1]. Experimental results of GMR
for noncoupling Co/Cu/NiFe magnetic multilayers. [6].

Technological applications of GMR, for example, sensors,
require a sharp response of the magnetization direction to the
external magnetic field within a few Oersteds. To achieve
such sensitivity, a trilayer structure with an attached antifer-
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romagnet has been designed. The magnetization of the mag-
netic layer adjacent to the antiferromagnetic layer is pinned
by the antiferromagnetism and only the other magnetic layer
responds to the external magnetic field. This kind of trilayer
is called a spin valve. PtMn and FeMn are typical antiferro-
magnets used in spin valves.

The experiments presented so far have used a geometry
with the current flowing parallel to the layer planes. GMR
with this geometry is called current-in-plane (CIP). GMR with
a geometry with current flowing perpendicular to the planes
is called CPP.

Figure 1.8: Temperature dependence of CPP-GMR for a mi-
crofabricated sample of Fe/Cr multilayers is compared with
that of CIP-GMR. Adopted from [1].

The temperature dependence of CPP-GMR for a microfab-
ricated sample of Fe/Cr multilayers is compared with that of
CIP-GMR in Fig. 1.8. We see that CPP-GMR is much larger
than CIP-GMR, which is a general trend for GMR. It will be
explained below. The disadvantage of the CPP geometry is
that the resistivity of a sample is too small to be detected,
since the layer thickness is usually less than micrometers and
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the resistivity of the leads is overwhelming. Therefore, one
needs to use special methods to detect the CPP-GMR, such
as utilizing superconducting leads or microfabricating the sam-
ple.

1.2.2 Phenomenological explanation of GMR.

𝑉1 𝑉2𝐹

a)

b)

𝑉1 𝑉2

a)

b)

𝑁 𝐹2𝐹1

𝑉1 𝑉1 𝑉2𝑉2
𝑉𝑁↑

𝑉𝑁↓
𝐺1↓ 𝐺2↓𝐺↓

𝐺1↑ 𝐺2↑𝐺↑

Figure 1.9: (a) A ferromagnetic metal coupling two particle
reservoirs with potentials V1 and V2; and (b) circuit model
of transport through a single ferromagnetic layer. The con-
ductance of spin-up electrons is G↑ and the conductance of
spin-down electrons is G↓.

In the framework of the two-channel resistor model a fer-
romagnet between two leads is described by the equivalent
scheme shown in Fig. 1.9(b). The electric current through the
ferromagnet can be found as a sum of two spin channels

j = j↑ + j↓ = (G↑ +G↓)(V1 − V2) = G(V1 − V2), (1.5)

while the spin current is

js = j↑ − j↓ = Pj, (1.6)



1.2 GMR 13

where we have introduced the total conductance of the junc-
tion G = G↑ + G↓ and the conductance spin polarization
P = (G↑ − G↓)/(G↑ + G↓). Here and below we will denote
by PA = (A↑ − A↓)/(A↑ + A↓) the degree of spin polarization
of a general spin-dependent quantity A.

𝑉1 𝑉2𝐹

a)

b)

𝑉1 𝑉2

a)

b)

𝑁 𝐹2𝐹1

𝑉1 𝑉1 𝑉2𝑉2
𝑉𝑁↑

𝑉𝑁↓
𝐺1↓ 𝐺2↓𝐺↓

𝐺1↑ 𝐺2↑𝐺↑

Figure 1.10: (a) A ferromagnetic spin-valve; and (b) circuit
model of transport through two ferromagnets in series.

Now let us consider in the framework of the two-resistor
model a spin valve. Sketch of the system and the equivalent
scheme are presented in Fig. 1.10. In contrast to the bulk of
a ferromagnet the spin accumulation Vs = VN,↑ − VN,↓ in the
normal interlayer between two ferromagnets can be nonzero,
where VN,↑(↓) are the electrochemocal potentials of the normal
interlayer for spin-up and spin-down channels, respectively.
From the equivalent scheme shown in Fig. 1.10(b) it is easy to
find that

VN↑,↓ =
G2↑,↓V2 +G1↑,↓V1

G2↑,↓ +G1↑,↓
. (1.7)

Expressing Gi↑,↓ via the total conductance of the corre-
sponding junction Gi and the conductance spin polarization
Pi as Gi↑,↓ = G1(1± Pi)/2 one can obtain the spin accumula-
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tion and the spin current in the interlayer from Eq. (1.7):

Vs =
2(V1 − V2)G1G2(P1 − P2)

[G1(1− P1) +G2(1− P2)][G1(1 + P1) +G2(1 + P2)]
,

(1.8)

js =
G1G2[G1(1− P 2

1 )P2 +G2(1− P 2
2 )P1](V1 − V2)

[G1(1− P1) +G2(1− P2)][G1(1 + P1) +G2(1 + P2)]
.

(1.9)

Let us consider a symmetric spin-valve with G1 = G2 in
parallel (P) P1 = P2 and antiparallel (AP) P1 = −P2 configu-
rations:

In the P-configuration:

Vs = 0 (1.10)

js =
GP

2
(V1 − V2), (1.11)

while in the AP-configuration:

Vs = (V1 − V2)P (1.12)

js = 0. (1.13)

Now let us find the magnetoresistance of the spin valve. It
can be defined as

MR =
RAP −RP

RAP

. (1.14)

The resistance of the general spin-valve can be found as

R−1 =
j↑ + j↓
V1 − V2

=

G1G2[G1(1− P 2
1 ) +G2(1− P 2

2 )]

[G1(1− P1) +G2(1− P2)][G1(1 + P1) +G2(1 + P2)]
. (1.15)
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R−1
P =

G

2
, (1.16)

R−1
AP =

G(1− P 2)

2
, (1.17)

MR = P 2. (1.18)

It is seen that the resistance of the AP state is higher in the
framework of our model. This is because the applied voltage
is used in part for the kinetic energy cost associated to the
accumulation of spins, and this accumulation is maximal for
the AP-configuration. The described model is oversimplified
and does not take into account the finite resistance of the
normal interlayer and the spin-flip scattering. Now we consider
the influence of the finite resistance of the interlayer, and in
the next section we are going to develop a theory, which is able
to properly account for the spin-flip scattering.

𝑉1

𝑉𝑁1↑

𝑉𝑁1↓
𝐺1↓ 𝐺𝑁

𝐺1↑ 𝐺𝑁 𝑉2
𝐺2↑

𝐺2↓

𝑉𝑁2↑

𝑉𝑁2↓

Figure 1.11: Circuit model of transport through two ferromag-
nets in series taking into account the finite resistance of the
normal interlayer.

The equivalent scheme of the spin-valve taking into account
the interlayer resistance is shown in Fig. 1.11. Basing on this
scheme it is easy to calculate that for the symmetric spin-valve

MR =
16G2

NP
2[

G(1− P 2) + 4GN

]2 . (1.19)
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It is seen that the finite resistance of the spin-valve al-
ways reduces magnetoresistance MRGN < MRGN→∞. In case
GN � G, which is relevant for semiconductor interlayers, the
magnetoresistance is greatly reduced MR ∼ (GN/G)2, what
is called by ”conductivity mismatch problem”.

It is important to realize that the parameters G↑,↓ are ef-
fective parameters. For typical GMR multilayers they cannot
be considered as bulk conductivities of the ferromagnets. The
bulk conductivity of the ferromagnets is not relevant to to
GMR multilayers because characterictic lengths of the layers
are typically smaller that the mean free path.

There are two possible sources of spin-dependent resistivity
in multilayers from the viewpoint of electronic states:

1. Spin-dependent resistivity caused by interfacial rough-
ness. As described, the origin of the spin-dependent resistivity
in metals and alloys is the spin dependence of the scattering
potentials caused by roughness. The roughness due to random
arrangement of atoms also exists in multilayers. In molecular
beam epitaxy (MBE) and sputtering fabrication methods, it
is impossible to avoid intermixing of atoms at interfaces. The
intermixing of magnetic A atoms and nonmagnetic B atoms
at an A/B interface gives rise to spin-dependent random po-
tentials near the interface. The situation is similar to that in
ferromagnetic alloys.

2. Band matching/mismatching at interfaces. The essence
of the origin of electrical resistivity is the absence of trans-
lational invariance along the current direction, because the
momentum of electrons need not be conserved in this case.
When the interfaces are clean, translational invariance parallel
to the layer planes is satisfied and there is no electrical resis-
tivity. Even in this case, however, there is electrical resistivity
perpendicular to the layer planes, since there is no transla-
tional invariance along this direction for thin multilayers. In
this case, the difference between the electronic structure of the



1.3 TMR. 17

constituent metals of the multilayers acts as a source of spin-
dependent electrical resistivity and gives rise to CPP-GMR.
In Co/Cu multilayers, for example, band matching between
↑ spin states is much better than between ↓ spin states, as
schematically shown in Fig. 1.1. Therefore, ρ↑ < ρ↓. In Fe/Cr
multilayers, the opposite relation, ρ↑ > ρ↓ is realized.

For current flowing perpendicular to the planes, both are
crucial for the spin dependence of the resistivity, while the
spin-dependent random potential is likely to be more greatly
responsible for GMR for current flowing parallel to the planes.

1.3 TMR.

TMR in ferromagnetic tunnel junctions (FTJs) was reported
prior to the discovery of GMR (1975,1982). The observed MR
ratios, however, were rather small at the time. A large TMR at
room temperature was reported for Fe/Al-O/Fe in 1995, and it
has attracted considerable attention due to its wide potential
application in sensors and memory storage devices in the near
future.

FTJs are made of a thin (about 1-nm thick) nonmagnetic
insulator sandwiched between two ferromagnetic electrodes.
A schematic diagram of such a junction is shown in Fig. 1.12.
The ferromagnetic metals used are predominantly Fe, Co, and
their alloys, while amorphous Al2O3 is one of the most stable
materials for the insulating barrier. Recently, a single-crystal
MgO layer has been used as the barrier in order to generate
high TMR ratios.

Fig. 1.13 shows the experimental results for the resistance
in an Fe/Al-O/Fe tunnel junction as a function of the external
magnetic field. The resistance is high when the magnetiza-
tion of the two ferromagnetic electrodes is AP, and it is low
when the magnetization is parallel. One of the characteris-
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Figure 1.12: Adopted from [1]. A schematic representation of
the FTJ.

tics of TMR is that the external magnetic field required to
rotate the magnetization is sufficiently low. This is because
there is almost no coupling between the magnetizations of the
two electrodes as a result of the insulating barrier inserted be-
tween them. The AP and P alignments of the magnetization
are realized by using a small difference in the coercive force
between the two ferromagnets. The current flows perpendic-
ular to the layer planes, which is similar to CPP-GMR. The
resistance in the FTJs is much higher than that in CPP-GMR.
This makes it possible to measure the junction resistance with-
out microfabricating the samples. This could be considered to
be another characteristic of TMR.

Now we discuss theoretical explanations of TMR. Let us
denote the left and right electrodes as L and R, respectively.
When the tunneling process is independent of the wave vec-
tors of tunneling electrons, the tunnel conductance Γ is pro-
portional to the product of the densities of states of the L and
R electrodes, and is given by

Γ ∝
∑
s

DLs(EF )DRs(EF ), (1.20)

where s denotes the spin. The proportionality constant in-
cludes the transmission coefficient of electrons through the in-
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Figure 1.13: Experimental results for the resistance in an
Fe/Al-O/ Fe tunnel junction [8].

sulating barrier. By using this expression, the conductance for
P magnetization alignment is given by

ΓP ∝ DL+(EF )DR+(EF ) +DL−(EF )DR−(EF ), (1.21)

and that for AP magnetization alignment is given by

ΓAP ∝ DL+(EF )DR−(EF ) +DL−(EF )DR+(EF ). (1.22)

Since the resistivity ρP (AP ) corresponds to Γ−1
P (AP ), the MR

ratio is given by:

MR =
Γ−1
AP − Γ−1

P

Γ−1
AP

=
2PLPR

1 + PLPR
, (1.23)

where PL(R) is the spin polarization of L(R) electrodes and is
defined by:

PL(R) =
DL(R)+ −DL(R)−

DL(R)+ +DL(R)−
. (1.24)
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Although the transmission coefficient governs the magni-
tude of the tunnel conductance, it does not appear in the ex-
pression for the MR ratio. An intuitive picture of the tun-
neling process explained above is shown in Fig. 1.14, where
in P alignment, majority and minority spin electrons in the
L electrode tunnel through the barrier into the majority and
minority spin states in the R electrode, respectively. In AP
alignment, however, the majority and minority spin electrons
in L electrode tunnel into the minority and majority spin states
in R electrode, respectively.

Figure 1.14: Adopted from [1]. A schematic representation to
show the tunneling process in FTJs for P and AP alignments.

Eq. (1.23) indicates that the spin polarization of the elec-
trodes govern the MR ratio. The spin polarization has been
experimentally determined by using junctions of ferromag-
net/Al/superconductor, or by analyzing the tunneling spec-
trum obtained using point contacts. Measured values of the
spin polarization are shown in Table 1.15. Using these values,
the experimentally measured MR ratios are explained rather
well. For example, the MR ratio measured for Fe/Al-O/Fe
junctions is about 0.3 and this value is close to the theoret-
ical value calculated by using the experimental value of P
for Fe. However, the MR ratio observed for a single crystal
Fe/MgO/Fe junction is 0.7-0.8, which cannot be explained in
terms of the spin polarization of Fe. It is also difficult to
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explain the spin polarization P by using a first-principles cal-
culation. The ratios of P deduced from the height of the DOS
at the Fermi energy are inconsistent with experimentally mea-
sured ones, for example, theoretical values for P are negative
for Co and Ni, while experimental ones are positive. Bulk
Fe has a positive value of P, while surface Fe has a negative
value. In order to explain TMR, one should study the spin
polarization of the tunnel conductance itself.

Figure 1.15: Adopted from [1]. Spin polarizations observed in
tunnel junctions and point contacts for various metals.

When the DOS of either a ↑ or ↓ spin state is zero at
the Fermi level, and one of two spin states is metallic and
the other is insulating, the metals are referred to as halfmet-
als. The spin polarization P of these half-metals is 100%, and
therefore halfmetals have potential applicability as magnetore-
sistive devices. Many oxides, including CrO2, Fe3O4, and
perovskite LaSrMnO3, have been shown to be half-metallic
by using first-principles band calculations. The first theoreti-
cal prediction for half-metallicity was done for Heusler alloys,
which contain TM elements. In experiments in which point
contacts and tunnel junctions were used to measure spin po-
larization, lower values than 100% were obtained for P (e.g.,
90% for CrO2, 70− 85% for LaSrMnO3, and 60% for Heusler
alloys). Recently, relatively high MR ratios have been observed
in FTJs with Heusler alloys, suggesting that the value of P is
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about 86%.

1.4 BMR.

Garcia et al. [9] have measured the MR effect for Ni point
contacts, and reported that the MR ratio becomes large when
the conductance approaches 0. The maximum MR ratio was
280%. The results are shown in Fig. 1.16. The MR effect
thus observed was termed ballistic magnetoresistance (BMR).
The interpretation of BMR is connected to the phenomenon
of conductance quantization in metals.

Figure 1.16: Experimental results of conductance change as a
function of quantized conductance in point contacts [9].

When a current flows in a region that has a length scale
shorter than the mean free path, the conductance becomes
quantized. The quantization of the conductance was discov-
ered by van Wees et al. in a two-dimensional electron gas
(2DEG). They controlled the width of a channel in which elec-
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trons flowed by applying a gate voltage to 2DEG, and observed
that the conductance changed in a stepwise manner, in steps
of 2e2/h. This phenomenon of quantized conductance may be
understood as follows. Constricted regions, in which a cur-
rent flows, may be considered to be pseudo-one-dimensional.
The electronic state of such constricted regions is quantized
perpendicular to the current flow. The quantization of the
electronic state is characterized by the Fermi wavelength λF .
When the width of the constricted region is close to λF , only
one state is available for electrons, and therefore two electrons
(having up and down spins) may contribute to a current, giv-
ing rise to a conductance of Γ0 = 2e2/h. Indeed, the current
of a one-dimensional chain subject to a voltage is given as:

I = 2e

EF+eV∫
EF

D(E)v(E)dE, (1.25)

where using the relations for free electrons the DOS D(E) =
(1/2π~)

√
m/2E and the velocity of electrons v(E) = p/m.

Therefore, the conductance is given as:

Γ =
2e2

h
. (1.26)

The factor 2 indicates spin degeneracy. Because only two prop-
agating states exist in a one-dimensional chain, that is, left go-
ing and right going waves, there is only one conducting path
(called a channel) where electrons flow for each spin. The
channel gives a conductance of Γ0 = 2e2/h, which is called
the quantum conductance. This value is 3.43107 cm/s and is
equal to (26kΩ)−1.

If the width of the sample is increased, the conductance in-
creases stepwise in steps of (2e2/h)n. The length scale of the
constricted region is usually smaller than the mean free path,
and the effect of scattering may be neglected. Such transport
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is referred to as ballistic transport. Conductance quantization
was first observed in semiconductors. Conductance quantiza-
tion can be easily observed in semiconductors since λF is sev-
eral 10 nm. By contrast, λF in metals is 1 nm, which makes
the observation of conductance quantization difficult in con-
ventional metals. To realize ballistic transport in metals, the
constricted region should be less than 1 nm. Potential meth-
ods for achieving this include the break-junction method, in
which a narrow wire is slowly bent to produce a small link just
before breakdown of the wire, and the point-contact method
in which the sharp tip of metallic wire is contacted onto the
metals surface.

The factor of 2 that appears in the quantized conductance
Γ0 indicates spin degeneracy. Since spin degeneracy is lifted
in ferromagnets, conductance quantization might be expected
to be given by Γ0/2. In order to confirm this expectation,
many experiments have been performed with break junctions
and point contacts made of ferromagnets. Fig. 1.17 shows
the average conductance observed for many break junctions
made from Ni wires [10]. The results show that the quantized
conductance is Γ0 when an external magnetic field H of less
than 50 Oe is applied, but it is Γ0/2 when H > 50Oe.

So far a complete understanding of BMR has not been
achieved. However, there are suggestions that the conduc-
tance quantization is of relevance for this phenomenon. The
Imamura et al. [11] have studied the conductance quantization
for nanocontacts of two ferromagnets, and showed that the pa-
rameter region at which a conductance quantization of Γ0/2
appears depends on the alignment of the magnetization of the
two ferromagnets. A difference in the conductance quantiza-
tion between the P and AP alignments of the magnetization
may give rise to a large MR ratio. There are also other inter-
pretations of the BMR. One of them is to attribute the large
MR to the vanishing of the domain walls at the ferromagnetic
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Figure 1.17: Experimental results of conductance quantiza-
tion performed for many break junctions of Ni wires with and
without an external magnetic field [10].

constriction.
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1.5 Other magnetoresistive phenom-

ena.

1.5.1 Normal magnetoresistance.

The general situation is characterized by increase of resistance
when a magnetic field is applied. It is called positive or nor-
mal magnetoresistance. It occurs in non-magnetic metals as
a consequence of the Lorenz force. The external field forces
the electrons on spiral trajectories. Thus, the effective mean
free path between two collisions is reduced which leads to an
increase of the resistance.

Below the Curie temperature ferromagnetic transition met-
als exhibit a reduced resistance compared to non-magnetic
transition metals like Pd, see Fig. 1.18.

Figure 1.18: Adopted from [12]. Resistance as a function of
temperature for Ni and Pd. The curves are normalized with
respect to the critical temperature of Ni. Data taken from [13].

It is called negative magnetoresistance. As it was men-
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tioned before, for transition metals the conductivity is mainly
determined by s-electrons with small effective mass. The resis-
tance can be explained by scattering of the s-electrons into the
empty states of the d-bands near the Fermi level. The DOS for
Ni is similar to the DOS of Co, shown in Fig. 1.1. Therefore,
the majority s-electrons cannot scatter into the corresponding
d-states, what leads to the increased mobility and reduced re-
sistance. The DOS of Pd is close the DOS of Cr, that is, there
are a lot of empty d-states for electrons to scatter at the Fermi
level and, therefore, the resistance for Pd is high.

1.5.2 Anisotropic magnetoresistance.

The effect of anisotropic magnetoresistance (AMR) is induced
by current and occurs in ferromagnetic metals like Fe, Ni, Co
upon application of an external magnetic field. The physical
origin of the AMR is a spin-orbit coupling on 3-d orbitals. In
the presence of the spin-orbit coupling ∆Eso ∼ LS the orbital
angular momentum on the orbitals tends to align collinear with
the magnetization (which is determined mainly by the spin of
d electronic shell). In this configuration the cross section of s-
electrons scattering into the d-orbital is increased, if they flow
along the magnetization (I||M ) and is decreased if they flow
perpendicular to the magnetization (I ⊥ M) see Fig. 1.19.
The magnetization direction is typically determined by the
direction of the applied field.

The magnetic field dependence of the AMR is presented in
Fig. 1.20. There is no difference between resistances at zero
field. Upon application of the magnetic field the difference be-
tween the resistance for current parallel to the magnetization
R‖ and the resistance for current perpendicular to the mag-
netization R⊥ becomes immediately apparent. R⊥ decreases
while R‖ increases. With increasing the magnitude of the ap-
plied field the difference between resistances rapidly reaches a
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Figure 1.19: Adopted from [12]. Origin of anisotropic magne-
toresistance.

Figure 1.20: Adopted from [12]. Resistance as a function of
an external magnetic field.

maximum at Hs.

The angle dependence of the resistance for an arbitrary
mutual orientation of the magnetization and the current is

R(θ) = R⊥ + (R‖ −R⊥) cos2 θ, (1.27)

where θ is the angle between the directions of the current and
the magnetization.
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1.6 Applications.

1.6.1 Hard disk drive magnetic read head.

Magnetic recording read heads have come a long way since
the introduction of magnetic disk drive technology by IBM in
1957. Since then, recording densities increased from 2kBit/in2

to about 750GBit/in2 in the year 2011. Thus, over the years,
magnetic recording head technology has evolved from bulk
inductive heads with wire-wound coils in the early years of
magnetic recording to lithographically defined thin film in-
ductive heads in 1979 to anisotropic magnetoresistance (AMR)
read heads in 1991 to current-in-plane giant magnetoresistance
(CIP-GMR) read heads in 1996 and most recently to tunnel
magnetoresistance (TMR) read heads in 2006. With the evo-
lution of the recording technology, the areal recording density
has increased dramatically.

Figure 1.21: Adopted from [14]. Schematic view of a TMR
magnetic read head.

