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PREFACE

What you hold in your hands is not a textbook but rather a guide. A guide
cannot replace the trip itself. Nevertheless, it can give you a hint about the path
to choose, where to turn or to stay, what is worth looking at and thinking about.
If you do not know the local language, a guide may also be used as a phrase-book
telling you how to ask the way or understand the legend on a direction sign.

Usually, a guide-book begins with a large-scale map. Its role in our book
about the country of electrons and disorder in solids is played by a schematic list
of contents (see the back endpaper) explaining the logic of the “administrative
and territorial division of the country”, the specification of its eleven chapters –
provinces and links between them. Nine provinces depicted by white rectangles
are well-known natural topics. The two remaining grey rectangles are specified
by the form and the methods used in the appendices. The section entitled
Percolation Theory summarizes the main concepts underlying this branch of
mathematics. It is present in this book as a comparatively new discipline,
nowadays widely used in physics, which has not been included into standard
university courses for physicists. The section entitled Tunnel IV Characterist-
ics describes experiments which are closely related simultaneously to several
different phenomena such as, e.g., interelectron interference, the Coulomb gap,
hopping conductivity, metal–insulator transitions, etc. By considering this topic
in a individual section, we have tried to avoid unnecessary repetition. We hope
that the reader, once acquainted with this section, would then repeatedly return
to it when reading different topics in the book. Special symbols with a readily
understood meaning indicate the chapters in which the material considered in
the appendices is used.

As a rule, a large-scale map also indicates some contiguous territories indicated
by grey ellipses in our schematic. We also indicate how to reach them: a list of
necessary references and the most important review articles is given at the end
of this preface. The reader is assumed to be well acquainted with such topics as
electrons in an ideal lattice, transport in the τ -approximation, and scattering,
or, at least, to be able to recollect these topics. In fact, no perfect knowledge of
superconductivity or charge-density waves is necessary.

The suggested schematic represents not only a specific list of contents, but
itself contains some unique information. However, one should keep in mind that
since the country on the map is virtual, the map, as the ancient geographic maps,
is far from being objective: its appearance depends on the author’s knowledge and
taste. However, the large contiguous territory named “Interacting Electrons” is
not depicted on our map because, in fact, it is a country of tomorrow. Numerous
discoveries in this land, its development, and road-building are all the deeds of
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a not too distant future. Superconductivity with Cooper pairs and the Josephson
effect and the fractional quantum Hall effect with composite fermions are the
two peripheral provinces of this embryonic country. To fix the frontier, the book
could have also been entitled “Noninteracting Electrons”. However, this title
would not have been quite correct either. It imposes a somewhat too strong
constraint, because the Coulomb interaction between electrons is discussed in
great detail when considering the Coulomb gap, Peierls and Mott transitions,
and some other topics indicated by dotted arrows on the map. However, the
problems of electron interaction are not reduced to Coulomb interactions alone.
Thus, the book is only a starting beachhead for performing such studies.

However, the beachhead itself is far from being well developed. You are a tour-
ist in a comparatively young still developing country. Some places have already
acquired their final structure and the scenery has hardly changed. And you may
also come across a building yard or a place which would change considerably to
get updated, so that in a couple of years everything would look quite different
in such places.

I do not know any other textbook covering similar topics altogether. There-
fore, some chapters and even some sections are preceded by references, in which
the respective topics are treated in detail and, at the same time, in an available
form. These are books, reviews, and even original articles (of course, their choice
is also somewhat subjective). As a whole, the system of references is not meant
to reflect the priorities. Each figure of the book that deals with experimental
results is supplied with references to the respective original paper, which would
allow one to elucidate the details of the experiment. However, the experiments
considered in the book were selected according to their eye-catching characterist-
ics irrespective of the time of the study. Some pioneering theoretical papers often
turn out to be unsuitable for primordial studies because of their too complicated
mathematical apparatus. Such papers are not included in the lists of references.
At the same time, there are some references to papers presenting vivid simple
models, which were abandoned in later publications.

Now, have a nice trip! It is better to move following the thick arrows. Two-
sided solid arrows indicate contacts with the outside world, whereas dashed and
dotted arrows show inner ties. Remember that there exists no canonical universal
route. So let everyone find his or her best path.

V. Gantmakher
Chernogolovka

1.06.2005
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1

METALS WITH STRONG DISORDER

The motion of itinerant electrons in crystals is determined by the long-range
order. It is the long-range order that gives rise to the interference of electron
waves scattered by individual atoms in a crystal, completely compensates elec-
tron scattering, and provides the stationary propagation of electron waves with
practically arbitrary wave vectors k except for the waves with the wave vectors
satisfying the condition

k2 = (k − Km)2, (1.1)

where Km is an arbitrary reciprocal-lattice vector. Scattering of electrons with
wave vectors (1.1) is of a resonance nature so that the respective electron waves
cannot propagate in a crystal at all. All the other electrons are scattered only
from the objects that break the crystal periodicity, which is taken into account
by the mean free path l. In this context, the quantity l has the sense of a distance
passed by an electron between two successive independent scattering events. Of
course, in order to keep the length l no shorter than the electron wavelength
λ � 2π/kF satisfying the condition

kFl > 1, (1.2)

the scattering events should not occur too frequently. Here kF is the radius of
the Fermi sphere

kF = (3π2n)1/3, (1.3)

which is defined in terms of the free-carrier concentration n. The limitation
imposed on the mean free path from below, l � 1/kF, is called the Ioffe–Regel
limit. In classical physics, inequality (1.2) may be described