Generally, the TMR effect follows the simple geometrical
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relationship

TMR =
RAP −RP

RAP

cos(M1,M2). (1.28)

The TMR varies with the cosine of the angles between the two
magnetizations. In a TMR structure such as read head or an
MRAM cell, these layers are generally referred to as the free
and reference layers. However, unlike in an MRAM cell where
full reversal of the free layer magnetization from parallel to an-
tiparallel alignment with respect to the reference layer and a
finite switching field is desired to maximize TMR and stabilize
the bit, a read sensor is a linear analog device, and thus only
small rotations of the free layer magnetization are utilized.
Schematic view of a TMR read-sensor is shown in Fig. 1.21.
In order to linearize the response of a TMR read sensor, the
free and reference layer magnetizations are prepared perpen-
dicular to each other in the quiescent state in which no field
is applied. A rotation of the free layer magnetization will lead
to the variation of the angle between the magnetization direc-
tions of the reference and free layers, which is detectable as
the change in electrical resistance.

1.6.2 MRAM.

The ideal memory, a fast and dense nonvolatile memory with
unlimited endurance, does not exist. Consequently, most sys-
tems use a combination of working memories such as SRAM
and DRAM and storage memories such as NAND Flash and
HDD. The working memories have fast read/write access speed
and unlimited endurance but do not have nonvolatility. The
storage memories have nonvolatility and density but do not
have fast read/write access speed. They work cooperatively
with each other to attain both fast accessibility and nonvolatil-
ity of data. However, there are drawbacks. When such a sys-
tem is turned on, data, which is located in storages should be
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copied to the working memories to set up memory systems for
usage. The setup is called booting and it takes about a minute
in the case of personal computers. When such a system is in
use, the working memories consume a lot of energy to keep
those data because SRAM leaks current and DRAM needs re-
fresh operation. The battery power consumption is a major
problem for mobile systems such as cellular phones.

Fast nonvolatile memories with unlimited endurance have
a potential to solve these problems. MRAM is the only non-
volatile memory that has relatively fast read/write accessi-
bility and unlimited endurance. Future memory hierarchy is
expected as in Fig. 1.22.

Figure 1.22: Adopted from [14]. Memory storage hierarchy
used in systems. Since working memories are nonvolatile and
storages are slow, a combination of working memories and stor-
age memories are used. MRAM has a potential to replace the
working memories.

However, an innovation was needed. The commercialized
MRAM is not as fast as SRAM, not as dense as DRAM.
Much work has been done on MTJ materials and MRAMs. In
particular, spin transfer torque (STT)-writing on MTJs with
perpendicular magnetization (simply expressed as P-MTJs)
solves most of the problems. As a result, it is thought that
we are very close to solving the above-mentioned drawbacks
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of the present SRAM, DRAM/NAND, and HDD memory hi-
erarchy by designing a normally-off memory hierarchy which
uses MRAMs.

MRAM is defined as a memory which uses magnetoresis-
tance effect for reading principle regardless of writing prin-
ciples. There are AMR (Anisotropic Magneto- Resistance),
GMR (Giant MagnetoResistance), and TMR (Tunnel Mag-
netoResistance) for magnetoresistance effect. Commercialized
MRAM has used TMR. Elements which have TMR are called
MTJs (Magnetic Tunnel Junctions). MRAM, which uses STT
writing as a writing principle, is called STT-MRAM.

Figure 1.23: Adopted from [14]. Arrays with MTJs as storage
elements.

Fig. 1.23 shows a field writing MRAM and the schematic
drawing of its array. Digital data is stored in the MTJ, as mag-
netization directions of a storage layer, rightward or leftward
in case of in-plane MTJ, and upward or downward in case of
perpendicular MTJ. MRAM has nonvolatility, relatively high
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read and write speed, and unlimited endurance. Especially,
unlimited endurance is the merit which no other nonvolatile
memories have. Unlimited endurance comes from the magne-
tization switching mechanism which is free from atomic relo-
cation.
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Chapter 2

Spin accumulation,
injection and detection

2.1 Spin current and accumulation

In metallic ferromagnets, the differences between electronic
bands and scattering cross-sections of impurities for majority
and minority spins at the Fermi energy cause spin-dependent
mobilities. In the presence of applied electric fields and not
too strong spin-flip scattering processes, a two-channel resis-
tor model is applicable, according to which currents of two
different species flow in parallel. The difference between spin-
up and spin-down electric currents is called a spin-current.

In general the spin current is a tensor in the direct product
of the coordinate and spin spaces

ĵs(r, t) =
∑
i

vi(r, t)⊗ si(r, t) + spin waves (2.1)

The summation is over all the electrons, vi is a velocity of
electron i, it is a vector in the coordinate space, and s is a
spin of electron i, it is a vector in spin space. The last term in
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Eq. (2.1) expresses the contribution to the spin current carried
by spin waves. The definition of the spin current as a difference
between spin-up and spin-down currents means the projection
of the spin current in the spin space onto the direction of the
magnetization. Therefore, this projection is a vector in the
coordinate space.

An imbalance between the electrochemical potentials is
called spin-accumulation, which is a vector. It is parallel to
the magnetization if the system is described by the only mag-
netization direction. If the magnetization of the system is
inhomogeneous, the situation can be more complicated. Spin
accumulation is a non-equilibrium phenomenon, but its life-
time is usually much longer than all other relaxation time
scales. Spin-flip scattering by spin-orbit interaction and mag-
netic impurities and disorder destroys a non-equilibrium spin-
accumulation. In the bulk of metallic ferromagnets the spin
accumulation vanishes beyond a spin diffusion length λsF , al-
though spin-currents persist under the applied electric field
js = ~

2e
(j↑ − j↓) = ~

2e
(σ↑ − σ↓)E.

2.2 Spin injection across a ferromag-

net/metal interface.

Let us consider a ferromagnet/paramagnet heterostructure.
We will assume that the up-spin electrons are the majority
in the ferromagnet. Consequently, the up-spin electrons will
be the major contributors to any current injected by the fer-
romagnet. As a result, there will be a surplus of up-spin
electrons in the paramagnet near the interface with the fer-
romagnet. This will cause spin accumulation in the param-
agnet near the interface and an associated magnetic moment
per unit volume. Under steady-state condition, the spin accu-
mulation cannot extend into the paramagnet indefinitely since
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some of the up-spin electrons will eventually be converted into
down-spin electrons as a result of spin-flip scattering events.
In fact, far into the bulk of the paramagnet, the population
of up-spin and down-spin electrons should be the same; there-
fore, we expect the spin accumulation to decay with distance
as we move away from the interface.

We consider a ferromagnet/normal metal interface in the
plane x = 0 and assume that the system is homogeneous in
the y- and z- directions. The ferromagnet fills the half-space
(x < 0) and the normal metal is located in the half-space
(x > 0) and the electron current is assumed to flow from left
to right.

Figure 2.1: Electrochemical potentials for spin up and spin
down electrons at the ferromagnet/paramagnet interface. The
dashed line is the weighted chemical potential µ = (µ↑+µ↓)/2.
Adopted from [15].

We assume that the spin relaxation rate is smaller than the
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spin-independent elastic scattering rate and the thermalization
rate. In this case the distribution of spin-up and spin-down
electrons can be described by the Fermi-distribution functions
with spatially dependent spin-up and spin-down chemical po-
tentials, which can be different from each other near the inter-
face. In a steady state the total current j does not depend on
x due to the current continuity.

At a distance far from the interface (exceeding the spin
accumulation length in either material), the two electrochemi-
cal potentials µ↑ and µ↓ will converge toward each other since
the up-spin and down-spin populations should be near their
equilibrium values.

Furthermore, Pσ is expected to change abruptly at the in-
terface due to the difference in conductivities of the two ma-
terials, but Pj must be continuous in the absence of spin-flip
scattering mechanisms at x = 0. Consequently, in regions that
are a few diffusion lengths away from the interface, dPj/dx 6= 0
and µ↑ 6= µ↓. This electrochemical potential difference is the
driving force for the spin current conversion across the inter-
face.

Further our goal is to derive the diffusion equation describ-
ing the behavior of the spin imbalance µs = µ↑ − µ↓. The
electric current in each of the spin subbands σ =↑, ↓ in the
framework of the linear response theory in the presence of the
electric field and the electron concentration gradient can be
expressed as

jσ = σσE + eDσ∇nσ, (2.2)

the concentration in the framework of the linear response the-
ory

nσ(x) ≈ n0σ +Nσ(eϕ+ eµσ), (2.3)

where Nσ is the density of states, which is assumed to be
approximately energy-independent in metals in the vicinity if
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the Fermi level. Here and below we assume e > 0. Taking into
account that σσ = e2NσDσ one can obtain from Eq. (2.3)

µσ =
eδnσDσ

σσ
− ϕ (2.4)

Comparing Eq. (2.2) and Eq. (2.4) we find that

jσ = σσ∇µσ. (2.5)

In the steady state the continuity equation takes the form

∇jσ = e
(δnσ
τσσ̄
− δnσ̄
τσ̄σ

)
, (2.6)

where τσσ̄ - is the average time for flipping spin σ to σ̄. From
the detailed balance we obtain

N↑
τ↑↓

=
N↓
τ↓↑

. (2.7)

substituting δnσ = Nσe(ϕ+µσ) into Eq. (2.6) and taking into
account the detailed balance Eq. (2.7) one can obtain:

∇jσ = e2 N↑N↓
N↑ +N↓

µσ − µσ̄
τs

, (2.8)

where τs = τ↑↓τ↓↑/(τ↑↓ + τ↓↑).

From Eqs. (2.5) and (2.8) we obtain the following equation
for the spin imbalance µs = µ↑ − µ↓:

∇2µs = µs/L
2
s. (2.9)

The effective spin imbalance decay length Ls =
√
D̄τs, and

D̄ = (D↑σ↓ +D↓σ↑)/σ, where (σ = σ↑ + σ↓).

The total electric current can also be written as

j = j↑ + j↓ = σ(∇µ+
1

2
Pσ∇µs), (2.10)
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and, consequently the gradient of the averaged electrochemical
potential is

∇µ =
j

σ
− Pσ

2
∇µs (2.11)

In order to find the electrochemical potentials µ↑,↓ we are to
solve Eqs. (2.9) and (2.11) with the appropriate boundary con-
ditions at the F/N interface x = 0.

If there is no spin flip at the interface then each of the
currents jσ conserves separately, therefore we can write

Pj(−0) = Pj(+0) = PI . (2.12)

The quantity PI is the extremely important characteristics
- the measure of the spin injection efficiency through the in-
terface (it is called ”spin injection efficiency”). If PI = 1 - the
current through the interface is fully spin polarized and the
spin injection efficiency is absolute, and PI = 0 corresponds to
the completely unpolarized current.

The given subband current jσ at the interface is connected
to the jump of the chemical potential as follows:

jσ = Σσ(µσ,N(+0)− µσ,F (−0)), (2.13)

where Σσ is the conductance of the interface for spin σ.

Making use of Eqs. (2.12) and (2.13) the interface jumps of
the spin imbalance and the averaged electrochemical potential
can be expressed as

µs,N(+0)− µs,F (−0) =
rcj

2

(
PI − PΣ

)
, (2.14)

µN(+0)− µF (−0) =
jrc
4

(
1− PIPΣ

)
(2.15)

where rc = (Σ↑ + Σ↓)/Σ↑Σ↓ and PΣ = (Σ↑ − Σ↓)/(Σ↑ + Σ↓).
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Solving Eq. (2.9) we find

µs,N(x) = µs,N(0)e−x/Ls,N , (2.16)

µs,F (x) = µs,F (0)ex/Ls,F (2.17)

and the interface values µs,N(0) and µs,F (0) can be expressed
via PI making use of

PI =
1
2
σ∇µs + Pσσ∇µ

j
. (2.18)

From the above equation applied separately to x = −0 and
x = +0 one can find:

µs,N(0) = −PIjrN
2

(2.19)

µs,F (0) =
jrF
2

(PI − Pσ), (2.20)

where rN = 4LsN/σN and rF = 4LsF/[σF (1 − P 2
σ )] are the

effective resistances of the N and F regions involved in the
spin imbalance.

From Eqs. (2.19), (2.20) and the boundary condition (2.14)
one can easily find the spin injection efficiency PI :

PI =
rFPσ + rcPΣ

rc + rN + rF
. (2.21)

This expression has an extremely simple interpretation in
terms of the equivalent curcuit, which is shown in Fig. (2.2).

Now let us consider the important special cases. At first
we consider a transparent junction rc → 0. In this case

PI =
rF

rN + rF
Pσ (2.22)

the spin injection efficiency is determined by the conductiv-
ity polarization of the ferromagnet and the ratio of the fer-
romagnet and paramagnet resistances. For the injection into
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Figure 2.2: Equivalent circuit scheme describing the spin im-
balance at a N/F interface. Adopted from the presentation by
Y. Fabian.

a semiconductor rN � rF this is again the conductivity mis-
match problem. However, this problem does not appear for
tunnel junctions with rc � rN , rF . In this case PI ≈ PΣ - that
is, the spin injection efficiency is determined by the interface
polarization.

The schematic dependence of the spin current and spin
accumulation via the F/N interface is shown in Fig. 2.3.

Figure 2.3: Spin current (left) and spin accumulation (right)
at the F/N interface. Adopted from the presentation by Y.
Fabian.

Let’s now consider the spin injection efficiency into a spin
valve on the basis of the diffusive theory. The sketch of the
spin valve is shown in Fig. 2.4.
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Figure 2.4: Sketch of the spin valve.

µsL = µsL(0)ex/LF,L

µsR = µsR(d)e(d−x)/LF,R . (2.23)

The values µsL(0) and µsR(0) can be expressed via the corre-
sponding spin injection efficiencies PL,R according to Eq. (2.20)

µsL(0) =
jrLF (PL

I − PL
σ )

2

µsR(d) = −jr
R
F (PR

I − PR
σ )

2
. (2.24)

Further we assume that d � Ls,N . In this case the spin
current js = (σN/2)∇µs is spatially constant in the inter-
layer. Therefore, PL

I = PR
I = PI . In this approximation

µsN = µsN(0) + [µsN(d)− µsN(0)](x/d). Then

js = PIj = (σN/2)[µsN(d)− µsN(0)]/d. (2.25)

Now from Eq. (2.14) we obtain

µsN(0)− jrLF (PI − PL
σ )

2
=
jrLc
2

(PI − PL
Σ )

−jr
R
F (PI − PR

σ )

2
− µsN(d) =

jrRc
2

(PI − PR
Σ ). (2.26)
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Taking into account Eq. (2.25) from Eq. (2.26) we obtain

PI =
PL
σ r

L
F + PL

Σ r
L
c + PR

σ r
R
F + PR

Σ r
R
c

rLNR
,

rLNR = rLc + rRc + rLF + rRF +
4d

σN
. (2.27)

The above expression for PI can be rewritten in a convenient
form using the spin injection efficiencies for two disconnected
N/F interfaces γL,R, which are expressed by Eq. (2.21)

PI =
γL(rLF + rLc + rN) + γR(rRF + rRc + rN)

rLNR
. (2.28)

In case of identical ferromagnets in parallel configuration γL =
γR = γ and

P P
I =

2γL(rF + rc + rN)

rLNR
, (2.29)

while in case of two identical ferromagnets in antiparallel con-
figuration γL = −γR

PAP
I = 0. (2.30)

2.3 Resistance of the F/N interface.

From the local charge neutrality condition δn↑ + δn↓ = 0 it
follows that

ϕ = −µ− PN
µs
2
, (2.31)

where PN = (N↑ − N↓)/(N↑ + N↓) is the density of states
polarization. Then taking into account that PN = 0 in the
paramagnet and making use of the boundary conditions (2.15)
we obtain

ϕN(0)− ϕF (0) = −jrc
4

(
1− PIPΣ

)
+
µs,F (0)

2
PN,F . (2.32)
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Integrating Eq. (2.11) over the ferromagnet and over the para-
magnet separately we obtain

µN(x) =
j

σN
x+ µN(0), (2.33)

µF (x) =
j

σF
x− Pσ

2Ls,F
µs,F (x) + CF . (2.34)

Deep in the ferromagnet far from the F/N interface µs = 0
and ϕ = −µ. Therefore, the voltage between the ferromagnet
and the normal metal can be found as

ϕN(lN)− ϕF (−lF ) = − lN
σN

j − lF
σF
j − µN(0) + CF . (2.35)

Subtracting the Ohmic part of the resistance we obtain

R =
µN(0)− CF

j
=

1

Σ↑ + Σ↓
+
rN(rFP

2
σ + rcP

2
Σ) + rcrF (Pσ − PΣ)2

4(rc + rN + rF )
. (2.36)

It is that the spin injection always enhances the resistance
of a F/N junction. Physically it can be understood from
Fig. (2.5).

2.4 Detection of the nonequilibrium

spin accumulation.

Now let us consider different methods of detection of the spin
accumulation. First of all, any kind of non-equilibrium in an
electronic system results in an electro-motive force. This gen-
eral statement is completely applicable to spin non-equilibrium.
A valve spin-e.m.f. arises at the spin selective contacts. Mea-
suring the spin-e.m.f. in metals has been used for detecting
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Figure 2.5: Adopted from the presentation by Yaroslav Fabian.
Why the additional resistance of N/F interface is positive? It
is seen that the ”spin potential” rises upon approaching the
interface irrespective of the sign of ∆µs. Therefore, the part
of incoming spin is reflected from the interface and, therefore,
the part of electrons is reflected also because it is the electrons
that carry the spin. As a result, the part of the electric charge
is reflected, what increases the resistance.

the electrical spin injection. Now we consider the effect of the
electromotive force.

For an open circuit with j = 0 one can find from Eq. (2.32)
(accounting for PIj = j↑ − j↓ = js(0))

ϕN(0)− ϕF (0) =
rcjs(0)PΣ

4
+
µs,F (0)

2
PN,F . (2.37)

Now we assume that the spin imbalance µN(∞) is induced
in the paramagnet far from the F/N interface by an external
source (see Fig. 2.6). Our goal is to measure the value of this
imbalance by means of the voltage measurements.
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Figure 2.6: Voltage induced at the F/N interface due to the
spin accumulation. Adopted from the presentation by Y.
Fabian.

In this case the profile of the spin imbalance in the param-
agnet takes the form

µs,N(x) = µs,N(∞) +
[
µs,N(0)− µs,N(∞)

]
e−x/Ls,N (2.38)

From Eqs. (2.19), (2.20) it can be deduced that

js(0) =
2µs,F (0)

rF
= −2(µs,N(0)− µs,N(∞))

rN
. (2.39)

Together with the boundary condition (2.14), which for the
open circuit takes the form µs,N(0) − µs,F (0) = rcjs(0)/2 the
above equation allows for obtaining

js(0) =
2µs,N(∞)

rc + rF + rN
(2.40)

µs,N(0) = µs,N(∞)
rc + rF

rc + rF + rN
(2.41)

µs,F (0) = µs,N(∞)
rF

rc + rF + rN
(2.42)
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Integrating Eq. (2.11) over the ferromagnet and over the
paramagnet separately and making use of Eq. (2.37) finally we
obtain:

ϕN(lN)− ϕF (−lF ) =
rcPΣ + rFPσ

2(rc + rN + rF )
µs,N(lN) =

PI
2
µs,N(lN). (2.43)

2.4.1 Nonlocal spin detection.

Figure 2.7: Sketch of the typical nonlocal detection scheme.
Adopted from the presentation by Y. Fabian.

The classical scheme of a nonlocal spin accumulation mea-
surement is presented in Fig. 2.7. There are two different elec-
tric circuits in the setup. The electric current is injected from
the ferromagnet F1 into the normal wire and travels via the
left circuit. There is no electric current between the injector
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Figure 2.8: Electrical current and spin current flows in the
nonlocal scheme. Adopted from the presentation by Y. Fabian.

and detector ferromagnets, but the spin imbalance is created
symmetrically around the interface between F1 and the wire
(see Fig. 2.8) and, in particular, spreads to the detector point.
If the detector circuit is open, the electric voltage is induced
between F2 and the wire according to the theory described
above.

The interfaces between the detector, injector and the wire
are assumed to be low-transparent rc � rN , rF . In this case
according to Eq. (2.41) µs,N(∞) ≈ µs,N(0), that is the open
detector circuit practically does not influence the distribution
of the spin imbalance in the wire. In this case the voltage
(2.43) measured by the detector is

ϕN(∞)− ϕF (−∞) ≈ PD
2
µs,N(x = d), (2.44)
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where PD ≈ PΣ,D is the spin injection efficiency of the detector
and µs,N(x = d) ≈ −PI

2
jrNe

−d/Ls,N ≈ −(1/2)PΣ,IjrNe
−d/Ls,N

is the spin imbalance induced by the injector at the detector
point. Finally we obtain the following value of the nonlocal
resistance, that is the ratio of the voltage in the detector circuit
to the current in the injector circuit:

Rnl =
ϕN(∞)− ϕF (−∞)

j
≈ 1

4
PΣ,IPΣ,DrNe

−d/Ls,N . (2.45)

Figure 2.9: Experimental results on nonlocal spin imbalance
detection [16].

Experimental results on nonlocal spin imbalance detection
are presented in Fig. 2.9. In Fig. 2.9(D) it is seen that the non-
local resistance is always positive except for narrow regions of
the magnetic field, where the ferromagnets are in antiparallel
configuration.
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2.4.2 Optical detection of spin accumulation.

Optical experiments allow for measurements of n↑− n↓. From
Eqs. (2.3) and Eq. (2.31) it can be deduced that

n↑ − n↓ = N↑(eϕ+ eµ↑)−N↓(eϕ+ eµ↓) =
2eN↑N↓
N

µs(x). (2.46)

Therefore, optical measuments also provide a way of spin
accumulation detection.
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Chapter 3

Spin field-effect
transistors

Our presentation in this chapter closely follows [14, 15]. The
fundamental device at the heart of all digital computing hard-
ware is the binary switch that has two well-separated stable
states. They store and encode the binary bits 0 and 1. When
the switch is implemented with metal-oxide-semiconductor field-
effect transistors (MOSFET), the two states are the high-
conductance (on) and low-conductance (off) states of the de-
vice. The MOSFET is turned on by moving charge into the
channel and turned off by moving charge out. Switching is
therefore associated with motion of charges. In all charge-
based switches, the switching action invariably requires charge
motion. This is because charge is a scalar quantity. There-
fore, the two states must be distinguished by a difference in
the magnitudes of the charge in the device. Switching will
require changing the magnitude by an amount ∆Q, in a time
∆t, leading to a current flow of magnitude I = ∆Q/∆t. This
current causes an unavoidable energy dissipation of I2R∆t =
∆Q2R/∆t, where R is the resistance in the path of the cur-
rent. One can reduce this dissipation by increasing ∆t (switch-
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ing slowly) or by decreasing ∆Q, but neither is desirable since
the former makes the switch slow and error prone, while the
latter reduces noise immunity since it decreases the logic-level
separation by bringing the two states closer together.

The above shortcoming of charge-based devices has moti-
vated the search for alternate state variables, such as electron
spin, to encode binary bits. For example, a single electron’s
spin polarization in a magnetic field has two stable states that
are parallel and antiparallel to the field. These two mutually
antiparallel polarizations can encode the bits 0 and 1. Switch-
ing between them merely requires flipping the spin, without
moving the electron in space and causing current flow. This
eliminates the I2R∆t dissipation, but does not eliminate dis-
sipation altogether since the two spin states are nondegener-
ate and separated in energy by the Zeeman splitting gµBB.
Therefore, even if a single spin is used as a binary switch, the
minimum energy dissipation would have been gµBB per bit
flip event. In fact, the minimum energy dissipation for any
single entity (single spin, single charge, single anything) will
be always kBT ln(1/p), where p is the probability of random
switching between the two states as long as the switch is in
thermodynamic equilibrium with its surrounding at tempera-
ture T . From that perspective, it should make no difference
whether single charge or single spin is used as the vehicle to
encode logic bits. However, what does make a difference is
that no single entity is ever stable enough in a noisy environ-
ment to encode logic bits reliably. Therefore, an ensemble of
entities (many spins, many single electron charges) is required
to encode a logic bit in a robust fashion. In that case, spin has
a very important advantage over charge. The minimum en-
ergy dissipated to switch an ensemble of information carriers
(spins, charges, etc.) is NkBT ln(1/p), where N is the number
of degrees of freedom that the ensemble possesses. In the case
of charges, N = Ne is the number of charges in the ensemble.
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This happens because the different charges act independently.
However, in the case of spin, N ∼ 1, since exchange interac-
tion between spins makes all of them act in unison, that is
the magnetism is a macroscopic quantum state. In a single-
domain magnet, effectively N = 1. Therefore, the minimum
ratio of the dissipations incurred in switching a spin ensemble
and a charge ensemble is 1/Ne which gives spin a significant
advantage over charge when Ne > 1.

In a spin field-effect transistor (SPINFET), the current
flowing between two terminals (the source and the drain) is
modulated by applying an electrostatic potential to the third
terminal (the gate), as in a MOSFET. The difference is that
the gate potential does not modulate the charge, or number of
charge carriers, in the channel, but instead modulates the spin
polarization of the carriers. If the source and drain contacts
are efficient spin filters, then modulation of the spin polariza-
tion can modulate the current flowing between the source and
drain, thus realizing transistor action. The gate potential can
therefore turn the transistor on or off, but without changing
the amount of charge in the channel. In other words, ∆Q = 0,
which should make the energy dissipation ∆Q2R/∆t vanish.
That it does, but there is additional energy cost associated
with modulating spin polarization, and that cost may or may
not exceed ∆Q2R/∆t. If it does exceed, then the SPINFET
is actually less energy efficient than the MOSFET. The reality
is that spin transistors are generally no more energy efficient
than MOSFETs, and they are not faster either. In fact, they
may have major shortcomings that make them less desirable
than MOSFETs as binary switches.
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Figure 3.1: The Datta-Das SPINFET. Adopted from [18].

3.1 The Datta-Das SPINFET.

In many ways, the first proposal for a Spin Field Effect Transis-
tor (SPINFET) [17] now called the Datta-Das transistor after
the two proponents of this device was a watershed event in
the field of spintronics. It was the first time anyone proposed
using the spin degree of freedom of a charge carrier to realize
an active device which can process information in a tractable
way. The SPIN FET device proposed in [17] looks exactly like
a conventional metal-insulator semiconductor field effect tran-
sistor (MISFET) except that the source and drain contacts
are ferromagnetic. Fig. 3.1 shows a schematic of this device.
For simplicity we will assume that the channel is strictly one
dimensional (a quantum wire) whose width is smaller than
the Fermi wavelength of carriers in the channel, so that only
the lowest subband is occupied by electrons. Both source and
drain contacts are magnetized in such a way that their mag-
netic moments are parallel to each other and point along the di-
rection of current flow (+x-axis). When a potential difference
is imposed between these contacts, the ferromagnetic source
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injects carriers into the channel with their spins polarized in
the +x-direction. These are the majority spins in the fer-
romagnetic source contact. We will now make the following
idealized assumptions:

1. The ferromagnetic source injects only the majority spins
and no minority spins at all. Moreover, there should be no loss
of spin polarization at the interface due to spin flip scattering.
In other words, the spin injection efficiency at the source end,
defined as

ζ =
I↑ − I↓
I↑ + I↓

(3.1)

is unity, ζ = 1.

2. We will also assume that the drain is an idealized spin
filtering ferromagnet which only transmits the majority spins
and completely blocks the minority spins.

3. When the gate voltage is zero, there are no stray sym-
metry breaking electric fields in the (y, z)-plane that induce
any Rashba interaction. Note that the source-to-drain elec-
tric field, which drives the current in the channel, is in the
x-direction which is the same direction as the carrier velocity;
hence, it does not cause a Rashba spin-orbit interaction. Only
when the gate voltage is non-zero there can be a Rashba in-
teraction in the channel due to the electric field caused by the
gate voltage. There is also no Dresselhaus spin-orbit interac-
tion and no stray magnetic fields in the channel (we ignore the
magnetic field caused by the ferromagnetic contacts).

4. There is no spin relaxation in the channel. There can
be momentum and energy relaxing collisions in the channel
transport need not be ballistic but these scatterings must not
relax spin. This is a realistic assumption since we will know
that in a strictly one dimensional channel with a single trans-
verse subband occupied, there is no Dyakonov-Perel spin re-
laxation in space. There is also no Elliott-Yafet spin relaxation
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if there is no magnetic field in the channel. This is because if
the only spin-orbit interaction is the Rashba interaction, then
each spin-split band has a fixed (wavevector-independent) spin
quantization axis. In that case, intraband scattering does not
change spin polarization and interband scattering (due to a
non-magnetic scatterer) is forbidden because the spin eigen-
states in two different bands are orthogonal. Therefore, there
is no Elliott-Yafet relaxation.

5. We will ignore effects due to multiple reflections of an
electron between the source and drain contacts.

Under these assumptions right after injection from the source,
all electrons in the channel of the Datta-Das transistor will
have their spins polarized along the direction of current flow,
i.e., the +x-direction since the source is magnetized in the +x-
direction and injects spin with 100% efficiency. When the gate
voltage is turned on, it causes a transverse electric field in the
y-direction, which causes Rashba spin-orbit interaction in the
channel. This interaction will act as an effective magnetic field
in the z direction which will be given by

BR = κEyvxẑ, (3.2)

where κ is the material-dependent constant Ey is the y-directed
gate electric field and vx is the x-directed velocity of carriers
in the channel.

The pseudo-magnetic field BR is directed along the z-axis.
It will cause the electrons entering the channel with x-polarized
spins to execute Larmor precession in the (x, y)-plane as they
travel toward the drain. The equation of motion for a free
magnetic dipole can be obtained from Newtons second law for
rotation,

∂J

∂t
= τ (3.3)

where J is the angular momentum and τ is the torque. Sub-
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stituting µ = −gµB
~ J and τ = µ×B obtain

∂µ

∂t
= −gµB

~
µ×B. (3.4)

The angular frequency of this precession is the Larmor fre-
quency

Ω =
dφ

dt
=
gµBBR

~
=
gµBκ

~
Eyvx. (3.5)

The spatial rate of spin precession is given by

dφ

dx
=
dφ

dt

1

vx
=
gµBκ

~
Ey. (3.6)

It is important to note from the above equation that the
spatial rate of spin precession depends on the gate voltage but
is independent of the carrier velocity along the channel. This
means that the spin of every electron, regardless of its velocity
(and hence kinetic energy), precesses by exactly the same angle
as it travels from source to drain. This angle is given by

Φ =
gµBκ

~
EyL. (3.7)

An electron may suffer numerous momentum and energy ran-
domizing collisions and arrive at the drain with arbitrary veloc-
ity, but it does not matter, if the collisions are spin-independent.
When any electron arrives at the drain, with whatever veloc-
ity and whatever scattering history, its spin has precessed by
exactly the same angle as any other electron in traversing the
channel since is independent of the electrons velocity. The
angle Φ depends only on Ey, or the gate voltage, which is
the same for every electron. If the gate voltage is of such
magnitude that Φ = (2n + 1)π, then every electron arriving
at the drain will have its spin polarized anti-parallel to the
drains magnetization. These electrons are completely blocked
by the drain since the drain transmits only those electrons
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whose spins are polarized in the +x-direction. Therefore, the
source-to-drain current falls to zero. Without a gate voltage,
the spins do not precess so that every electron arriving at the
drain has its spin polarized parallel to the drains magneti-
zation. These electrons are all transmitted by the drain so
that the source-to-drain current is non-zero. Thus, when the
gate voltage is zero, the conductance is maximum and when
the gate voltage is Voff , corresponding to Φ = (2n + 1)π,
the conductance is minimum and ideally zero. Therefore, the
gate voltage changes the conductance between a maximum and
minimum value using spin precession and realizes basic switch-
ing transistor action. Note that the switching action has been
explained by invoking a classical particle picture (Larmor pre-
cession of a particle about a pseudo magnetic field), and no
wave interference was necesssary. This underscores the fact
that the switch is a purely classical device.

Figure 3.2: Rashba spin-split 1D electron subbands.

The wave picture, however, becomes necessary if we want
to find the conductance of the device at any arbitrary gate volt-
age. The energy dispersion relations in the one-dimensional
channel of the Datta Das transistor (with no Dresselhaus in-
teraction and no channel magnetic field) are two horizontally
displaced parabolas. An electron with energy E has wavevec-
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tors k1 and k2 in the two spin resolved bands. The correspond-
ing eigenspinors are the +z and−z-polarized states (1 0)T and
(0 1)T . The source contact is magnetized in the +x-direction
and hence injects only +x-polarized spins in the channel. Con-
sider an electron injected with energy E. Its spin state at the
source end can be written as a superposition of the channel
eigenspinors:

Ψsource =
1√
2

(
1
1

)
=

1√
2

(
1
0

)
+

1√
2

(
0
1

)
. (3.8)

At the drain end the spin state of the electron is

Ψdrain =
1√
2

(
1
0

)
eik1L +

1√
2

(
0
1

)
eik2L. (3.9)

The eigenspinor in the drain contact, which is also magnetized
in the +x direction, is (1/

√
2)(1 1)T . Therefore, if we neglect

multiple reflections within the channel, then the transmission
amplitude into the drain is given by the projection of Ψdrain

on the eigenspinor in the drain contact:

t(E) =
1

2
(1 1)

(
eik1L

eik2L

)
=

1

2

(
eik1L + eik2L

)
, (3.10)

and

T (E) = |t(E)|2 =
1

4

∣∣∣1 + ei(k1−k2)L
∣∣∣2 = cos2 Φ

2
(3.11)

since k2 − k1 = 2m∗αR/~ = gµBκEy/~.

Therefore, we can write the channel conductance as

G = G0 cos2 Φ

2
. (3.12)

Oscillatory transfer characteristics have unusual applications.
Suppose we apply a sinusoidal voltage of frequency f to the
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gate and the amplitude of this voltage is nVoff . Then the
source-to-drain current will oscillate with a frequency nf . Thus,
we have realized a single stage frequency multiplier.

It should be obvious that, in this device, although cur-
rent modulation is achieved through spin precession, spin it-
self plays no direct role in information handling. Information
is still encoded in charge which carries the current from the
source to the drain. The transistor is still switched between
the on and off states by changing the current or the amount
of charge transmitting through the device. The role of spin is
only to provide an alternate means of changing the current.

Now let us discuss shortcomings of the SPINFET. The
generic problem, which affects all the spin transistors that re-
quire spin injection and detection is not 100% spin injection
efficiency. If we introduce spin injection efficiency of the source
ζS = (I↑ − I↓)/(I↑ + I↓) and the ”spin detection efficiency of
the drain” ζD = (T↑ − T↓)/(T↑ + T↓), where T↑,↓ are trans-
parencies of the channel/drain interface for spin up (down)
quasiparticles, then the ratio of on-to-off conductance is

Gon

Goff

=
1 + ζSζD
1− ζSζD

. (3.13)

In order to achieve a conductance on-off ratio of 105, re-
quired of modern transistors, ζS = ζD = 99.9995%, which is
a very high order. The primary impediment to realization
of usable SPINFETs at this time is inadequate spin injection
efficiency.

The other problems are (i) small values of the Rashba con-
stant leading to the necessity to make very long channels (of
the order of 1µm) or to apply a very high gate voltages as com-
pared to the usual semiconductor transistors and (ii) channel
stray fields from the source and drain ferromagnets, which
make Φ dependent on the quasiparticle velocity greatly re-
ducing Gon/Goff . The first of these problems leads to losing
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the energy efficiency with respect to MOSFET. Indeed, the
SPINFET is switched without changing the carrier concentra-
tion in the channel. Therefore, it might appear that no cur-
rent needs to flow to switch the transistor, thus eliminating
the I2R∆t loss. Unfortunately, this is not true since switch-
ing is still accomplished with a gate voltage and some current
flow is needed to charge up the gate (a capacitor) to the re-
quired voltage. The energy dissipated to charge up the gate
to a voltage VG is still CV 2

G/2 if the gate is charged abruptly
or non-adiabatically. Thus, in terms of gate dissipation, the
SPINFET is no different from the MOSFET where the gate
dissipation is again the same. It does not matter what the
gate voltage does whether it changes the carrier concentra-
tion or the spin polarization of the carriers. Therefore, the
SPINFET provides no special advantage. If any advantage
were to accrue, it would be solely due to the fact that the
gate voltage required to switch a SPINFET is smaller than
that required to switch a MOSFET. For nanoscale transistors
it is not the case. In fact, the SPINFET normally will require
a much larger gate voltage than a comparable MOSFET and
hence is less energy efficient, as long as the channel length is
shorter than ∼ 1µm. The problem is that the gate voltage in
a spin transistor changes the spin polarization of carriers by
affecting spin-orbit interaction. The gate voltage dependence
of spin-orbit interaction in the conduction band of most semi-
conductors is very weak, so that a very large gate voltage will
be required to induce sufficient change in the spin polarization
to turn a SPINFET from on to off, or vice versa.

The problem of stray fields is connected to the so-called
spin Hanle effect. The spin Hanle effect is based on precession
of a spin about a magnetic field. Consider a one-dimensional
spin valve structure shown in Fig. 3.3 consisting of two ferro-
magnetic contacts magnetized in the direction of current flow.
The left contact is a spin-polarizer that injects electrons with
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Figure 3.3: The spin Hanle effect. The magnetic field is applied
perpendicular to the figure plane. Adopted from [15].

spins polarized in the direction of current flow into the spacer
layer and the right contact is a spin analyzer that selectively
transmits electrons whose spins are aligned along the direction
of its own magnetization. We will assume that there is no spin
relaxation in the spacer layer. In that case, the conductance
of the structure will vary as cos2(θ/2) where θ is the angle
between the spin polarization of the electrons arriving at the
right contact and the magnetization of the right contact. In
the absence of any magnetic field, spin-orbit interaction, and
spin relaxing events, the injected spins will arrive intact at
the right contact. Since both contacts are magnetized in the
same direction, θ = 0 in this case and the conductance will
be maximum. Next, imagine that a magnetic field is applied
perpendicular to the direction of current flow (and hence per-
pendicular to the injected spin polarization). The spins will
then execute Larmor precession about this magnetic field as
they traverse the spacer layer. The angle by which they will
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precess will determine the angle θ:

θ = Ω
L

v
=
gµBB

~
L

v
, (3.14)

where Ω is the spin precession frequency, B is the magnetic
flux density, L is the spacer regions length, and v is the elec-
tron velocity. If we compare the above equation to Eq. (3.7),
we see that in contrast to the spin-orbit induced spin preces-
sion angle, the real magnetic field induced precession angle
depends on the electron velocity. Clearly, the conductance,
which is proportional to cos2(θ/2), will oscillate as B is var-
ied, and these are called Hanle oscillations. However, because
θ depends on v, different electrons having different velocities
precess by different angles. Ensemble averging over the elec-
tron velocities will make the conductance oscillation amplitude
decay with increasing magnetic field strength. This effect is
parasitic to the SPINFET because in the presence of the spin
precession induced by the stray fields electrons with different
velocities will require different gate voltages to reverse their
spins on the distance between the source and the drain.
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Chapter 4

Spin torques and
magnetization dynamics.

Here we are going to study the dynamics of macroscopic mag-
netization in ferromagnets, which can be caused by applying
of an external magnetic field or an external electric current.

4.1 Landau-Lifshitz-Gilbert equation.

We separately treat the conduction part and magnetization
part in a ferromagnetic metal. The former is assumed to be
conducting s-electrons and the latter is localized d-spins, which
are ferromagnetically coupled to each other. For the conduc-
tion electrons, we will consider in a later section the case of
current-driven magnetization dynamics. In this section, we fo-
cus on the magnetization part. The magnetization vector field
M is the magnetic moment of d-electrons per unit volume and
is defined by

M = −γ~S
a3

= Msm, (4.1)
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where γ > 0 is the gyromagnetic ratio, S is the magnitude of
spin, a is a lattice constant. Note that the direction of magne-
tization vector is opposite to the local spin S. In the following
we use the unit vectorm = (sin θ cosφ, sin sinφ, cos θ) directed
along the magnetization and the amplitude of the magnetiza-
tion density is denoted by Ms.

Now our goal is to investigate the magnetization dynamics
in a ferromagnet under the action of the applied magnetic
field. The equation of motion for a free magnetic dipole can
be obtained from Newtons second law for rotation,

∂J

∂t
= τ (4.2)

where J is the angular momentum and τ is the torque. Sub-
stituting µ = −γJ and τ = µ×B obtain

∂µ

∂t
= −γµ×B. (4.3)

The magnetic dipole precesses about the magnetic field. If any
form of dissipation is present, the free dipole will eventually
align with the applied magnetic field to minimize its energy.

Magnetic dipoles in solids are not free, but are constrained
by, for instance, exchange interactions, magnetocrystalline
anisotropies, and dipole- dipole interactions. However, just as
the free dipole, magnetic dipoles in a solidM = µ/V will min-
imize their energy in equilibrium. Now let us briefly discuss
different contributions to the magnetic energy of a ferromag-
net.

4.1.1 Exchange energy.

We will use the classical Heisenberg hamiltonian to derive the
expression for the exchange energy in terms of continuous mag-
netization density M

Ei,j = −JSiSj, (4.4)
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where J is the exchange integral and Si and Sj are two neigh-
boring classical spins. With the magnitude of the spins S and
unit vectors ni = Si/S and nj = Sj/S it can be written as

Eij = −JS2ninj = −JS2[1− 1

2
(ni − nj)2]. (4.5)

The exchange energy of a ferromagnet is calculated by sum-
ming up

Eex = −
∑
ij

JijS
2[1− 1

2
(ni − nj)2]. (4.6)

Further this expression has to be adapted to the continuous
magnetization field m:

Eex = −
∑
ij

JijS
2ninj = −

∫
d3r

∑
i

Aim(r)m(r + ∆ri),

(4.7)
where Ai and ∆ri depend on the particular crystal structure.
Substituting m(r)m(r+∆ri) = 1− 1

2
[m(r)−m(r+∆ri)]

2 ≈
1− 1

2

∑
k

(∆ri∇mk)
2 into the above equation we get

Eex = C +

∫
d3r

∑
ijk

Ajk
∂mi

∂xj

∂mi

∂xk
, (4.8)

where C results from the integration of the constant term and
can be omitted, and Ajk is the matrix of exchange constants.
By rotation of the cooordinate system this matrix can diago-
nalized, what yields

Eex =

∫
d3r

∑
ij

Aj

(∂mi

∂xj

)2

, (4.9)

where Aj are positive. In case of cubic and isotropic materials
this expression can be reduced to

Eex =

∫
d3rA

∑
i

(
∇mi

)2

. (4.10)
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4.1.2 Demagnetization energy.

The demagnetization energy, also called magnetostatic energy
or stray field energy, is the energy in the magnetic field created
by the magnetization itself. This means that this energy ac-
counts for the dipole-dipole interaction of elementary magnets.
The demagnetization energy can be written as

Edem = −1

2

∫
d3rHdemM , (4.11)

where the demagnetization field depends essentially on the ge-
ometry of the system and can be expressed via the so-called
demagnetization tensor. Mathematically it can be calculated
exploiting the notion of ”magnetic charges” −divM according
to divH = −4πdivM , what follows from B = H + 4πM and
divB = 0. Physically it takes into account the reduction of
the internal field in the ferromagnet with respect to the bulk
value 4πM due to fields of the surrounding dipoles. Hdem can
be calculated analytically only for a number of simplest ge-
ometries. An ellipsoid possesses by a constant demagnetizing
field Hdem = −N̂M , where N̂ is the demagnetizing tensor.

4.1.3 Anisotropy energy.

Depending on the crystal structure of a ferromagnetic mate-
rial, it energetically favors the alignment of the magnetization
parallel to certain axes. This energy contribution results from
spin-orbit interaction and is referred to as anisotropy energy.
The energetically favored axes are called easy axes. Depending
on the lattice structure material may have one or more easy
axes. In the simplest case a material has a single easy axis.
This uniaxial anisotropy energy is given by

Ean = −
∫
d3r[Ku1(meu)

2 +Ku2(meu)
4], (4.12)
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where eu is the unit vector in the direction of the easy axis and
Ku1,2 are anisotropy constants. The phenomenological expres-
sion is a result of the Taylor expansion up to the fourth order.
Only even powers are allowed in order to fulfill the symme-
try condition Ean(measy) = Ean(−measy). Uniaxial symmetry
occurs in materials with hexagonal or tetragonal crystal struc-
ture, e.g. cobalt.

4.1.4 Landau-Lifshitz-Gilbert equation.

Outside equilibrium the effective field, which is defined as
Heff = −(δE/δM), will exert a torque −γM ×Heff on the
magnetization. This torque causes the magnetization dynam-
ics. The macroscopic dynamics of the magnetization is directly
coupled to the microscopic thermal motion of spin waves and
also to the conduction electrons and phonons (magnetostric-
tion, magnonphonon scattering). By ways of coupling to these
thermal baths, the macroscopic dynamics of the magnetization
will be damped out and loose kinetic energy to random ther-
mal motion. To derive the appropriate damping term in the
magnetizations equation of motion from first principles is gen-
erally quite challenging. This problem can be circumvented
by constructing a phenomenological damping term. The most
commonly used model is Gilbert damping. Gilbert damping is
viscous damping, in which the damping force is proportional
to the rate of change of the magnetization, α∂M/∂t. In the
presence of damping, the equation of motion of the magneti-
zation must therefore be

∂M

∂t
= −γM ×Heff +

α

Ms

M × ∂M

∂t
, (4.13)

this equation is called Landau-Lifshitz-Gilbert (LLG) equa-
tion. α is the Gilbert damping parameter and the effective
field is calculated as the variational derivative of the full mag-
netization energy of the ferromagnet. For a thin ferromagnetic
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film with a uniaxial anisotropy it takes the form

Heff = (1/M2
s )(KMxx−K⊥Myy + Aex∇2

xM ) +Hext, (4.14)

where K > 0 and K⊥ > 0 are the anisotropy constants for the
easy and hard axes, respectively. the demagnetization field for
a thin film geometry is collected into the hard axis anisotropy
and can be approximately taken as Hdem = −4πMyey if the
film is in the (x, z)-plane. Hext is the externally applied mag-
netic field. We assume that the film is elongated along x-axis
and the film magnetization depends only on x-coordinate.

4.2 Spin-transfer torques and current-

induced magnetization dynamics

The spin transport in heterogeneous magnetic structures with
collinear magnetization configuration gives rise to a spin ac-
cumulation in diffusive systems. When the electrodes’ mag-
netizations become noncollinear, as in spin valves or magnetic
domain wall (DW) structures, a spin accumulation showing
a component transverse to the background magnetization ap-
pears (see Fig. 4.1). This transverse component of the spin
accumulation exerts a torque on the background magnetiza-
tion via the exchange interaction, leading to magnetization
reorientation, switching, or excitations.

Another way to understand the spin transfer torque (STT)
is through the angular momentum conservation: the net bal-
ance of spin current flowing through an enclosed region is the
rate of the total angular momentum change, which is defined
as an STT (see Fig. 4.2). We will show later that these two
pictures are equivalent only when one neglects the spin-flip
scattering and the spin-orbit coupling.
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Figure 4.1: Schematics of the spin density profile in a metal-
lic spin-valve without spin diffusion: when impinging into the
right layer, the spin density m possesses a component perpen-
dicular to the local magnetization M and exerts a torque of
the form T ∼m×M . Adopted from [19].

Figure 4.2: Spin transfer picture: the net balance of spin cur-
rent density is equivalent to a spin transfer to the local magne-
tization, in the absence of spin diffusion. Adopted from [19].



74 Spin torques and magnetization dynamics.

4.3 s− d model

We work in the framework of the so-called s − d model to
describe the spin transport and magnetization dynamics. The
s−d model artificially separates the itinerant electrons in s−p
bands, which are responsible for the spin transport from the
localized d bands, which determine the magnetization. From
the microscopic point of view, the s − d model is excessively
simplistic. This simplified description introduces inaccuracies
in the prediction. However, the s − d model remains a very
useful and pedagogical tool that provides qualitatively valu-
able results in the context of STT. The Hamiltonian of the
total spin system is

Ĥ = Ĥd + Ĥsp − Jsd
∑
i

Ŝi · ŝ, (4.15)

Ĥd = gµB
∑
i

Ŝi ·Heff (4.16)

Ĥsp =
p̂2

2m
+ U(r)− ~

4m2c2
(∇U × p̂) · ŝ (4.17)

where Ŝi(ŝ) is the dimensionless spin operator for the i-
localized (itinerant) electron, Heff is the effective magnetic
field (including the anisotropy, dipolar, and exchange fields),
which self-consistently depends on the local spin Ŝi.

Applying Ehrenfest’s theorem, one obtains the local spin
density continuity equation for a localized and an itinerant
electron, respectively:

∂〈Ŝi〉
∂t

=
gµB
i~
〈[Ŝi, Ŝi ·Heff ]〉+

Jsd
~
〈Ŝi〉 × 〈ŝ〉 (4.18)

∂〈ŝ〉
∂t

= ∇Js +
1

4m2c2
〈(∇U × p̂)× ŝ〉 −

Jsd
~
∑
i

〈Ŝi〉 × 〈ŝ〉 (4.19)



4.3 s− d model 75

where 〈...〉 denotes quantum mechanical averaging on either
the local or the itinerant electronic states with a nonequilib-
rium distribution function. Js = −〈v̂ ⊗ ŝ〉 is the spin current
tensor. γ = gµB/~ is the gyromagnetic ratio. In Eq. (4.18)
the commutator [Ŝi, Ŝi · Heff ] depends on the detailed de-

pendence of Heff on Ŝi. One usually approximates it by the
LandauLifshitz-Gilbert (LLG) equation, which includes a pre-
cessional term (i.e., takes Heff as a c-number) and a damping
term. There are a lot of studies of the microscopic nature of
the Gilbert damping. Here we just treat it phenomenologically
and focus on the torque coming from the interaction with the
conduction electrons’ spin and expressed by the last term in
Eq. (4.18). The resulting LLG equation takes the form:

∂M

∂t
= −γM ×Heff +

α

Ms

M × ∂M

∂t
− Jsd

2~
M ×m,(4.20)

where we have defined the magnetization densities for the lo-
cal and itinerant electron spins M/Ms = −〈Ŝi〉/S and m =
−2〈ŝ〉, Ms being the saturation magnetization, S is the local-
ized spin magnitude. The first two terms are standard LLG
terms and thus the only new term is due to the interaction
between the magnetization M and the spin density m, which
is usually defined as the spin torque (ST) T = −Jsd

2~M ×m.
To determine the spin density m, a similar equation of motion
for the itinerant spins is needed:

∂m

∂t
= −∇Js −

δm

τsf
+

1

4m2c2
〈(∇U × p̂)× m̂〉+

JsdS

~Ms

M ×m, (4.21)

where we have phenomenologically introduced a spin relax-
ation time τsf to model the spin-flip processes by impuri-
ties and magnons, δm = m −m0 being the nonequilibrium
spin density. δm is actually the quantity responsible for the
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current-driven torque since the equilibrium spin accumulation
m0 gives rise to a zero-bias interlayer exchange coupling that
is usually included in the effective field Heff , for the sake of
simplicity. Therefore, the nonequilibrium ST has the form:
T = −Jsd

2~M × δm. The coupled equations Eq. (4.20) and
Eq. (4.21) determine M and δm as long as one can relate
the spin current Js to the magnetization and one can properly
evaluate the spin-orbit term. One immediately realizes that
in the steady-state, ∂m/∂t = 0, and without the spin-orbit
coupling and spin relaxation 1/τsf = 0, the previous equa-
tion reduces to T = −(Ms/2S)∇Js, that is, the ST can be
viewed as the spin current transfer (the processes illustrated
by Figs. 4.1 and 4.2 are equivalent).

4.4 Metallic spin valves

Figure 4.3: Sketch of a metallic SV, where the reference layer
is antiferromagnetically coupled (usually through Ru) to a fer-
romagnetic layer pinned by an antiferromagnet (IrMn, PtMn,
etc.). The spacer layer that separates the free layer from the
reference layer is usually Cu, whereas the ferromagnetic layers
can be Co, CoFe, NiFe, etc. Adopted from [19].
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A metallic SV is composed of two ferromagnetic systems
separated by a metallic spacer (see Fig. 4.3). Since the volt-
age drop across the metallic SV is rather small, on the order of
only 1mV even for a current density as high as 108 A/cm2, the
linear response theory is sufficiently accurate for the calcula-
tion of the ST. Furthermore, the spin-orbit coupling is usually
small compared to the s − d interaction and thus Eq. (4.21)
reduces to

∂m

∂t
= −∇Js −

δm

τsf
− 2S

Ms

T . (4.22)

In the steady-state ∂m/∂t = 0, the ST is thus (2S/Ms)T =
−∇Js− δm

τsf
. In order to explicitly find the STT from the pre-

vious equation, one needs to relate the spin current tensor Js
to the non equilibrium spin accumulation δm. In the ballistic
transport 1/τsf = 0 however, the current and the spin accumu-
lation are not directly related because the spin accumulation
is not well defined. In this case, one simply has (2S/Ms)T =
−∇Js. If one integrates over the entire magnetic layer, the

total STT on the layer T ∝ −
out∫
in

dΩ∇Js = Js,in − Js,out, that

is, the total STT is determined by the difference between the
incoming and outgoing spin current at two sides of the layer.

The assumption of the ballistic transport is in fact a very
poor approximation in the case of metallic SVs. It has been
well established that diffusive spin-dependent transport is the
proper description for metallic multilayers, as long as the layer
thickness is large compared to the mean free path: diffusive
scattering in the layers and at interfaces contributes to the spin
current and magnetoresistance. For the noncollinear magne-
tization, the extension to the drift-diffusion model is straight-
forward as long as one replaces the spin up and down channels
by the 2× 2 spinor tensor. Specifically, one defines the spinor
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form of the current as

ĵ =
1

2
jcÎ +

1

2
Ĵsσ̂, (4.23)

where jc is a vector describing the charge current, Ĵs is a spin
current tensor. Î is the 2× 2 unity matrix and σ̂ is the vector
of Pauli spin matrices.

Within this formalism, in the presence of external electric
field E and inhomogeneous (spin-dependent) electronic den-
sity n̂, the spinor form of the current reads:

ĵ = ĈE − D̂∇n̂, (4.24)

where Ĉ = C0(Î + βσ̂M/Ms) is the generalized conductivity,
D̂ = D0(Î + β′σ̂M/Ms) is the generalized diffusion constant
and n̂ = n0Î + σ̂m is the generalized accumulation account-
ing for both charge 2n0 and spin m accumulations. β and
β′ are the spin asymmetries of the conductivity and diffusion
constants, responsible for the spin polarization of the current.
All these quantities are 2 × 2 matrices. The diffusion con-
stant and the conductivity are related via the Einstein relation
Ĉ = e2N̂(EF )D̂, where N̂(EF ) is the density of states at the
Fermi energy. The spinor form of Eq. (4.24) provides one scalar
relation for jc that must be completed with the steady-state
charge density continuity equation ∇jc = 0. From Eqs. (4.23)
and (4.24) the spin current Js = Re[Tr(σ̂ĵ)] can be explicitly
expressed in terms of the charge current plus a diffusion term,
that is i-th component in real space and k-th component in
spin space of the tensor Js takes the form

Js,ik = βjc,i
Mk

Ms

− 2D0

[∂mk

∂ri
− ββ′Mk

M2
s

(M · ∂m
∂ri

)
]
, (4.25)

By placing this spin current into the steady-state version of
Eq. (4.22) and assuming that all quantities depend only on
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x-coordinate perpendicular to the SV plane, we have

m×M
Msλ2

J

=
d2m

dx2
− ββ′M

M2
s

(M · d
2m

dx2
)− δm

λ2
sf

, (4.26)

where λsf =
√

2D0τsf and λJ =
√

2~D0/SJsd.

We separate the spin accumulation into longitudinal (par-
allel to the local moment) and transverse (perpendicular to
the local moment) modes. Eq. (4.26) can now be written as

d2m‖
dx2

−
δm‖
λ2
sdl

= 0, (4.27)

d2m⊥
dx2

− δm⊥
λ2
sf

− δm⊥ ×M
Msλ2

J

= 0, (4.28)

where λsdl =
√

1− ββ′λsf .
Eqs. (4.26)-(4.28) is the generalization of the drift-diffusion

model to the noncollinear magnetization configurations. While
the longitudinal spin accumulation has a length scale deter-
mined by the spin-flip length λsdl which is on the order of 10
nm or longer for the transition ferromagnets, the transverse
spin accumulation has much shorter length scale λJ , ranging
from a few angstroms to a few tens of angstroms.

In principle, the magnetization dynamics involves simulta-
neous time-dependent solutions forM (r, t) andm(r, t). How-
ever, the analysis of the timescale for M(r, t) and m(r, t) can
reduce the problem to a steady-state condition for the conduc-
tion electrons, that is, ∂m/∂t = 0. To see this, one notices
that it only takes about 1 fs (transport relaxation time) to
establish a steady-state charge current after one applies an
electric field to any heterogeneous conducting system. To es-
tablish a steady-state spin density and spin current in a mag-
netic system, the time-scale would be τsf ∼ lsf/vf ∼ 10 fs−1
ps. The time scale of M is on the order of nanoseconds, much
longer than τsf . Therefore, as long as one is interested in the
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magnetization process of the local moments, one can always
treat the spin accumulation in the limit of long times. The two
dynamic equations [Eq. (4.20) for M (r, t) and Eq. (4.22) for
m(r, t)] are then simply decoupled: we first solve Eq. (4.22)
with fixed local moments (independent of time) and take m(t)
in the limit of long times when ∂m/∂t = 0. Once the spin ac-
cumulation is obtained, we substitute it into Eq. (4.20) to
solve the dynamics of the local moments.

Let’s denote the unit vectors in the directions of magne-
tizations of the two ferromagnets composing SV as M1 and
M2. We consider the torque caused by m on M1 in the first
ferromagnet. Going back to Eq. (4.20) we see that only the
transverse to M1 component of m matters for the torque.
Without loss of generality, we can write the two components
of the accumulation m in the plane transverse to M1 as

(Jsd/2~)m = aM2 ×M1 + b(M1 ×M2)×M1, (4.29)

where a and b are determined by geometric details of the
multilayer. The second term can be viewed as the current-
dependent contribution to the effective field and the first con-
tribution cannot be reduced to the effective field and often
called the ”spin transfer torque”.

The field-like torque, expressed by the second term in Eq. (4.29),
and the spin transfer torque (which is also often called ”anti-
damping torque”), expressed by the first term in Eq. (4.29),
are shown in Fig. 4.4.

4.4.1 Magnetization dynamics in a metallic
spin-valve

A useful tool to describe the dynamic properties of a magnetic
layer under a spin-polarized current is the magnetic phase di-
agram that displays the magnetic stability regions of thespin-
valve as a function of the external magnetic field and applied
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Figure 4.4: Adopted from [1].(a) Field-like torque, or preces-
sion torque. It makes the spin to precess around the field.
The spiral shrinks to the field direction due to the damping
torque. (b) Current induced spin transfer torque, which may
act opposite to the damping torque and in this case is called
anti-damping torque.

bias. The geometry of the system is displayed in Fig. 4.3. The
SV consists of two ferromagnetic layers separated by a spacer.
The system is a pillar along the z direction with an elliptic
shape lying in the (x, y) plane. The bottom (reference) layer
has a magnetization direction P = +x assumed to be fixed,
and the top (free) layer has a magnetization direction M , an
easy axis is along the x-direction, and a demagnetizing field in
the z direction.

To find the dynamics of M we need to solve the LLG
equation Eq. (4.20). It requires the precise knowledge of the
effective field Heff and the torque T . In principle, Heff

comprises the exchange field Hex, the anisotropy field Han =
KMx/Msex, the demagnetization field Hd = −4πMzez, and
the external applied field Hext. The current-induced effective
field as well as the interlayer exchange coupling can also be
included. The spatial variations of M are neglected so that
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the exchange field is disregarded. Then, the total effective field
reduces to Heff = Hext +Hd +Han. Since the perpendicular
torque, the second term of Eq. (4.29), can be absorbed to the
effective field, we should neglect this term and solely consider
the STT given by the first term of Eq. (4.29). Then in spheri-
cal coordinates M = Ms(cos θ, sin θ cosφ, sin θ sinφ) the LLG
equation (4.20) is reduced to

1 + α2

γ
θ̇ = hφ + αhθ, (4.30)

1 + α2

γ
sin θφ̇ = αhφ − hθ, (4.31)

where hφ and hθ are functions of (θ, φ), that we do not write
explicitly. The conventional method to obtain the stability
conditions for the magnetization M is to study the stability
of small deviations from the equilibrium δM , under an ap-
plied current. The equilibrium magnetization direction M0 is
defined as hθ,φ(M0) = 0, with a = 0 at je = 0. In the case
where the external field is Hext = Hxex, M0 = Ms(±1, 0, 0).
Inserting the perturbed magnetization M = M0 + δM in
Eqs. (4.30) and (4.31) and assuming that M 2 = M2

s , one ob-
tains two differential equations for δMy and δMz that can be
solved analytically. The resulting stability conditions for the
parallel (P) and antiparallel (AP) states are:

Je < α
Hx +K +Hd/2

a
, Hx > −K, (P ) (4.32)

Je > −α
Hx −K −Hd/2

a
, Hx < K. (AP ) (4.33)

As long as conditions (4.32) and (4.33) are met, either P
or AP or even both states are stable, as illustrated in Fig. 4.5.
However, when these conditions are not met, the P and AP
configurations become unstable: the magnetization jumps to
new stable states (denoted E in Fig. 4.5). These novel states
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Figure 4.5: Stability diagrams for the free layer: (a) At zero
temperature, (b) zoom of the zero temperature diagram for
positive field and current, including IPP and OPP. Adopted
from [19].

are unique characteristics of the ST. The ”E” regions out of the
stability regions reveal a rich variety of magnetization regimes,
including in plane precessions (IPP), out-of-plane precessions
(OPP), and inhomogeneous magnetic excitations. The fact
that the STT term a can be either positive or negative, de-
pending on the current direction, allows reaching steady pre-
cessional states in which the damping is exactly compensated
by the STT (they are called E-states because of the energy
conservation).

The comparison between current-induced and field-induced
magnetization reversal in nanopillars is shown in Fig. 4.6. Dur-
ing the current-induced dynamics the magnetic moment at
first escapes from the one of potential minima under the in-
fluence of the antidamping torque and then goes to the other
minimum due to the combined action of the Gilbert damping
and current-induced torque, which is now also damping-like.
During the field-induced dynamics there is only one potential
minimum and the magnetic moment precesses around the field
direction shrinking the spiral to the only stable state.
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Figure 4.6: Adopted from [1].Comparison of the magnetization
processes driven by (A) spin-transfer torque and (B) external
magnetic field for in-plane magnetized nanopillars.

4.4.2 Experimental results on current-induced
magnetization switching in spin valves.

Spin injection magnetization switching (SIMS) was first pre-
dicted theoretically and was then experimentally demonstrated
for a Co/Cu/Co nanopillar with in-plane magnetization [20,
21]. Subsequently, SIMS was also observed in the case of MTJs
with Al-O barriers [22] and MgO barriers [23, 24]. All those
magnetic pillars had in-plane magnetization. And their cross
sections were ellipses or rectangles. In 2006, SIMS was also
observed in magnetic nanopillars with perpendicular magneti-
zation [25]. They employed Co/Ni multilayers to give a per-
pendicular crystalline anisotropy to the film.

In Fig. 4.7, a typical structure of nanopillars from an MTJ
(for research purposes) is shown. A hysteresis loop obtained
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Figure 4.7: A typical structure of nanopillars from an MTJ
[1].

for a magnetic nanopillar comprising a CoFeB/MgO/ CoFeB
tunneling junction is shown in Fig. 4.8. The pillar has in-plane
magnetization and elliptical cross section with the dimensions
100 nm × 3200 nm. A current was applied as a series of 100
ms wide pulses. In between the pulses, the sample resistance
was measured to check the magnetization configuration. By
this method, the effect of temperature increase during the ap-
plication of the current on the resistance measurement could
be eliminated. The hysteresis measurement started at a zero
pulse height for the P state. An increase in the pulse height
caused a jump from the P state to the AP state at 0.6 mA.
Further increase in the pulse height followed by a reduction to
zero current did not affect to the state. Subsequently, negative
pulses were applied to the sample. At 0.35 mA, the sample
switched its magnetization from the AP state to the P state.
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Figure 4.8: A typical SIMS hysteresis loop obtained for a
CoFeB/MgO/CoFeB MTJ. Measurements were performed at
room temperature using electric current pulses of 100 ms dura-
tion. The resistance of the junction was measured after each
pulse to avoid the effect of the heating on the sample resis-
tance. From Ref. [23].

4.5 Field-induced DW motion.

Let us consider a thin ferromagnetic film with a uniaxial anisotropy.
In this case the full effective field takes the form

Heff = (1/M2
s )(KMxx−K⊥Myy + Aex∇2

xM ) +Hext, (4.34)

where K > 0 and K⊥ > 0 are the anisotropy constants for the
easy and hard axes, respectively. The demagnetization field for
a thin film geometry is collected into the hard axis anisotropy
and can be approximately taken as Hdem = −4πMyy if the
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film is in the (x, z)-plane. In this limiting case K⊥/M
2
s = 4π.

Hext is the externally applied magnetic field. We assume that
the film is elongated along x-axis and the film magnetization
depends only on x-coordinate.

Now we are ready to consider the behavior of a DW under
the applied magnetic field Hext = Hextx. It is convenient to
parametrize the magnetization as follows:

M = Ms(cos θ, sin θ cos δ, sin θ sin δ), (4.35)

where in general the both angles depend on (x, t). At zero
applied current and at Hext = 0 the equilibrium shape of
the DW is determined by the condition Ṁ = 0 and from the
LLG equation (4.48) we obtain that it results in the condition
M ×Heq

eff = 0. Making use of parametrization (4.35) we can
express Heff as

Heq
eff = (1/Ms)[(K cos θ − Aexθ′′ sin θ − Aex cos θ(θ′)2)x+

(−K⊥ sin θ cos δ + Aex cos δ(θ′′ cos θ − sin θ(θ′)2))y +

Aex sin δ(θ′′ cos θ − sin θ(θ′)2)z]. (4.36)

The solution of M ×Heq
eff = 0 is given by δ = π/2 and

θ(x) obeying the equation

θ′′ − K

Aex
cos θ sin θ = 0. (4.37)

The solution of Eq. (4.37) satisfying the appropriate asymp-
totic conditions takes the form

cos θ = ν tanh[(x− x0)/dw], (4.38)

where dw =
√
Aex/K is the DW width. The above ansatz

corresponds to the head-to-head DW (ν = −1) or tail-to-tail
(ν = 1), lying in the xz-plane (see Fig. 4.9).
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Figure 4.9: Head-to-head domain wall.

First of of all, we consider the mechanism of the field-driven
domain-wall motion qualitatively. When an external magnetic
field is applied to the easy-axis [Fig. 4.10(a)], the magnetiza-
tion in the wall tilts out the easy-axis plane due to the torque
caused by the external field [Fig. 4.10(b)]. This tilting wall
feels an effective magnetic field B⊥ arising from the hard-axis
anisotropy K⊥, which leads to a rotation of the magnetiza-
tion around the y-axis and thus the translational motion of
the domain wall occurs [Fig. 4.10(c)].

Figure 4.10: Qualitative illustration of a DW motion mecha-
nism. Adopted from [26].

Now our goal is to find the DW velocity at small applied
fields. We follow the Walker’s procedure [27] by assuming
that δ = δ(t) and the DW is moving according to the time-

dependent shift x0(t) =
t∫

0

v(t′)dt′ in the Eq.(4.38). We assume

that the distortion of the wall is small during the wall motion,
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that is δ = π/2 + δ1, where |δ1| << 1. In this case taking into
account that dw∇xθ = −ν sin θ for the DW we obtain

∂tδ1 = ν
αv

dw
+ γHext (4.39)

− (1 + α2)νv =
γdwK⊥δ1

Ms

+ dwαγHext. (4.40)

In this case Eqs. (4.39) and (4.40) yield the following equa-
tion for v(t):

∂tv +
γαK⊥

Ms(1 + α2)
v = −ν dwγ

2K⊥Hext

Ms(1 + α2)
. (4.41)

Taking into account the initial condition determined by the
Eq. (4.40) (1 + α2)v(t = 0) = −νdwαγHext, which follows
from δ1(t = 0) = 0 we determine the solution of Eq. (4.41) in
the form:

v(t) =
νdwγHext

α

e−t/td

(1 + α2)
− νdwγHext

α
, (4.42)

δ(t) =
π

2
+
td

(
1− e−t/td

)
1 + α2

γHext. (4.43)

where td = (1+α2)M/(αγK⊥) is the characteristic time scale.

It is important that the applied magnetic field moves DWs
of opposite types (ν = ±1) to opposite directions. In other
words, the field enlarges the energetically favorable domain
and shrinks the energetically unfavorable domain.

The solution (4.42,4.43) is only valid for small enough fields
applied to the system. If the field is large enough, the condi-
tion |δ1| � 1 is violated and Eqs. (4.39) and (4.40) are not
valid. The DW can still be moved by the field, but it does
not preserve its plane equilibrium shape Eq. (4.38) and the
motion acquires a precessional character. The wall velocity as
a function of the magnetic field is sketched in Fig. 4.11. The
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steady motion when the wall preserves its equilibrium plane
shape is changed by the precessional motion at the field which
is called by the ”Walker breakdown” field.

Figure 4.11: Sketch of a DW velocity as a function of the
external magnetic field. Adopted from [28].

Getting rid of the linear approximation δ ≈ π/2 + δ1,
where δ1 � 1, one can find the Walker’s breakdown field
HW = K⊥α/(2Ms). The frequency of a stationary preces-
sion above the Walker’s breakdown field takes the form ω =
γ
√
H2
ext −H2

W/(1 + α2). The average over the precession pe-
riod velocity of the DW motion above the Walker’s breakdown
field is v̄ = −(νdwγHext/α)[1−

√
1−H2

W/H
2
ext/(1 + α2)]. At

Hext � HW the above expression gives v̄ = −νdwγHextα/(1 +
α2). In a typical experimental situation α . 0.02. In this case
the ratio of the DW velocities below and above the Walker’s
breakdown is v/v̄ = 1/α2. Therefore, the DW velocity above
the Walker’s breakdown is greatly suppressed.

Experimental results on the field-driven DW motion are
presented in Figs. 4.12, 4.13. Fig. 4.12 explains the measure-
ment technique, while the results of the DW velocity as a func-
tion of the applied field are presented in Fig. 4.13.
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Figure 4.12: Field-driven magnetization reversal measure-
ments. (a) Example drive-field waveforms used for fields above
(solid line) and below (dashed line) the wall injection field,
Hi. (b) Time-resolved magneto-optical Kerr effect (MOKE)
signal (symbols) and fits to the error function (solid lines),
in response to the 35 Oe field waveform of (a). The MOKE
transients were measured at the nanowire locations indicated
in (c). (c) The scanning electron micrograph; ellipses approx-
imate the measured width of the laser spot. From [29].

4.6 Spin-transfer torque and current-

induced DW motion in textured

ferromagnets

4.6.1 Spin-transfer torque

As an electric current flows in a DW, the spin current, whose
spin direction is varying along with the direction of the magne-
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Figure 4.13: Average domain-wall velocity versus field step
amplitude. Arrows mark the domain-wall injection field, Hi,
and velocity peak, Hp. Straight solid lines are linear fits to the
data below Hp and above Hi, respectively; the curved line is
a visual guide. Filled symbols show velocities obtained for a
square-wave drive field and open symbols those obtained using
injection pulse waveforms, such as in Fig. 4.12(a). The inset
shows the detail around the velocity peak. From [29].

tizationM (r, t) is locally absorbed, producing an STT. Again,
we use the diffusive transport model and separate the equilib-
rium and nonequilibrium parts of the spin density and the spin
current

m(r, t) = m0
M(r, t)

Ms

+ δm(r, t), (4.44)

Js = − P

2eMs

je ⊗M(r, t) + δJs, (4.45)

where δm and δJs are the nonadiabatic parts of spin density
and spin current, m0 is the equilibrium itinerant spin density
and P is the current polarization.
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Figure 4.14: Schematics of spin transport through a magnetic
transverse DW. Adopted from [19].

The semiclassical diffusive theory presented earlier relates
the nonequilibrium current density to the nonequilibrium spin
density [Eq.(4.25)]. By inserting Eq. (4.44) and Eq. (4.45) into
Eq. (4.22), and discarding the time derivation of the magne-
tization and assuming a slow variation of the magnetization
in the DW (that is, neglecting the second order coordinate
derivatives) we have

T =
γ~P
eMs

(je∇)M − 2Msδm

Sτsf
. (4.46)

The nonadiabatic part of the electron magnetization δm is
perpendicular to the local direction of M (r, t), that is can
be written as δm = B1(je∇)M + (B2/Ms)M × (je∇)M .
Coefficients B1 and B2 can be found in the framework of a
given microscopic model. The first term of this expression can
be effectively included into the first term of Eq. (4.46), but
the second term does not. Typically microscopic calculations
indicate that B1,2/τsf is considerably smaller than γ~P/2eMs.
Neglecting the term proportional toB1 (or effectively including
it into the first term of the torque) we obtain

T =
γ~P
eMs

[
(je∇)M − β

Ms

M × (je∇)M
]
. (4.47)
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These two terms are sometimes referred to as the adiabatic and
nonadiabatic torques, respectively. Both torques vanish in the
absence of DW, and interestingly, the nonadiabatic torque is
proportional to the spin-flip scattering in this model. Then,
in the absence of spin-flip scattering, the nonadiabatic torque
vanishes and the DW only generates an adiabatic torque.

Figure 4.15: Adiabatic spin transfer torque. Adopted from
[30].

4.6.2 Current-induced magnetization dynam-
ics of domain walls

Now our goal is to investigate the magnetization dynamics of
the domain wall in a ferromagnetic thin film under the ac-
tion of the electric current. Our analysis is based on the LLG
equation, which includes the current-induced torque terms dis-
cussed above. The LLG equation takes the form

∂M

∂t
= −γM ×Heff +

α

Ms

M × ∂M

∂t
+ T , (4.48)

where the effective field takes the form

Heff = (1/M2
s )(KMxx−K⊥Myy + Aex∇2

xM), (4.49)
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where K > 0 and K⊥ > 0 are the anisotropy constants for the
easy and hard axes, respectively. Aex is the constant describing
the inhomogeneous part of the exchange energy.

The torque T can be expressed as a sum of the adiabatic
and nonadiabatic contributions

T = bJ(je∇)M − cJ
Ms

M × (je∇)M , (4.50)

where bJ = 2PjeµB/eMs and cJ = ζbJ , ζ - is the dimen-
sionless phenomenological parameter describing the degree of
nonadiabaticity the spin of conduction electrons and the local
magnetization.

Now let us consider the behavior of the head-to head DW
induced by the electric current applied along the x-axis. The
solution for the DW velocity under the action of small applied
current can be found exactly in the same way as for the case of
applied field. Let us consider the same parametrization of the
magnetization Eq. (4.35). Again we assume that δ = δ(t) ≈
π/2 + δ1, where |δ1| << 1 and the DW is moving according

to the time-dependent shift x0(t) =
t∫

0

v(t′)dt′ in the Eq.(4.38).

Assuming that δ1 ∝ j, in the linear order with respect to j we
can obtain from the LLG equation:

∂tδ1 = ν
αv

dw
+
cJjν

dw
(4.51)

− νv

dw
=
γK⊥δ1

Ms

+ αδ̇1 +
bJνj

dw
. (4.52)

Eqs. (4.51) and (4.52) yield the following equation for v(t):

∂tv +
γαK⊥

Ms(1 + α2)
v = − γK⊥cJj

Ms(1 + α2)
. (4.53)

The solution of the above equation satisfying the initial con-
dition v(0) = −(bJ + αcJ)j/(1 + α2) takes the form

v = −cJj
α

+ e−t/td
(cJj
α
− (bJ + αcJ)j

1 + α2

)
. (4.54)
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Then δ1(t) can also be found from Eqs. (4.51) and (4.52):

δ1 = − νMs

dwγK⊥

[
(1 + α2)v + (bJ + αcJ)j

]
. (4.55)

It is seen that the adiabatic torque by itself does not cause
the steady DW motion in the regime of small applied current,
it just shifts the wall center from its initial position. However,
it does move the DW at je > je,th. In this regime of large
applied currents higher than the threshold current je,th the
plane equilibrium shape of the DW is not preserved and the
DW motion is precessional similar to the field-induced DW
motion above the Walker breakdown. In the regime of small
applied currents je < je,th the wall can be only moved by the
non-adiabatic STT or by the spin-orbit torque (is considered
later in the notes).

Figure 4.16: Difference between the field-induced and the
current-induced DW motion.

The important difference between the field-induced and
current induced DW motions is that the field moves the oppo-
site DWs to opposite directions, as it was shown above, while
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the current by itself (as the adiabatic torque, so as the nonadi-
abatic torque) moves the DWs of the both types in one and the
same direction. Therefore, we can move a ”train” of DWs by
current and it results in a lot of important applications (race-
track memory, spintronic memristors). For a more detailed
information on the racetrack memory see Ref. [31].

Figure 4.17: MFM image of the head-to-head DW displace-
ment under the applied pulse current [32].

The experimental data [32] on the direct MFM imaging of
the current-induced DW motion are presented in Figs. 4.17-
4.19. Fig. 4.17 represents the head-to-head DW displacement
under the current pulse. At t = 0 the position of the DW is
shown in Fig. 4.17(a). After that a pulsed current was applied
through the wire. The current density and the pulse duration
were 7 × 1011A/m2 and 5µs, respectively. Fig. 4.17(b) shows
the MFM image after an application of the pulsed current from
left to right. The DW, which had been in the vicinity of the
corner, was displaced from right to left by the application of
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Figure 4.18: MFM image of the tail-to-tail DW displacement
under the applied pulse current [32].

the pulsed current. Thus, the direction of the DW motion is
opposite to the current direction. Furthermore, the direction
of the DW motion can be reversed by switching the current
polarity as shown in Fig. 4.17(c). These results are consistent
with the spin-transfer mechanism. The same experiments for
a DW with different polarities, a tail-to-tail DW, were also
performed. The tail-to-tail DW is imaged as a dark contrast
in Fig. 4.18. Figs. 4.18(a)-(c) show that the direction of the
tail-to-tail DW displacement is also opposite to the current
direction.

The average DW displacement per one pulse as a function
of the pulse duration under the condition of constant current
density of 7 × 1011A/m2 is shown in Fig. 4.19. The average
DW displacement is proportional to the pulse duration, which
indicates that the DW has a constant velocity of 3.0m/s. It
was also confirmed that the DW velocity increases with the
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Figure 4.19: Average DW displacement per one pulse as a
function of the pulse duration under a condition of constant
current density [32].

current density.
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Chapter 5

Spin-orbit interaction.

Spin-orbit interaction is caused by the coupling of a moving
electron’s spin to an effective magnetic field due to an electric
field in the solid. The electric field could be either microscopic
(as in an atom due to the charged nucleus) or macroscopic (due
to a global electric field caused by doping in a semiconductor or
band structure modulation). Either type will make a moving
electron experience an effective magnetic field. The magnetic
field will not appear in the laboratory frame, but will appear
in the rest frame of the electron due to Lorentz transformation
of the electric field.

Spin-orbit interaction is at the heart of many spin-based
devices. There are essentially two types of spin-orbit interac-
tion that we need to discuss. One is microscopic or intrinsic
(as in an atom) and the other is macroscopic or extrinsic (as in
a solid). The latter is usually controllable by external agents
and forms the basis of many spintronic devices, but we will
start by discussing microscopic spin-orbit interaction first.



102 Spin-orbit interaction.

5.1 Microscopic (or intrinsic) spin-

orbit interaction in an atom.

5.1.1 Heuristic derivation of spin-orbit in-
teraction.

While orbiting around the nucleus, an electron in an atom feels
the electric field due to the nucleus. As a result, a magnetic
field that did not exist in the laboratory frame will appear in
the rest frame of the electron through a Lorentz transforma-
tion:

B′ =
E × v

c2
√

1− (v/c)2
≈ E × v

c2
, (5.1)

whereE is the electric field seen by the electron, v is its orbital
velocity, and c is the speed of light in vacuum. We mark all
the quantities related to the electron rest frame by prime.

The above equation is actually not entirely correct. Thomas,
in a paper published in Nature in 1926, had pointed out that
the Lorentz transformation that we normally use to connect
the electrons rest frame to the laboratory frame is inexact. If
there is a component of the electric field in a direction per-
pendicular to the instantaneous velocity, the electron will be
accelerating perpendicular to the velocity. Therefore, it is not
enough to transform the laboratory frame to the rest frame
using the electrons instantaneous velocity.

Now our goal is to find heuristically the correct expression
for B′. Let us choose the velocity to be in the x-direction, the
electric field in the y-direction andB′ in the z-direction. Let us
force the electron to move along a straight line (when standard
Lorentz transformation will be valid) by adding a magnetic
field B = Bzez in the laboratory frame so that the resulting
Lorentz force will balance the force due to the electric field.
This results in Ey = vxBz. If the combination of the added
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magnetic field and the electric field are Lorentz transformed
into the (non-rotating) rest frame of the electron, it results in
a magnetic field

B′z =
Bz − Eyvx/c2√

1− (v/c)2
. (5.2)

Expanding the above result in a binomial series, we get

B′z = Bz +Bz
v2
x

2c2
− Ey

vx
c2

= Bz − Ey
vx
2c2

. (5.3)

Generalizing to the vector form, the preceding result can
be written as

B′ = B +
E × v

2c2
. (5.4)

The above magnetic field B′ is the one experienced by the
moving electron. If we then remove the added magnetic fieldB
needed to convert the rotating frame to a non-rotating frame,
what remains is the magnetic field experienced in a rotating
frame. Therefore, we get

B′ =
E × v

2c2
. (5.5)

where the Thomas’s factor of 2 correction has appeared.

If we write the magnetic moment of the electron as µe, then
the energy of its interaction with B′ is

Eso = −µeB′ = −g0µBsB
′, (5.6)

where g0 is the gyromagnetic ratio for an electron and s is its
spin.

Using Eq. (5.5), the above equation can be re-cast as

Eso = −g0µB
(E × v) · s

2c2
(5.7)
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In order to derive the quantum-mechanical operator for spin-
orbit interaction, we should replace s with the corresponding
operator (1/2)σ to get

Hso = −g0

2

e~
2m

(E × v) · σ
2c2

, (5.8)

where we have used the vector σ = (σx, σy, σz) composed of
Pauli matrices. Since Dirac had shown that g0 = 2 for a free
electron in vacuum, the spin orbit interaction Hamiltonian for
an atom in vacuum can also be written as:

Hso =
e~

4m2c2
(∇V × p)σ, (5.9)

where the electric field is related to the electric potential V as
E = −∇V .

Note that Eq. (5.5) can be written as

B′ =
Ze~l

8πε0mc2r3
, (5.10)

where the nuclear charge is Ze, r is the orbit radius and ~l =
mr × v is the orbital angular momentum. Substituting the
above expression in Eq. (5.6), we get

Eso = −g0µB~
Ze

8πε0mc2r3
ls. (5.11)

Finally, in the Bohr atomic model, the orbital radius of the
n-th orbit is given by

rn =
4πε0~2n2

mZe2
. (5.12)

Substituting this in the preceding equation, we obtain

Eso = −g0

4

Z4e8m

n6~4c2(4πε0)4
ls. (5.13)
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The above energy depends on the scalar product ls, hence
the name ”spin orbit interaction”. Eq. (5.13) is only valid
for a one-electron atom. The general form of the spin-orbit
interaction energy is still given by Eq. (5.7). Note that the
intrinsic spin-orbit interaction strength is proportional to the
fourth power of the atomic number Z. That means electrons
in atoms of lighter elements will experience weaker spin-orbit
interaction. Organic semiconductors, consisting mainly of hy-
drocarbons, are made of light elements, and hence have weak
intrinsic spin-orbit interaction. As a result, they should have
large relaxation times. This has led to immense interest in
”organic spintronics”, which is the field of spin phenomena in
organic semiconductors.

5.1.2 Strict derivation of spin-orbit interac-
tion from the Dirac equation.

Our starting point is the Dirac equation for four-component
spinors, where we assume A = 0

i~
∂Ψ̂

∂t
=
{
cα̂p+ β̂mc2 + V (r)

}
Ψ̂, (5.14)

where

α̂ =

(
0 σ
σ 0

)
, β̂ =

(
I 0
0 −I

)
. (5.15)

The relativistic energy of the particle includes also its rest
energy mc2. It should be excluded in arriving at the non-
relativistic approximation: Ψ̂ = Ψ̂′e−imc

2t/~. In this case the
Dirac equation can be written in the form:

[E ′ − V (r)]ϕ̂ = c(σ · p̂)χ̂[
2mc2 + E ′ − V (r)

]
χ̂ = c(σ · p̂)ϕ̂, (5.16)
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where E ′ = E−mc2, ϕ̂ and χ̂ are two-component parts of the
four-component spinor Ψ̂′ = (ϕ̂, χ̂) and p̂ is the momentum
operator.

Our goal now is to expand Eq. (5.16) up to the first order
in v2/c2. The derivation closely follows [33]. Then from the
second of Eq. (5.16) up to the first order in (E ′−V )/2mc2 we
obtain

χ̂ =
(

1− E ′ − V
2mc2

)σ · p̂
2mc

ϕ̂ (5.17)

Substituting the above equation into Eq. (5.16) we find the
separate equation for ϕ̂:

[E ′ − V (r)]ϕ̂ =
(σ · p̂)

2m

(
1− E ′ − V

2mc2

)
(σ · p̂)ϕ̂. (5.18)

This equation can be transformed as follows

E ′ϕ̂ = H ′ϕ̂

H ′ = (1− E ′ − V
2mc2

) p̂2

2m
+ V +

~σ
4m2c2

[
∇V × p̂

]
− i~

4m2c2
∇V · p̂. (5.19)

In order to systematically account for all the terms of
the order of v2/c2 we should remember that due to the four-
component structure of the Dirac spinor ϕ̂ is normalized as
follows:∫
ρdτ =

∫
(ϕ̂†ϕ̂+ χ̂†χ̂)dτ =

∫
ϕ̂†
(

1 +
p̂2

4m2c2

)
ϕ̂dτ = 1. (5.20)

Further we use ψ̂ = ĝϕ̂ instead of ϕ̂ defined by the condition∫
ψ̂†ψ̂dτ =

∫
(ĝϕ̂)†ĝϕ̂dτ = 1, (5.21)
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where ĝ ≈ 1 + p̂2/(8m2c2). Then multiplying the Schrodinger
equation (5.19) by ĝ from the left we obtain Ĥψ̂ = E ′ψ with

H = (1− p̂2

4m2c2
)
[
ĝH ′ĝ−1 +

E ′

4m2c2
p̂2
]

=
p̂2

2m
+ V (r)−

p̂4

8m3c2
+

~σ
4m2c2

[
∇V × p̂

]
+

~2

8m2c2
∇2V (r). (5.22)

In Eq. (5.22) the terms in the second line represent the
relativistic corrections of the order of v2/c2. It can be easily
seen if we take into account that ~∇V ∼ ~V/a ∼ V p and
~∇2V ∼ ~2V/a2 ∼ p2V , where a is the characteristic size of
the system. The second term in the second line corresponds
to the spin-orbit interaction and coincides with Eq. (5.9).

5.2 Macroscopic (or extrinsic) spin-

orbit interaction in a solid.

In a solid, a quasi-free electron does not experience the strong
nuclear attraction that it would have experienced in an isolated
atom because the nuclear electric field is strongly screened by
other electrons. Therefore, the intrinsic (or microscopic) spin-
orbit interaction of the type discussed in the preceding sections
should be relatively weak in a solid. This is even more true for
electrons in the conduction band of direct gap semiconductors.
In direct-bandgap semiconductors (e.g., GaAs, InSb, etc.) the
lowest conduction band valley is at the Brillouin zone center
(-valley) where the electron orbitals are nearly |S >-type for
which l = 0. Hence, the l · s coupling nearly vanishes and
the intrinsic spin-orbit interaction will be very weak in the
conduction band. The wavefunctions of holes in the valence
band are, however, more |P >-type orbitals for which l 6= 0.
Hence, there is much stronger intrinsic spin-orbit interaction
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in the valence band of direct-bandgap semiconductors than in
the conduction band.

Electrons in the conduction bands of indirect-bandgap semi-
conductors like silicon and germanium can experience stronger
intrinsic spin-orbit interaction since the conduction band min-
ima are at Brillouin zone edges and not at the zone center.
Zone-edge electron orbital wavefunctions are not |S >-type, so
l ·s 6= 0. Electrons in the conduction band of silicon, however,
experience much weaker intrinsic spin-orbit interaction than
those in the conduction band of germanium since silicon is the
lighter element and the intrinsic spin-orbit interaction strength
is proportional to the fourth power of the atomic number.

Although electrons in a solid do not experience the strong
localized nuclear electric field owing to screening, they may
still see a macroscopic (delocalized) electric field (or potential
gradient) due to internal effects. Such an electric field could
arise from an internal potential gradient (see Fig. 5.1 for an ex-
ample) or because of an externally applied electric field. This
electric field will cause spin-orbit interaction. This problem
was examined by E. I. Rashba in 1961. The associated spin-
orbit interaction bears his name (Rashba interaction) and is
also some times referred to as spin-orbit interaction due to
structural inversion asymmetry (SIA) since an external or in-
ternal electric field that causes this interaction breaks inversion
symmetry. Another type of internal electric field may arise in a
solid due to crystallographic inversion asymmetry in a crystal.
This also causes spin-orbit interaction. This latter problem
was examined by G. Dresselhaus in 1954 and the associated
spin-orbit interaction is called by Dresselhaus interaction. It
is sometimes referred to as spin-orbit interaction due to bulk
inversion asymmetry (BIA) since it is caused by the lack of
crystallographic inversion symmetry through the bulk of the
crystal (see Fig. 5.3 for an example of the crystal structure).
These two effects are sometimes called symmetry-dependent
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spin-orbit interactions since they require broken inversion sym-
metry, while the intrinsic atomic type spin-orbit interaction
is called symmetry-independent spin-orbit interaction since it
does not require broken inversion symmetry.

Figure 5.1: Sketch of a semiconductor heterostructure and the
corresponding asymmetric confined potential (adopted from
the presentation by C. S. Chu)

It is easy to see from simple symmetry considerations why
in crystals with broken inversion symmetry the spin-orbit cou-
pling is allowed by symmetry. Indeed, in a system without in-
ternal or external magnetic field time-reversal symmetry holds,
i.e. changing the direction of the arrow of time will not alter
the properties of the system. The transformation t → −t
exchanges a particle moving with momentum k with a par-
ticle moving in −k. Time reversal will also invert the pre-
cessional motion of the electron and, therefore, its spin. As
a consequence, the energy of a right-moving spin-up parti-
cle will equal the energy of a left moving spin-down particle
ε(k, ↑) = ε(−k, ↓).
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Figure 5.2: Tuning of the Rashba spin-orbit coupling parame-
ter by an external electric field (adopted from the presentation
by C. S. Chu)

In a crystal with inversion symmetry, additionally ε(k) =
ε(−k) holds, both for spin-up and spin-down electrons. This
means, that the bandstructure is symmetric around the center
of the Brillouin-zone, k = 0, and all bands are doubly de-
generate. In contrast, in crystals without inversion symmetry
(for example GaAs) ε(k) 6= ε(−k) and only ε(k, ↑) = ε(−k, ↓)
holds. This leads to ε(k, ↑) 6= ε(k, ↓), therefore the degeneracy
of the bands can be lifted. This can be understood if we realize
that a lack of inversion symmetry, V (r) 6= V (−r), will result
in a non-vanishing potential gradient or electric field, E(r).

5.2.1 Rashba spin-orbit interaction.

As it was mentioned earlier, the Rashba-type spin-orbit inter-
action is due to the structural inversion asymmetry (SIA). SIA
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Figure 5.3: Crystal structure of GaAs (zinc blende, left) and
ZnO (wurzite, right). Both structures possess no center of
inversion.

typically arises at the surfaces or interfaces. An important re-
alization of a system with Rashba-type spin-orbit coupling is a
2D electron gas (2DEG) in doped semiconductor heterostuc-
tures, that support an electron gas at the interface between
two materials, see Fig. 5.1. Another possibility to study the
Rashba-effect in 2DEG are surfaces which support a surface
state, e.g. in Au(111): the electrons of the surface state move
in a potential gradient that is provided by the surface itself.
The ”bulk Rashba-effect” is also possible. In the right panel
of Fig. 5.3 we can see from the ZnO lattice that it consists
of bi-layers different atoms that locally create electric fields in
z-direction, analogously to the situation on surfaces.

If we neglect bandstructure effects, then the Rashba inter-
action Hamiltonian can be obtained from Eq. (5.9) by direct
analogy

HR =
e~

4m∗2c2
(σ × p) ·E = αRĉ(σ × p), (5.23)

where αR = e~E/(4m∗2c2), E is the electric field and ĉ =
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E/E. However, band structure effects will inevitably play a
role in a crystalline solid. Accounting for them results in more
complex physics. For example, forA3B5 (GaAs,InAs,GaP,InP,...)
semiconducting heterostructures the following expression for
αR was obtained [34]:

αR =
e~
m∗

π∆s(2Eg + ∆s)

Eg(Eg + ∆s)(3Eg + 2∆s)
(5.24)

where Eg is the band gap of the semiconductor and ∆s is the
spin-orbit splitting in the valence band.

The Rashba interaction plays an extremely important role
in spintronics since this interaction can be tuned by an external
electric field E (see Fig. 5.2). Therefore, it is the basis of many
spintronic devices, such as the Spin Field Effect Transistor.

The Rashba spin-orbit constant can be determined experi-
mentally, for example by Shubnikov - de Haas oscillations [35].
Fig. 5.4 represents the experimental results for Shubnikov-de
Haas oscillations of the conductivity in 2DEG formed in
InP/In0.77Ga0.23As/InP quantum well. The concentration
for each of the electron subbands can be found from the oscil-
lation period according to

n2DEG =
e

h

1

∆(1/B)
, (5.25)

where B is the perperdicular magnetic field applied to the
structure and ∆(1/B) is the oscillation period in the inverse
magnetic field. The 1/B Fourier transform of the resistance,
shown in Fig. 5.5, clearly resolves a double-peak structure.
The Rashba spin-orbit constant can be found from these data
as αR = (~∆n/m∗)

√
π/(2(n−∆n)). The results for the Rashba

constant are presented in Fig. 5.6.
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Figure 5.4: Shubnikovde Haas oscillations at a temperature of
0.3 K with the gate voltage changed as a parameter. Data are
taken from [35].

5.2.2 Dresselhaus spin-orbit interaction.

The Dresselhaus type of spin-orbit interaction arises due to
crystallographic inversion asymmetry in a crystal that results
in an effective electric field. This interaction will be absent
in a centro-symmetric crystal like silicon or germanium, which
do not have crystallographic inversion asymmetry in any di-
rection. That is why the Dresselhaus interaction is sometimes
referred to as spin-orbit interaction due to bulk inversion asym-
metry (BIA).
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Figure 5.5: Fourier transform taken from the SdH oscillations
of Fig. 5.4. Data are taken from [35].

Figure 5.6: Values of the spin-orbit coupling parameter αR
given by experiment and theory. Data are taken from [35].

It was shown that for zincblende AIIIBV lattice the spin-
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orbit contribution to the hamiltonian takes the form:

HD = DΩ(k)σ,

Ω = (kx(k
2
y − k2

z), ky(k
2
z − k2

x), kz(k
2
x − k2

y)) (5.26)

If we consider (001) surface(interface) of AIIIBV semicon-
ductor, than 〈kz〉 = 0, 〈k2

z〉 ∼ 1/d2 and

〈Ω〉 = ( kxk
2
y︸︷︷︸

cubic→0

−kx〈k2
z〉, ky〈k2

z〉 − kyk
2
x︸︷︷︸

cubic→0

, 0) =

〈k2
z〉(−kx, ky, 0). (5.27)

Therefore,

HD = β(kyσy − kxσx). (5.28)

5.3 Magneto-electric subbands

Consider a two-dimensional electron gas (2-DEG) such as the
one encountered at the interface of a heterostructure or a quan-
tum well. Fig. 5.1 shows such a system. We will assume that
there is a symmetry-breaking electric field Ey along the y-axis
that induces a Rashba spin-orbit interaction. This electric
field could be caused by the structural asymmetry, or could
be applied from outside by attaching a gate electrode. In ad-
dition to the Rashba interaction, there is also the Dresselhaus
interaction accruing from bulk (or crystallographic) inversion
asymmetry. Finally, there is also an external magnetic field
inducing the Zeeman interaction. Our intention is to derive
the dispersion relation (relation between electron kinetic en-
ergy and wavevector) in this two-dimensional system. We will
also derive the eigenspinors (or spin eigenstates) at any given
wavevector in a given subband. Since the boundaries of the
quantum confined structure restrict motion in the direction
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perpendicular to the boundary, and the external magnetic field
also constrains the electrons motion by forcing it into closed
Landau orbits, the electron experiences both electrostatic and
magnetostatic confinement. This discretizes the allowed ener-
gies, breaking it up into discrete subbands. They are called
magneto-electric subbands since they are due to the combined
effect of electrostatic and magnetostatic confinements.

5.3.1 In-plane magnetic field

Let us consider the situation when there is a magnetic field in
the plane of the 2-DEG. In this case, the magnetic flux density
is given by B = Bxx̂ + Bz ẑ since the 2-DEG is in the (x, z)-
plane. We choose the gaugeA = y(−Bzx̂+Bxẑ). The effective
mass Hamiltonian describing the 2-DEG can be written in the
form

H2−DEG =
1

2m∗

[
(px − eBzy)2 + p2

y + (pz + eBxy)2
]

+ V (y)−
g

2
µB(Bxσx +Bzσz) + αR

[
(px − eBzy)σz − (pz + eBxy)σx

]
+

β
[
(px − eBzy)σx − (pz + eBxy)σz

]
, (5.29)

where V (y) is the confining potential in the y-direction (in-
cluding the effect of the y-directed electric field causing the
Rashba interaction). The terms in the second and third line
are spin dependent terms since they involve the Pauli spin
matrices. Note that the first of these spin-dependent terms is
the Zeeman interaction, the second is the Rashba interaction,
and the last is the Dresselhaus interaction. To find the energy
dispersion relations in this 2-DEG and the 2-component wave-
function for the spin eigenstates, we have to solve the equation

H2−DEGψ2−DEG(x, y, z) = Eψ2−DEG(x, y, z). (5.30)

Since the Hamiltonian is invariant in x and z, the wavevectors
kx, and kz are good quantum numbers and we can write the
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2-component wavefunction as

ψ2−DEG(x, y, z) =
1√
LxLz

eikxxeikzzλn0 (y)

(
κ1

κ2

)
, (5.31)

where (1/LxLz)
∫ ∫

dxdz = 1. We assume that the width of
the 2-DEG is so narrow that the subbands are well separated in
energy. As a result, we can ignore subband mixing. Then the
Schrodinger equation (after multiplying by λn∗0 (y), integrating
over y and assuming 〈y〉 =

∫
dyλn∗0 (y)yλn0 (y) = 0) takes the

form (below we assume ~ = 1):{
εn +

(k2
x + k2

z)

2m∗
− g

2
µB(Bxσx +Bzσz) + αR

[
kxσz − kzσx

]
+

β
[
kxσx − kzσz

]}( κ1

κ2

)
= En

(
κ1

κ2

)
, (5.32)

where εn is the energy of the n-th quantized transverse mode,
which is to be found from[
− 1

2m∗
∂2

∂2
y

+
e2y2(B2

x +B2
z )

2m∗
+ V (y)

]
λn0 (y) = εnλ

n
0 (y) (5.33)

In order to find the spin-dependent energy eigenstates En
(as a function of kx, and kz) for the n-th magneto-electric
subband, as well as the corresponding eigenspinors, we have
to diagonalize the Hamiltonian Eq. (5.32), meaning that we
must find its eigenvalues and eigenfunctions. Since we have a
2× 2 matrix, there are two eigenvalues and two corresponding
eigenfunctions. The two eigenvalues are the spin-dependent
eigenenergies, and the two eigenfunctions are the eigenspinors.
We find that the eigenvalues in the n-th subband are

E±n =
k2
x + k2

z

2m∗
+ εn ±√

(
g

2
µBBz − αRkx + βkz)2 + (

g

2
µBBx + αRkz − βkx)2. (5.34)
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The corresponding eigenspinors are:

ψ+ =

(
κ+

1

κ+
2

)
=

(
− sin θk
cos θk

)
(5.35)

and

ψ− =

(
κ−1
κ−2

)
=

(
cos θk
sin θk

)
, (5.36)

where

θk =
1

2
arctan

[(g/2)µBBx + αRkz − βkx
(g/2)µBBz − αRkx + βkz

]
. (5.37)

Note that at any given wavevector state (kx, kz), the two
eigenspinors are orthogonal, which means that the correspond-
ing spins are anti-parallel. The angle θk, however, depends on
the wavevector components kx and kz, and is independent of
the subband index n. Because of the wavevector dependence of
the eigenspinors, neither spin-split level whose energy disper-
sion relation is given by Eq. (5.34) has a fixed spin quantization
axis. The spin quantization axis, or the spin polarization in
any level, changes with changing wavevector. We can find this
spin quantization axis (spin polarization) easily. Let Sn be the
component of spin polarization along the n-axis. Then

S±n =
1

2
ψ±†(σn)ψ±. (5.38)

Therefore, the spin of the electron with wave vector k =
(kx, 0, kz), which is in the eigen states Eqs. (5.35)-(5.36) lies in
(x, z)-plane and makes the angle ϕ = 2θk + π (ϕ = 2θk) with
the z-axis.

In Fig. 5.7 we plot the energy versus wavevector relations
for the lowest magneto-electric subband (n = 1). Each magneto-
electric subband is spin-split into two levels. The lower one has
inflections along lines kx = 0 and kz = 0, whereas the upper
one is nearly a paraboloid.
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Figure 5.7: Energy dispersion relation of spin-split levels in the
lowest subband in a two dimensional electron gas subjected to
a magnetic field in the plane of the gas. We assumed m∗ =
0.05m0, g = 4, B = 1 Tesla, αR = 1011 eV-m, β = 2αR. The
wavevectors are in units of cm−1. (adopted from [15])

5.3.2 Special case: no magnetic field, no Dres-
selhaus SO interaction.

This is a situation that arises in the discussion of the intrin-
sic spin Hall effect visited later. For this case, tan 2θk =
−kz/kx, so that sin 2θk = −kz/k and cos 2θk = kx/k, where
k =

√
k2
x + k2

z . It can be easily seen that the spin of the eigen
states makes the right angle with its momentum. The energies
of the spin-split levels and the corresponding spin polarizations
at the Fermi surface are presented in Fig. 5.8

In more general case when the both Rashba and Dressel-
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Figure 5.8: Left: spin-split subbands at zero magnetic field
for the case of Rashba SO coupling. Right: spin structure of
the eigen states at the Fermi level ε = εF (adopted from the
presentation by D. Weiss).

haus spin-orbit interactions are present in the system, the cor-
responding energies of the spin-split levels and spin polariza-
tions at the Fermi surface are presented in Fig. 5.9.
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Figure 5.9: Upper row: spin-split subbands at zero magnetic
field. Bottom row: spin structure of the eigen states at the
Fermi level ε = εF (adopted from the presentation by D.
Weiss).
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Chapter 6

Some SO-related spin
phenomena.

6.1 The spin Hall effect.

With the advent of spintronics, a plethora of Hall effects have
come to the fore, which we discuss next.

Normal Hall effect. The normal Hall effect considers a
solid structure subjected to a magnetic field in the z-direction.
An electric field is applied in the x-direction that causes an
electron in the solid to accelerate in the x-direction. However,
scattering causes a frictional force, proportional to the elec-
tron velocity, which opposes the force due to the electric field.
When the two forces balance, the electron reaches a constant
velocity known as the drift velocity. In the steady state, the
electron drifts along the x-direction with this constant veloc-
ity vdrift. The z-directed magnetic field exerts a Lorentz force
on the electron which pushes it in either the +y-direction or
y-direction depending on the direction of the magnetic field.
If the sample has boundaries in the y direction, then electrons
will pile up at one edge, causing a charge imbalance between
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this edge and the opposite edge. This charge imbalance will
cause an associated potential difference. This is the Hall volt-
age and this effect is the celebrated Hall effect predicted by Ed-
win Hall in 1879. It is routinely used today in semiconductor
characterization to ascertain carrier concentration in a sample
or its polarity (p-type or n-type). The sign of the Hall volt-
age depends on the polarity of charge carriers (whether they
are electrons or holes). Its magnitude is inversely proportional
to the carrier concentration and directly proportional to the
magnetic field.

Anomalous Hall effect. In a ferromagnet, there can be
an additional contribution to the Hall voltage that arises with-
out any external magnetic field. Because of spin-dependent
band structure or spin-dependent scattering events due to spin-
orbit coupling, electrons whose spins are polarized in the, say,
+z-direction, are scattered to one edge of the sample and elec-
trons whose spins are polarized in the −z-direction are scat-
tered to the other edge. Since the material is a ferromagnet,
there are majority and minority spins, meaning that there can
be more electrons with +z-polarized spins than −z-polarized
spins. In that case, more electrons are scattered towards one
edge than the other, leading once again to a charge imbalance
between these two edges and a resulting Hall voltage. This
Hall voltage does not require a magnetic field to be produced.
This is the so-called anomalous Hall effect, whose existence is
often used as proof of ferromagnetism in materials. Note that,
not only a charge imbalance exist between the two edges, but a
spin imbalance exists as well. Therefore, both a charge current
and a spin current can flow between the two edges.

Quantum Hall effect. The quantum Hall effect is a well-
known phenomenon in a two-dimensional electron gas sub-
jected to a transverse magnetic field at low temperatures. The
longitudinal resistance of the electron gas vanishes and the
transverse resistance (or Hall resistance) exhibits plateaus at



6.1 The spin Hall effect. 125

certain values of the magnetic feld, the plateau resistance be-
ing quantized to h/e2. This happens due to the formation of
well-defined Landau levels and edge states that carry current.

Quantum anomalous Hall effect. A similar phenomenon
can occur without a magnetic field in a two-dimensional fer-
romagnetic insulator. In the limit of vanishing spin-orbit cou-
pling (that couples the majority and minority spins) and large
enough exchange splitting that separates the majority and mi-
nority spin bands in a ferromagnet, the majority spin band will
be completeley full and the minority spin band completely
empty at low temperatures. When the exchange splitting
is gradually reduced, the two bands intersect each other in
wavevector space, leading to band inversion. The energy de-
generacy at the intersection point can be removed by turn-
ing on the spin-orbit coupling, leading to the formation of
an energy gap. When the Fermi level is in this gap, the 2-
DEG is insulating since the density of states at the Fermi
level is zero. Such an insulator, also known as a Chern insu-
lator, should exhibit a quantized anomalous Hall resistance of
h/e2 and zero longitudinal resistance when the Fermi level is
placed within the gap. The quantized anomalous Hall effect
was experimentally demonstrated in the magnetic topologi-
cal insulator Cr-doped (Bi,Sb)2Te3 whose surface behaves like
a two-dimensional ferromagnet. The longitudinal and anoma-
lous Hall resistances were measured in the absence of any mag-
netic field. The Fermi level was varied by applying a potential
to the topological insulator with a gate terminal. At certain
values of the gate voltage (which corresponded to placing the
Fermi level in the gap), the longitudinal resistance nearly van-
ished and the anomalous Hall resistance exhibited a plateau
quantized to h/e2, indicating the formation of the quantum
anomalous Hall state.

Therefore, all the known manifestation of the Hall effect
can be classified as normal (including quantum Hall effect),
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Figure 6.1: Different types of the Hall effect (not quantum
version). Adopted from [15].

anomalous (including quantum anomalous) and spin (includ-
ing quantum spin Hall effect) Hall effects. Their physical
essence is demonstrated pictorically in Fig. 6.1.

6.1.1 Extrinsic spin Hall effect.

There are two types of Spin Hall effect: extrinsic and intrin-
sic. The extrinsic effect arises from spin-dependent scattering,
much like the anomalous Hall effect. A spin-unpolarized cur-
rent flowing into a paramagnetic semiconductor slab in the
absence of any magnetic field will inject electrons into the slab
with spins pointing up and down with respect to the slabs
plane, as shown in the far right figure of Fig. 6.1. Spin de-
pendent scattering will deflect spin-up electrons to one side of
the slab and spin-down electrons to the other side, resulting in
a spin imbalance between the right and left edges of the slab.
Therefore, a spin current will flow between the two edges just
as in the case of the anomalous Hall effect. However, since the
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material is not a ferromagnet and the current injected is not
spin-polarized, there are equal numbers of spin-up and spin-
down electrons in the slab. The result is that the number of
spin-up electrons piling up at one edge is equal to the number
of spin-down electrons piling up at the other edge. Therefore,
there is no charge imbalance between the two edges and hence
no charge current flows, unlike in the case of the anomalous
Hall effect.

If one assumes that the elastic scatterers in the paramagnet
are spinless and described by a scattering potential of the form

V = Vc(r) + Vs(r)σL, (6.1)

where σ and L are the spin and orbital angular momentum
operators of an electron scattered by the scatterer, the scat-
tered beam will be spin-polarized with a polarization vector
given by [36]

S =
fg∗ + gf ∗

|f |2 + |g|2
n̂, (6.2)

where n̂ is a unit vector perpendicular to the scattering plane
defined by the initial and final wavevectors of the electron
(before and after scattering), while f and g are the spin-
independent and spin-dependent parts of the scattering am-
plitude.

The Spin Hall voltage generated due to spin-up electrons
can be written in analogy to the anomalous Hall effect:

V↑,↓ = RsWJxn↑,↓µB, (6.3)

where W is the width of the slab, Jx is the magnitude of the
(x-directed) current density flowing through the slab, n↑,↓ is
the density of spin-up (spin-down) electrons, and µB is the
Bohr magneton. In Fig.6.1, spin-up electrons will be flowing
to the left and spin-down electrons to the right. These two
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spin current components add and hence the total Spin Hall
voltage will be [37]

VSH = RsWJx(n↑ + n↓)µB = RsWJxnµB. (6.4)

If we connect the two edges of the sample by a transverse metal
strip the spin current is given by J↑ + J↓ = VSH/ρW , where ρ
is the resistivity of the sample per spin subband. The ratio of
the spin current to the charge current (sometimes referred to
as the Spin Hall angle) is therefore

θSH =
Jspin
Jcharge

=
J↑ + J↓
Jx

=
RsnµB
ρ

. (6.5)

Note that the spin current is dissipationless. The electric field
E causing the charge current injection must be collinear with
the charge current and is hence perpendicular to the spin cur-
rent Jspin. As a result, Jspin ·E = 0, so the spin current does
not dissipate any energy. The Spin Hall voltage of course can-
not be measured with a voltmeter since there is no voltage
difference between the two sides. The electrochemical poten-
tials of the spin-up electrons at the two edges are different as
are the electrochemical potentials for the spin-down electrons,
but the total electrochemical potentials at the two edges are
the same. However, if we connect the two edges with a con-
ductor of width w to allow spin-up electrons to flow to the left
and spin-down electrons to flow to the right, then something
remarkable happens.

The same spin-dependent scatterers will deflect the left-
flowing spin-up electrons toward one side and right-flowing
spin-down electrons to the same side. In other words, elec-
trons accumulate on one side and deplete on the other. There-
fore, a charge imbalance will build up at the two edges of the
conductor, as shown in Fig. 6.2, and the resulting potential
drop can be measured with a voltmeter! These voltages have
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Figure 6.2: Inverse spin Hall effect. Adopted from [15].

been experimentally measured. This effect is called the in-
verse Spin Hall effect. The electric field associated with the
potential drop is given by [37]

EISH = θSHρ[Jspin × ν], (6.6)

where ν is the unit vector directed along the spin polarization
of the spin current Jspin.

6.1.2 Intrinsic spin Hall effect.

The intrinsic Spin Hall effect is an intriguing phenomenon
that takes place in a two-dimensional electron gas in ballis-
tic transport (no scattering, whether spin-dependent or spin-
independent), provided there is spin-orbit interaction, such as
the Rashba effect, which can exist in the 2-DEG. To an ob-
server, there is no difference between the extrinsic and intrinsic
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Spin Hall effect; when a charge current is injected in the plane
of the 2-DEG, a dissipationless spin current (consisting of spins
polarized perpendicular to the plane of the 2-DEG) flows in
the plane of the 2-DEG in a direction perpendicular to the
charge current. However, it is not caused by spin-dependent
scattering deflecting opposite spins to opposite sides. Instead,
it is caused by the Rashba spin-orbit interaction.

Our consideration closely follows [38]. Let’s consider a 2D
electron gas in the (x, y)-plane. The hamiltonian of the system
takes the form

H =
p̂2

2m
+ V (r) + αRẑ[σ × p̂], (6.7)

where p̂ = p̂xx̂+ p̂yŷ.

We can operate with the Rashba SO interaction in terms
of the so-called spin-dependent Rashba effective magnetic field

BR =
2αR
gµB

[p̂× ẑ]. (6.8)

The dynamics of an averaged electon spin is described by

dS

dt
=
gµBBR

~
× S (6.9)

or equating each component separately

dSx
dt

=
gµBBRy

~
Sz = −2αRkxSz (6.10)

dSy
dt

= −gµBBRx

~
Sz = −2αRkySz (6.11)

dSz
dt

=
gµB
~

(BRxSy −BRySx) = 2αR(kxSx + kySy) (6.12)

From Eq. (6.8) we see that the magnetic field in our 2-
DEG lies entirely in the plane of the 2-DEG and has no z-
component. Since in the presence of dissipation the electron
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spins must align parallel or anti-parallel to the magnetic field,
we conclude that the electron spins in the 2-DEG will have no
z-component and Sz = 0. Consider now the situation when
an electric field Ex is applied in the positive x-direction at
time t = 0. This field will induce a drift of electrons in the
x-direction. We will show that three things result from this
drift: (1) the spins develop a z-component; (2) +z-polarized
and −z-polarized spins accumulate at opposite edges of the 2-
DEG, causing a spin imbalance between the edges and hence
a spin-current flow along the y-direction; and (3) the ratio of
the spin current density to the electric field (i.e., the spin-Hall
conductivity) is a universal constant. This is the intrinsic Spin
Hall effect.

Let us focus on an electron with initial wavevector k0 at
time t = 0 and define a new set of coordinate axes (the primed
coordinates) such that the y′-axis coincides with k0. Let the y′-
axis subtend an angle φ with the y-axis. At t = 0, BR(t = 0)
is along the x′ direction, since it is perpendicular to k0 and
ẑ. Since BRx′ 6= 0 and BRy′ = 0, Sx′ = ∓~/2 in the lower
(upper) spin subband, while Sy′ = Sz = 0. The application of
the electric field along the x-direction will change BR since it
will accelerate the electron and change k. We will assume that
the electric field is weak and find solution of Eqs. (6.12) to the
linear order in the electric field. Assuming that dSz/dt = 0 we
obtain:

Sx′ ≈ ±
~
2

(6.13)

Sy′ = ±~
2

BRy′

BRx′
, (6.14)

Sz(t = +0) = ∓ ~
gµB

1

BRx′

d(BRy′/BRx′)

dt

∣∣∣
t=+0

~
2
. (6.15)

Now recall that at BRy′/BRx′ = −kx′/ky′ . Therefore from
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Eq. (6.15) it follows

Sz(t) = ± ~2

2gµBBRx′

ky
k2

dkx
dt

∣∣∣
t=+0

= ± e~
2gµBBRx′

ky
k2
Ex. (6.16)

In the last equation we have used the Newton’s law d(~kx)/dt =
−eEx. Expressing BRx′ ≈ BR via αR we obtain:

Sz(t = +0) = ± ~e
4αR

ky
k3
Ex. (6.17)

As ky(t) = const = ky,0 if the electric field is applied along the
x-axis and k̇ ∝ E, we indeed have dSz/dt = 0 up to the linear
order in E.

Eq. (6.17) is instructive. Note that even though there
would have been no z-component of the spin in the 2-DEG
in the absence of the electric field (because BR would have
been entirely in the x-y plane), a z-component develops when
the electric field is present and it is directly proportional to the
strength of the field. It is also inversely proportional to the
strength of the spin-orbit interaction. A stronger spin-orbit in-
teraction would have resulted in a stronger BR in the plane of
the 2-DEG, tending to keep the spin polarization constrained
to the plane of the 2-DEG and decreasing the z-component of
spin. That is the physics. Let us now examine if there is any
y-directed spin current density Jsy(t) due to the z-component
of the spins at temperature T → 0.

The operator for the y-component of the z-polarized spin
current density is

ĵzsy =
1

2

{
σ̂z, v̂y

}
=

1

2

{
σ̂z,

∂Ĥ

∂py

}
=

py
m∗

σ̂z. (6.18)

Consequently, the contribution to the y-component of the z-
polarized spin current density from a wavevector state k in
either spin-split band is Jzsy±(k) = S±z (k)(~ky/m∗). Therefore,
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the y-directed spin current density due to z-polarized spin at
time t = τ is

Jzsy(τ) = Jz+sy + Jz−sy , (6.19)

where Jz+sy and Jz−sy are the upper and lower spin subband
current densities, which are to be calculated as:

Jz±sy =
1

4π2

2π∫
0

kF±∫
0

dφkdk
~ky
m∗

S±z (k) =

± e~
16πm∗αR

ExkF±. (6.20)

Therefore

Jzsy(τ) =
e

8π
Ex. (6.21)

This result shows that a spin-current due to z-polarized spins
flowing in the y-direction exists, which means that +z and
−z-polarized spins accumulate at opposite edges of the sample
due to the combined actions of the spin-orbit interaction and
the electric field causing drift (or the charge current resulting
from this drift). This is the intrinsic spin-Hall effect, which
does not require spin-dependent scattering at all, unlike the
extrinsic spin-Hall effect. The spin Hall conductivity is:

σSH =
Jsy
Ex

=
e

8π
. (6.22)

Note that the Spin Hall conductivity depends only on the uni-
versal constant e, which is the charge of the electron. Hence
the name ”universal” intrinsic Spin Hall effect.

In fact, further it was demonstrated [39] that the univer-
sal spin Hall conductivity vanishes in a finite system due to
the nonequilibrium spin accumulation arising in the system
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with spin-orbit coupling simultaneously with the described ef-
fect. The universal value of the spin Hall conductivity obtained
here is restored under the ac applied electric field in the limit
of large frequencies when the spin accumulation is effectively
averaged over time.

6.2 The spin galvanic effect.

In a spin polarized two-dimensional electron gas (2-DEG), spin
relaxing scattering can cause strange effects in the presence of
spin-orbit interaction. One example is the Spin Galvanic effect
(inverse magnetoelectric effect, inverse Edelstein effect), where
an electric current can flow without a battery. Electric cur-
rent is usually generated by (i) electric and/or magnetic fields
(drift current), or (ii) a spatial gradient of carrier concentra-
tion (diffusion current) or (iii) temperature (thermogalvanic
current). In an electron gas with nonequilibrium spin distri-
bution, an electric current can be generated without any elec-
tric/magnetic fields or without a concentration and thermal
gradients. This is the Spin Galvanic effect.

Assume that the spin polarization is created in the material
by optical or electrical means. Microscopically this net spin
polarization is provided by the nonequilibrium spin-imbalance
population in the spin-split subbands. An example of such a
spin imbalance is demonstrated in Fig. 6.3(b), which represents
the dispersion relations for (110)-grown zinc-blende quantum
well. In this case each of the parabolas has a fixed spin direc-
tion. For the case of Rashba spin-orbit coupling the disper-
sion parabolas have no fixed quantization axis, but the general
statement that the spin polarization is provided by the spin
imbalance is still valid.

For (110)-grown zinc-blende presented in Fig. 6.3 as long
as the carrier distribution is symmetric around the minima of
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Figure 6.3: (a) Direct magnetoelectric effect; (b) inverse mag-
netoelectric effect (spin galvanic effect). Adopted from [40].

each of the subbands, no current flows. The current flow is
caused by k-dependent spin-flip relaxation processes. Spins
from the overpopulated subband are scattered along kx to the
less filled spin subband (see Fig. 6.3(b)). We only consider
elastic processes here, but the same picture is also valid for
inelastic relaxation processes. The spin flip scattering could
be caused by a charged magnetic impurity that interacts with
an electron via Coulomb interaction. The probability of that
scattering is proportional to 1/(∆kx)

2, if we neglect screening,
that is the spin-flip scattering rate depends on the values of
the wavevectors of the initial and the final states. Four quanti-
tatively different spin-flip scattering events exist. Two of them
preserve the symmetric distribution of carriers in the subbands
and, thus, do not yield a current. While the other two sketched
in Fig. 6.3(b) by bent arrows, are inequivalent and generate
an asymmetric carrier distribution around the subband min-
ima in both subbands. This asymmetric population results in
a current flow along the x-direction. Within this model of elas-
tic scattering the current is not spin polarized since the same
number of spin-up and spin-down electrons move in the same
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direction with the same velocity. For a Rashba material the
spin galvanic effect also possible without spin-flip scattering
because the spin polarization along the z-direction is provided
by the spin imbalance, which is by itself asymmetric in each
of the subbands.

6.3 The direct magnetoelectric (Edel-

stein) effect.

The direct magnetoelectric effect is just inverse to the spin gal-
vanic one. The mechanism is shown in Fig. 6.3(a). At first, let
the dispersion be spin-degenerated (no spin-orbit coupling).
In equilibrium, the spin degenerated states are symmetrically
occupied up to the Fermi energy. If an external electric field
is applied, the charge carriers drift in the direction of the re-
sulting force. The carriers are accelerated by the electric field
and gain kinetic energy until they are scattered. A stationary
state forms where the energy gain and the relaxation are bal-
anced resulting in a nonsymmetric distribution of carriers in
k-space yielding an electric current. As long as spin-up and
spin-down states are degenerated in k-space the energy bands
remain equally populated and a current is not accompanied by
spin orientation. If the bands are split by spin-orbit coupling
and have no fixed quantization axis, their nonsymmetric pop-
ulation (with respect to the band minimum) can result in the
spin polarization, as for the case of Rashba material [41], see
Fig. 6.4.

Or, if the spin-orbit split subbands have a fixed quantiza-
tion axis, as for the case (110)-grown zinc-blende presented in
Fig. 6.3(a), the applied electric current by itself is not enough
for the polarization arising, because the spin-up and spin-down
subbands are populated equally. Here the nonequal spin pop-
ulation of nonsymmetric in k-space subbands is again created
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Figure 6.4: Direct magnetoelectric effect in 2D Rashba ma-
terial. Under the applied electric current the Fermi surfaces
are shifted in k-space. It results in the non-zero total spin S±
carried by the conduction electrons in each of the subbands.
The induced spins are opposite for the both Rashba bands.
But due to the different kF for the both subbands |S+| 6= |S−|
resulting in the nonzero net spin polarization S = S+ − S−.

by spin-flip scattering processes of different scattering rate,
just as for the case of spin-galvanic effect.

6.4 Direct magnetoelectric effect in

3D topological insulators.

Topological insulators (TIs) form a new quantum phase of
matter distinct from the classic dichotomy of metals and semi-
conductors. Whereas the bulk states form a bandgap, the sur-
face states form a Dirac cone similar to graphene, see Fig. 6.5
and are topologically protected against disorder scattering. In
marked contrast with the spin-degenerate bands of graphene,
TI surface states are spin polarized. Examples of TI materi-
als include Bi1xSbx, Bi2Se3, Bi2Te3 and Sb2Te3. One of the
most striking properties is spin-momentum locking; the spin of
the TI Dirac surface state lies in-plane, and is locked at right
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Figure 6.5: Dirac cone of the TI surface states (blue), with the
spin at right angles to the momentum at each point. The bulk
conduction and valence bands are shown in grey. Adopted
from [42].

angles to the carrier momentum.

Figure 6.6: Top view of a Fermi-surface in the (kx, ky)-plane.
An applied voltage produces a net momentum along kx and
spin-momentum locking gives rise to a net spin polarization
oriented in-plane and at right angles to the current. Adopted
from [42].

An unpolarized charge current should thus create a net spin
polarization, the amplitude and orientation of which are con-
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trolled by the charge current. A top view of a cross-section of
the surface-state bands taken above the Dirac point is approx-
imately circular (with slight hexagonal warping), with the spin
tangential at all points, as shown by the solid line in Fig. 6.6.
A net momentum along the kx direction (represented by a dis-
placement of this circular cross-section along kx, indicated by
the dashed circle) produced by an electric field results in an
electron current Ie along x. Owing to spin-momentum lock-
ing, this simultaneously induces a spin polarization oriented
along −y. Thus, an unpolarized surface-state charge current
creates a net spin polarization, with amplitude and orienta-
tion determined by the amplitude and direction of the charge
current.

Quantitative result for the current-induced spin polariza-
tion can be obtained from the hamiltonian of the 3D TI surface
states, which takes the form:

Ĥ = vF (ẑ × σ̂)p̂. (6.23)

It can be shown that in the system described by hamiltonian
(6.23) the electron spin polarization generated by the electric
current is

〈s〉 = − 1

2evF
[ez × j]. (6.24)

The current-induced spin polarization has been directly
measured as a voltage on a ferromagnetic metal tunnel bar-
rier surface contact [42]. The magnetization of the contact
determines the spin detection axis, and the voltage measured
at this contact is proportional to the projection of the TI spin
polarization onto this axis. An unpolarized bias current is ap-
plied between two non-magnetic contacts, see Fig. 6.7. When
the charge current is orthogonal to the magnetization of the
ferromagnetic detector contact, the TI spin is parallel (or an-
tiparallel) to the magnetization and a spin-related signal is
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Figure 6.7: Sketch of the transport experiment. The voltage
measured at the ferromagnetic detector is proportional to the
projection of the current-induced TI spin polarization onto the
contact magnetization. Adopted from [42].

detected at the ferromagnetic contact proportional to the mag-
nitude of the charge current. When the direction of the charge
current is reversed, the measured voltage changes sign. When
the contact magnetization is rotated in-plane 90◦ so that the
charge current is parallel to the magnetization, no spin voltage
is detected, because the TI spin polarization is now orthogonal
to the contact magnetization.



Chapter 7

Spin relaxation

When an electron is introduced in a solid, interaction with the
environment can affect its spin orientation. The environment
may give rise to an effective magnetic field which interacts
with the spin and causes it to alter its state, thereby changing
the orientation. The effective magnetic field can arise from
a multitude of sources, e.g., the spins of other electrons and
holes in the solid, nuclear spins, phonons that give rise to a
time varying magnetic field in some circumstances, and, the
most important, spin-orbit interactions in the solid that act
like an effective magnetic field. Below we consider different
mechanisms of the spin relaxation.

7.1 Elliott-Yafet mechanism.

The Schrodinger equation governing an electron motion in a
crystal is [

−~2∇2

2m
+ VL(r) +Hso

]
Ψ̂ = EΨ̂, (7.1)

where VL(r) is the periodic lattice potential. The solution
of the unperturbed hamiltonian in the absence of the spin-
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orbit coupling Ψ̂0(r) is given by the Bloch theorem Ψ̂0(r) =
eikruk(r). The spin-orbit interaction mixes up the up-spin and
down-spin Bloch functions so that

Ψ̂k↑ = eikr
{
ak

(
1
0

)
+ bk

(
0
1

)}
(7.2)

Ψ̂k↓ = eikr
{
a∗−k

(
0
1

)
+ b∗−k

(
1
0

)}
. (7.3)

According to the perturbation theory |b| ≈ λso/∆E, where
∆E is the energy distance between the band state in question
and the state (of the same momentum) in the nearest band,
and λso is the amplitude of the matrix element of Hso between
the two states.

The spin state of a nearly up-spin electron at a wavevector
state k and that of a nearly down-spin electron at a different
wavevector state k′ are not strictly orthogonal, since they are
not strictly anti-parallel (see Fig. 7.1). Thus, any collision
with a non-magnetic scatterer that changes the wavevector of
an electron from an initial state k to a state k′ can also couple
the nearly down-spin state at k to the nearly up-spin state at
k′. This coupling can flip an electrons spin from nearly up to
nearly down.

The spin relaxation time can be estimated as

1

τs
∼
∣∣∣〈Ψ̂k↑|Vi|Ψ̂k′↓〉

∣∣∣2 ∼ |b|2∣∣∣〈Ψ̂k↑|Vi|Ψ̂k′↑〉
∣∣∣2 ∼ |b|2 1

τ
, (7.4)

where Vi is the impurity potential and τ is the momentum
relaxation time. Note that this kind of spin relaxation is al-
ways accompanied by some degree of momentum relaxation
since the wavevector must change in order to change the spin.
Therefore, the Elliot-Yafet spin relaxation is caused by the mo-
mentum relaxation.

The Elliott-Yafet mechanism is often the primary spin re-
laxation mechanism in ordinary metals and low mobility ma-
terials, such as organics, where momentum relaxing scattering
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Figure 7.1: Energy dispersion relation showing the spin polar-
izations at different wavevector states. Each wavevector state
has two possible mutually anti-parallel spin polarizations, one
of which is shown by the arrowheads. A momentum changing
collision event, which changes the wavevector state from k1 to
k2, also changes the spin orientation since the eigenspin polar-
izations at k1 and k2 are generally not parallel. Adopted from
[15].

Figure 7.2: Elliot-Yafet mechanism of spin relaxation.
Adopted from the presentation by Y. Fabian.
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events are frequent. In high mobility semiconductors, the pri-
mary spin relaxation mechanism is usually the Dyakonov-Perel
mechanism, which we discuss next.

7.2 Dyakonov-Perel mechanism.

It is an efficient mechanism of spin relaxation due to spin-
orbit coupling in systems lacking inversion symmetry. The
spin-orbit interaction lifts the degeneracy between the spin-
up and spin-down states of the same wave-vector, giving rise
to the effective magnetic field, which depends on the electron
momentum. The effective magnetic field causes an electrons
spin to undergo Larmor precession. The precession axis is
collinear with the magnetic field and the precession frequency
is Ω(p) = gµBB(p)/~. Now consider an ensemble of electrons
drifting and diffusing in a solid. If p is distributed randomly
because of scattering, then different electrons would have pre-
cessed by different angles after a certain time. Thus, if all
electrons are injected with the same spin polarization, their
spin polarizations gradually go out of phase with each other.
After a sufficiently long time, the magnitude of the ensemble
averaged spin will decay to zero. This is the basis of Dyakonov
Perel (D-P) spin relaxation.

In the regime of Ω < 1/τ the process can be considered
as a spin precession about a fluctuating magnetic field. The
electron spin rotates about the intrinsic field at an angle δφ ≈
Ωτ before experiencing another field and starting to rotate
with a different speed and in a different direction. As a result,
the spin phase follows a random walk: after time t, which
amounts to t/τ steps of the random walk, the phase progresses
by φ(t) = δφ

√
t/τ . By the order of magnitude τs is the time

at which φ(t) = 1, what gives us 1/τs = Ω2τ .

The D-P spin relaxation is an ensemble phenomenon that
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can only be understood in a many particle picture. A single
electron can not experience D-P relaxation. Its spin will coher-
ently precess about the effective magnetic field caused by spin-
orbit interaction, even when that field is changing randomly
in time and space because of velocity randomizing collisions.
However, in an ensemble of many electrons, different electrons
are precessing about different magnetic fields simultaneously.
Since all these precessions are not synchronous (the scattering
histories of the different electrons are independent), the pre-
cessions go out of phase with each other. Hence the ensemble
average spin decays in time and space.

7.3 Bir-Aronov-Pikus mechanism.

The Bir-Aronov-Pikus mechanism is a source of spin relax-
ation of electrons in semiconductors where there is a signifi-
cant concentration of both electrons and holes. In that case,
an electron will usually be in close proximity to a hole, so that
their wavefunctions will overlap, which will cause an exchange
interaction between them.

The exchange interaction between electrons and holes is
governed by the Hamiltonian

H = AS · Jδ(r), (7.5)

where A is proportional to the exchange integral between the
conduction and valence states, J is the angular momentum
operator for holes, S is the electron-spin operator, and r is
the relative position of electrons and holes. A general trend is
that the Bir-Aronov-Pikus dominates in heavily doped samples
at small temperatures.

One can learn more about the considered spin relaxation
mechanisms and to find a good list of the corresponding orig-
inal papers in review [18].
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7.4 Hyperfine interactions with nu-

clear spins

The hyperfine interaction, which is the magnetic interaction
between the magnetic moments of electrons and nuclei, pro-
vides an important mechanism for single-spin decoherence of
localized electrons, such as those confined in quantum dots or
bound on donors. This interaction is too weak to cause ef-
fective spin relaxation of free electrons in metals or in bulk
semiconductors.

In a solid, the nuclear spins generate a magnetic field which
interacts with the electron spins via hyperfine contact interac-
tion and can cause spin relaxation. The Hamiltonian describ-
ing this interaction is given by

Hnuclear = S
∑
i

AiIi, (7.6)

where Ii is the spin of the i-th nucleus, A is a constant and Ai
is the corresponding coupling coefficient. The quantity Ai is
given by Ai = A|ψi(ri)|2, where ψ(ri) is the electron envelope
wavefunction at the nuclear site ri.

The spin flip rates have been calculated in different types of
quantum dots at various temperatures. These rates are very
small, typically less than 105s−1 in GaAs quantum dots un-
der reasonable conditions. Experimentally the spin relaxation
times of the order of 50µs up to several ms and even up to 1s
were reported [15].
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Figure 7.3: The sketch of the system consisting of a single spin
in a quantum dot interacting with nuclear spins. Adopted from
[43].

Figure 7.4: Dependence of 〈Sz〉 on time. Adopted from [43].
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Chapter 8

Spin caloritronics.

It is well known that except for the electric field and the
concentration gradient, which are combined into the gradient
of the electrochemical potential, there exists another driving
force for the charge current, which is the temperature differ-
ence ∆T between the two electrodes. The temperature differ-
ence is the source of thermoelectric effects including Seebeck
effect and Pertier effect. The temperature difference natu-
rally produces a flow of heat Q, or thermal conduction. Thus,
∆T produces both electrical and thermal currents. Similarly,
∆µ produces thermal current as well as an electrical current.
These effects are simply expressed in the coupled equation:(

jc
jq

)
=

(
L11 L12

L21 L22

)(
∇µ

−∇T/T

)
. (8.1)

When two different metals with different chemical poten-
tials come in contact, electrons transfer from one metal to the
other so as to make the chemical potential equal, and conse-
quently an equilibrium state is realized. In magnetic metals,
up and down-spin states are in contact with each other, and
therefore the up-spin chemical potential µ↑ equals the down-
spin chemical potential µ↓. The state with nonzero spin imbal-
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ance µs = µ↑ − µ↓ 6= 0 survives, however, when the nonequi-
librium state is stabilized, such as by the spin injection or spin
Hall current driven by an external current, as explained in the
previous section. As we have already known ∇µs is a driving
force of the spin current. Now we have three driving forces
(surely they are not real forces) ∇µ, ∇ms and ∇T , that pro-
duce charge current jc, spin current js, and thermal current
jQ. These three quantities are related to each other and give
the following generalized relationship

 jc
js
jq

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 ∇µ
∇µs/2
−∇T/T

 . (8.2)

The equation above shows that the spin and heat current
couple with each other. This is the basic idea behind spin
caloritronics. Below, we derive the corresponding coefficients
Lij in the framework of two-spin current model of ferromag-
netic metals. As it follows from Eqs. (2.5) and (2.10), L11 =
L22 = σ, L12 = L21 = σPσ. The equality Lij = Lji is valid for
all the coefficients Lij and is known as as Onsagers reciprocity
relationship.

Now our goal is to derive the other coefficients, which de-
scribe thermoelectric effects. The change in heat δQ is re-
lated to a change in the internal energy and particle number
as δQ = TdS = dE − µdn. Then jq = jE − µj, where jE is
the energy current and j is the particle current. The currents
for each of the spin subbands can be expressed via the sum of
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separate electron contributions:

jE,σ =

∫
vσεσ(k)fσ(k)

d3k

(2π)3
, (8.3)

jσ =

∫
vσfσ(k)

d3k

(2π)3
, (8.4)

jq,σ =

∫
vσ(εσ(k)− µσ)fσ(k)

d3k

(2π)3
. (8.5)

(8.6)

The distribution function f can be found from the Boltzman
equation, which takes the form( ∂

∂t
+ v∇r +

eE

~
∇k

)
f(r,k, t) = −f − f0

τ
. (8.7)

Taking into account that ∇rf = (∂f/∂T )∇rT = −(ε −
µ)/T (∂f/∂ε)∇rT , to the linear order with respect to driving
forces we obtain

f(k) ≈ f0(k)− e

~
τE∇kf0(k) + τv

ε− µ
T

∂f0

∂ε
∇rT. (8.8)

Substituting Eq. (8.8) (taken for each of the subbands sepa-
rately) into Eqs. (8.6), we obtain:

jσ = e

∫
vσ

[
−eτσ

∂f0

∂ε
(vσE) + τσ

ε− µσ
T

∂f0

∂ε
(vσ∇T )

] d3k

(2π)3
=

e2M0E − eM1
∇T
T
, (8.9)

where

Mn =

∫
d3k

(2π)3
v2
σ,xτσ(ε− µσ)n(−∂f0

∂ε
) =

1

3

∞∫
−∞

Nσ(ε)v2
στσ(ε− µσ)n(−∂f0

∂ε
)dε. (8.10)
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The above integrals are examples of the so-called Sommerfeld
integrals

∞∫
−∞

K(ε)(−∂f0

∂ε
)dε = K(µ) +

∞∑
n=1

an(kT )2nK(2n)(ε)
∣∣
ε=µ

,

an = (2− 1

22(n−1)
)ζ(2n). (8.11)

The derivation of the above result can be found in [44]. In our
case

K0 =
1

3
Nσ(ε)v2

στσ ⇒

M0 =
1

3
Nσ(ε)v2

στσ
∣∣
ε=µ

=
σσ(µσ)

e2
, (8.12)

K1 =
1

3
Nσ(ε)v2

στσ(ε− µσ) ⇒

M1 =
π2

3
(kT )2σ

′
σ(µσ)

e2
. (8.13)

The electric current (2.5) can be rewritten as follows

jσ = σσE − σσSσ∇T, (8.14)

where Sσ = eM1/(Tσσ) = −L0|e|Tσ′σ/σσ is the Seebeck co-
efficient for a given spin subband and L0 = π2k2/3e2 is the
Lorentz number. Introducing the spin-independent Seebeck
coefficient S = (S↑σ↑ + S↓σ↓)/σ, the kinetic coefficients Lij
can be written as

L13 = L31 = σST , (8.15)

L23 = L32 = P ′ST, (8.16)

where P ′ = ∂(Pσσ)/∂ε|ε=µ.

According to Eqs. (8.2) and (8.16), not only an applied
voltage but also a temperature gradient drives a spin current
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in a conducting ferromagnet. Conservation of charge and spin
currents at a contact between the ferromagnet and a normal
metal then implies spin current injection into the normal metal
under a temperature bias.

8.1 The spin-dependent Seebeck ef-

fect.

The generation of an electrical voltage by placing a conductor
in a thermal gradient is the well-known Seebeck effect. In the
framework of the linear response theory the induced voltage
is proportional to the temperature gradient as ∆V = S∆T ,
where the Seebeck coefficient S depends on the particular ma-
terial parameters. From Eq. (8.15) it is seen that the Seebeck
coefficient is determined by the derivative of the conductivity
with respect to energy, therefore it is typically small in metals.
But it can considerably larger in semiconductors.

The generation of a spin imbalance by placing a sample
in a thermal gradient is the spin-dependent Seebeck effect. A
spin-dependent Seebeck effect has been demonstrated in lat-
eral spin-valve structures [45]. Here a temperature gradient
is generated over an interface by resistive heating of a ferro-
magnet (FM1 in Fig. 8.1(a)). In the absence of the charge
injection to the normal metal the spin imbalance is generated.
Fig. 8.1(b) shows the spin-dependent electrochemical poten-
tials. The induced spin imbalance is detected by means of the
voltage difference V with respect to an analysing ferromag-
netic contact FM2.

The spin-dependent Seebeck effect has also been measured
in metallic ferromagnets [47]. The effect is illustrated in Fig. 8.2.

The thermally induced spin current can be also carried
by magnons, not conduction electrons. In this case it is not
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Figure 8.1: (a) Sketch of the measuring device. (b) Schematics
of thermal spin injection by the spin-dependent Seebeck effect
across an FM—NM interface. Adopted from [46].

accompanied by electric current and can be observed at inter-
faces with ferromagnetic insulators as well. It is often called
”spin Seebeck effect”.
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Figure 8.2: (a) A thermocouple consists of two conductors
(metals A and B) connected to each other. They have differ-
ent Seebeck coefficients and, thus, the voltage V between the
output terminals is proportional to the temperature difference
T1 − T2 between the ends of the couple. (b) Illustration of
the spin Seebeck effect. In a metallic magnet, spin-up and
spin-down conduction electrons have different Seebeck coeffi-
cients. When a temperature gradient is applied, a spin voltage
µ↑ − µ↓ proportional to the temperature difference appears; a
magnet functions just like a thermocouple, but in the spin
sector. Adopted from [47].

8.2 The Spin Peltier effect.

The Spin Peltier effect is the Onsager reciprocal of the Spin
Seebeck effect. It is the generation of a magnon heat current in
a magnetic insulator by the flow of a spin current through the
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Figure 8.3: The spin Peltier effect. Adopted from [15].

interface with the metallic contact. This phenomenon has been
demonstrated experimentally in a Pt-YIG (platinum yttrium-
iron-garnet) heterostructure [48]. Consider Fig. 8.3. A charge
current through the platinum induces a transverse spin cur-
rent through a magnetized YIG layer due to the Spin Hall
effect. When the spin magnetic moments of electrons at the
interface between Pt and YIG are anti-parallel to the mag-
netization of the YIG, the spin torque transfers energy and
momentum from the electrons in the Pt to the magnons in the
YIG, thereby cooling the electrons and heating the magnons.
This raises the magnon temperature over the electron tem-
perature. When the spin magnetic moments of electrons are
parallel to the magnetization (right panel), the spin torque
transfers energy and momentum from the magnons in the YIG
to the electrons in the Pt, thereby cooling the magnons and
heating the electrons.
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8.3 Giant spin-dependent Seebeck ef-

fect in superconducting heterostruc-

tures.

8.3.1 Giant spin-dependent Seebeck effect.

As it was already mentioned, from Eq. (8.15) it is seen that the
Seebeck coefficient is determined by the derivative of the con-
ductivity with respect to energy, therefore it is typically small
in metals because σ′/σ ∝ 1/εF and the resulting Seebeck co-
efficient ∼ T/εF , what does not exceed ∼ 10−2 even at room
temperatures. The physical reason of this small factor is the
weakness of the electron-hole asymmetry at the Fermi level in
metals, see Figs. 8.4(a)-(b). If the conductivity would be fully
particle-hole symmetric with respect to the Fermi surface, as
in Fig. 8.4(a), thermally excited quasiparticles would consist of
equal number of electrons and holes and, therefore, the result-
ing thermally-generated electric current is zero. The non-zero
electric current is only due to small electron-hole asymmetry
resulting in non-zero difference between the electron and hole
currents, see Fig. 8.4(b).

Now let us consider a superconductor. It has a gap in the
density of states (DOS) at the Fermi level, see Fig. 8.4(d),
resulting in the strong dependence of the DOS on the quasi-
particle energy in the vicinity of the Fermi level. The DOS
is still symmetric with respect to the Fermi energy, therefore
there are no any gain in the Seebeck coefficient with respect to
the normal metal. For simplicity we neglect the weak electron-
hole asymmetry of the normal metal in Fig. 8.4(b). However,
if we somehow shift the middle of the gap with respect to the
Fermi level, we will have the giant electron-hole asymmetry in
vicinity of the Fermi level due to the strong energy dependence
of the superconducting DOS.
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The plan can be realized by applying a Zeeman field to
the superconductor (via external parallel magnetic field or as
an internal effect in a hybrid S/F structure.) Then the DOS
becomes spin-split and the middle of the gaps are shifted in op-
posite directions with respect to the Fermi level, see Fig. 8.4(e).
Then in each of the spin subbands the thermally-induced elec-
tric current is created. One of them is carried by electrons
and the other one by holes, therefore they exactly compen-
sate each other. However, the both quasiparticle flows carry
the same spin current (the spin of the hole quasiparticle in
the spin-down subband is up and vice versa). Therefore, the
spin-split supercondutor in the presence of thermal gradient
sustains pure quasiparticle spin current. The value of this spin
current is giant as compared to nonsuperconducting ferromag-
netic metals because due to the presence of the spin-split gap
practically all possible quasiparticles carry spin in the same
direction and the reducing factor T/εF is absent. This effect
is called giant thermospin effect.

It allows for injection of a thermally-induced spin current
via a superconductor/normal metal interface. Moreover, if
the interface barrier is spin-filtering, that is the spin-up and
spin-down conductances of the barrier are different, the spin
current is accompanied by the thermally-induced electric cur-
rent. This is because the thermally excited quasiparticles from
the spin-up subband (electrons) and from the spin-down sub-
band (holes) have different tunnel probablities and, therefore,
the electron and hole currents are not exactly compensated.
It is called giant thermoelectric effect. This effect has been
predicted theoretically [49, 50] and observed experimentally
[51, 52].

Fig. 8.5 demonstrates the sketch of the measurement con-
figuration. The spin-split DOS was created in the supercon-
ducting Al by applying the external parallel magnetic field.
The spin-filtering barrier is made of Fe. It is heated by apply-
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ing the current Iheat. The Seebeck voltage is measured between
the superconducting Al and normal Cu electrodes. Seebeck
coefficients of the order of 0.3mV/K were measured, which is
comparable to the thermopower measured in magnetic semi-
conductors at much higher temperatures and is much larger
than the thermoelectric effects in metals, where the Seebeck
coefficient is typically of the order of a few µV/K at room
temperature and vanishing at low temperature.

8.3.2 Thermally-induced DW motion in S/F
bilayers.

The giant thermospin effect can cause highly efficient DW mo-
tion in thin film S/F bilayers. Thermally induced quasiparti-
cles both electron- and hole-like move from the hot to the cold
end. In the bulk of both domains the magnetic moments of the
quasiparticles are polarized along the corresponding magneti-
zation. Therefore, the spin current (opposite to the magnetiza-
tion current) in the bulk of both domains is directed away from
the DW. In the left (hotter) domain the direction of the ma-
jority spin flow is opposite to the spin current direction, while
in the right (colder) domain they coincide. Therefore, the spin
current flowing in both domains, pumps majority spins of the
hotter domain into the DW region. This leads to the expansion
of the hotter domain and, consequently, the DW moves from
the hot to the cold end. The estimated ratios of the DW veloci-
ties to the tapplied emperature gradients vDW/∇T & 10−102

mm2/Ks for the S/F system, which is about three order of
magnitude larger than the values ∼ 10−2 − 10−1 mm2/Ks re-
ported for thermally induced domain wall motion in ferromag-
netic materials.
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Figure 8.4: Each of the panels represent the DOS as a func-
tion of energy measured from the chemical potential, filled by
electron-like quasiparticles (filled circles) and hole-like quasi-
particles (open circles) at the hot end of the sample. (a) Fully
electron-hole symmetric normal state DOS; (b) Asymmetric
normal state DOS. Due to the asymmetry of the DOS the
number of electron-like quasiparticles exceeds the number of
hole-like quasiparticles and, therefore, the total electric cur-
rent is non-zero; (c) Two different spin subbands in metal
ferromagnet. Spin-up quasiparticles are colored in red and
spin-down quasiparticles are colored in green. Here the total
numbers of spin-up and spin-down quasiparticles are different
and, therefore, the electric current is accompanied by the spin
current. (d) Superconducting DOS in the absence of spin split-
ting. The gap is opened at the Fermi surface. (e) Spin-split
superconducting DOS. It is seen that because of the gap there
are hole-like quasiparticles in the spin-up subband and there
are no electron-like quasiparticles in the spin-down subband.
All the quasiparticles carry the same spin.
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Figure 8.5: Measurement scheme of the giant thermoelectric
effect. (a) False-color scanning electron microscopy image of
the sample with the measurement configuration for the ther-
moelectric measurements. (b) Sketch of the measurement con-
figuration. Adopted from [51].

Figure 8.6: Sketch of the bilayer S/F system. The magne-
tization of the ferromagnet F has a form of a head-to-head
domain wall (DW) and is indicated by arrows. The picture
on the top surface illustrates the process of thermally induced
spin pumping into the DW region.
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Chapter 9

Magnonics.

Figure 9.1: (a) A schematic illustration of a conduction-
electron spin current: spin angular momentum Js carried by
electron diffusion. (b) A schematic illustration of a spin-wave
spin current: spin angular momentum carried by collective
magnetic-moment precession. Adopted from [53].

As we have already know, a flow of spin angular momen-
tum is called a spin current. In solids, there are two types of
carriers for non-equilibrium spin currents. One is a conduction
electron. The other is collective motion of magnetic moments
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- spin waves, see Fig. 9.1. Here we call a spin current carried
by spin waves a ”spin-wave spin current”. Extensive studies of
conduction-electron spin currents in metals and semiconduc-
tors have clarified that the currents have a critical problem;
they disappear within a very short distance, typically hun-
dreds of nanometres. In contrast, it has been shown that a spin
wave spin current may persist for much greater distances be-
cause it is carried by the collective motion of spins coupled by
exchange interaction. Significantly, a spin-wave spin current
exists even in magnetic insulators, in which its decay is typi-
cally suppressed. This is because the decay is caused mainly
by conduction electrons, which are absent in insulators. For
instance, in the magnetic insulator Y3Fe5O12, the spin-wave
decay length can be several centimetres and thus the waves
are propagated over a relatively long distance; Y3Fe5O12 is an
ideal conductor for spin-wave spin currents even though it is
an insulator for electric currents.

9.1 Magnonic spectrum and magnonic

spin current.

In a ferromagnetic metal (F), both charge and spin currents
flow by application of bias voltage, since the spins of conduc-
tion electrons are spontaneously polarized. In a nonmagnetic
metal (N), spin current is created by spin injection from a
ferromagnet attached to N or by the spin Hall effect in N, in
which up-spin and down-spin electrons flow in the opposite di-
rections without charge current, resulting in the so-called pure
spin current. In this way, the spin current is able to flow in
metallic conductors. Ferromagnetic insulators, on the other
hand, have different properties that they are electrically inac-
tive with frozen charge degrees of freedom, but magnetically
active due to the spins of localized electrons. The low-lying
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magnetic excitations are spin waves whose propagation carries
spin angular momentum. The low-lying magnetic excitation of
spin waves is described by the Landau-Lifshitz- Gilbert equa-
tion

∂M (r, t)

∂t
= γHi ×M − D

~Ms

M ×∇2M +
α

Ms

M × ∂M (r, t)

∂t
(9.1)

where Hi = (0, 0, Hi) is an internal anisotropy field along the
z direction, D = γA is the exchange stiffness, α is the Gilbert
damping constant. Let us find solution of Eq. (9.1) as M =
Msez + δM . Then from M 2 = M2

s it follows that to the first
order δM = (δMx, δMy, 0). The solution of Eq. (9.1) takes
the form

δM+(r, t) = δM0e
iqr+iωqte−αωqt, (9.2)

where ~ωq = ~γHi +Dq2 is the magnon dispersion. In the fol-
lowing, the Gilbert damping term is disregarded for simplicity.
Then, Eq. (9.1) can be rewritten as

∂M (r, t)

∂t
= γHi ×M −∇JM(r, t), (9.3)

where JM(r, t) is the magnetization current, which we call the
spin-wave spin current, whose components are

JMα
j =

D

~Ms

[M ×∇jM ]α. (9.4)

Note that the z-component of equation Eq. (9.3) gives the con-
servation ∂tMz + ∇JMz = 0 in case of α = 0. By introducing
ψ(r, t) = Mx + iMy and its conjugate complex ψ∗(r, t), the
z-component of the spin-wave spin current is written as

JMz
j =

1

2i

D

~Ms

[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)]. (9.5)
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Using the creation and annihilation operators (bq, b
†
q) of spin-

wave excitations with energy ωq and momentum q by the trans-
formations ψ =

√
2~γMs

∑
q

bqe
iqr and ψ∗ =

√
2~γMs

∑
q

b†qe
−iqr,

the spin-wave spin current is expressed in the second-quantized
form, whose expectation value is

JMz
j = ~γ

∑
q

vqnq, (9.6)

where vq = ∂ωq/∂q = 2(D/~)q the spin-wave velocity and
nq = 〈b†qbq〉 is the distribution function of spin-waves. Eq. (9.6)
indicates that, when the population of spin waves is different
between q and −q in the wave-vector space, the spin waves
carry the spin-wave spin current.

9.2 Electron spin current - magnon

spin current interconversion

To make use of the spin-wave spin currents in insulators, it is
necessary to find methods for getting a d.c. spin current into
and out of the insulators. It can be done by using spin pump-
ing and spin-transfer torque (STT) [53]. Here, spin pumping
refers to the transfer of spin angular momentum from magne-
tization precession to conduction-electron spin, a phenomenon
which allows generation of a spin current from magnetization
motion. STT is, in contrast, the reverse process of this spin
pumping, that is, the transfer of angular momentum from
conduction-electron spin to magnetization: the magnetization
receives torque by absorbing a spin current. These two phe-
nomena enable the mutual conversion of angular momentum
between conduction-electron spin and magnetization.

Let us now consider the spin-pumping process. At the in-
terface of a normal metal and a ferromagnetic insulator, con-
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duction electrons in N interact with magnetic moments of FI
through the s-d exchange interaction

Ĥsd = −Jsd
∑
i

Ŝiŝi (9.7)

where ŝi and Ŝi are the conduction-electron spin and the lo-
calized spin at site i at the interface, and Jsd is the exchange
coupling strength between them. In the presence of microwave
field, we assume a uniform precession of aligned localized spins,
in which case Ŝi is replaced by the magnetization M using the
relation Ŝi/S = M/Ms, and rewrite equation Eq. (9.7) as

Ĥsd = −Jex
∫
dxM (t)aeffδ(x)mN(x, t) (9.8)

where Jex = JsdS/~γMs, aeff = ve/a
2
s is the effective interac-

tion range, ve is the volume per conduction electron, as is the
lattice constant. of localized spins at the interface, mN(x, t) is
the magnetization of conduction electrons. Eq. (9.8) indicates
that (M/Ms)aeffδ(x) plays a role of the interface magnetiza-
tion, which exerts the exchange spin torque on mN(x, t)

[
dmN

dt
]exchange = −γJexmN(x, t)×M (t)aeffδ(x) (9.9)

through the exchange interaction at the interface. The mag-
netization of conduction electrons is written as mN(x, t) =
m0aeffδ(x) + δmN(x, t), where m0 = χNJexM is the local
equilibrium spin density, χN = µ2

BNF is the spin susceptibility
of conduction electrons, and δmN is the spin accumulation.
By taking into account the exchange spin torque as well as the
spin diffusion, the Bloch equation for mN is given by

∂mN(x, t)

∂t
= −γJexmN(x, t)×M(t)aeffδ(x)

−δmN

τsf
+DN∇2mN(x, t), (9.10)
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where τsf is the spin-flip relaxation time and DN is the dif-
fusion constant. By requiring that the precession frequency
(∼ GHz) is much smaller than the spin-flip relaxation rate
τ−1
sf ∼ 1012s−1 and neglecting the small terms Mx,yδm

z
N , we

obtain the solutions of Eq. (9.10) for the transverse spin accu-
mulation δm+

N(x, t) = δmx
N(x, t) + iδmy

N(x, t), which are used
to calculate the longitudinal spin accumulation δmz

N(x) =
(1/Γ)Im[δm+

N(0, t)M−/Mz]e
−x/λN and the spin current jzs =

−(e/µB)DN∇xδm
z
N , which yields the pumped spin current

jzs = −~ω
4e

σN
λN

1

1 + Γ2

(M+M−
M2

z

)
e−x/λN , (9.11)

where ω is the precession frequency, M± = Mx ± iMx,y, λN =√
DNτsf is the spin-diffusion length, Γ = (τex/τsf )(λN/aeff )

and τex = ~/(SJsd). The factor (λN/aeff ) appears in Γ due
to the exchange interaction restricted at the interface. Thus,
the spin current strongly depends on the magnitude of the ex-
change coupling through . For Γ� 1 the spin current is inde-
pendent of the exchange coupling. For Γ� 1, the spin current
is proportional to the square of the exchange coupling. In in
ordinary ferromagnets (τex/τsf )� 1, whereas (λN/aeff )� 1.

Figure 9.2: Sketch of the experimental setup (left) and theta-
dependence of the maximum peak values of the ISHE volt-
age in the VISHE(H) curves measured with application of mi-
crowaves. Adopted from [53].
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Figure 9.3: (a) Experimental setup; (b-c) schematic illustra-
tions of the directions of spin-transfer torque acting on the
magnetization and the magnetization-damping torque (DT)
of the Y3Fe5O12 layer at θ = 90◦ when J > 0 (b) and J < 0
(c). Adopted from [53].

The spin pumping and STT have been demonstrated ex-
perimentally [53]. Fig. 9.2 shows results of the spin pump-
ing measurement. The observation of the spin pumping in
Pt/Y3Fe5O12 suggests the possibility of the reverse process:
STT acting on the insulator Y3Fe5O12. It has also been demon-
strated experimentally. The schematic representation of the
experiment is shown in Fig. 9.3.

The electric-signal transmission (via spin current) in the
insulator Y3Fe5O12 film can be achieved by making use of these
phenomena together. Fig. 9.4 is a schematic illustration of the
experimental setup.

9.3 Field of magnonics.

Magnon spintronics is the field of spintronics concerned with
structures, devices and circuits that use spin currents carried
by magnons [54]. It is a very rapidly developing field. It
embraces a lot of interesting phenomena and provides a lot of
benefits. Here is a short review of only few directions:



170 Magnonics.

Figure 9.4: Experimental setup for the electron spin intercon-
version to magnon spin current and transmission of electric
signals via the ferromagnetic insulator. The distance between
input and output Pt electrodes is 1mm. Adopted from [53].

Insulator-based spintronics. A magnon current has ad-
vantages as compared to a conventional spin-polarized electron
current. It does not involve the motion of electrons and, thus,
it is free of Joule heat dissipation. In low-damping magnetic
dielectrics magnons can propagate over centimetre distances,
whereas an electron-carried spin current is limited by the spin
diffusing length, which does not exceed one micrometre.

Wide frequency range from GHz to THz. The wave
frequency defines the maximum clock rate of a computing de-
vice. The magnon spectrum covers the GHz frequency range
used nowadays in communication, and it reaches into the very
promising THz range. For example, the edge of the first
magnonic Brillouin zone in YIG lies at about 7 THz.

Macroscopic quantum phenomena. Magnons are bosons
and can form a BoseEinstein condensate - a spontaneous co-
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herent ground state established independently of the magnon
excitation mechanism even at room temperature. A magnon
supercurrent, a collective motion of condensed magnons driven
by a phase gradient of a condensate wavefunction, can be used
for low-loss information transfer.
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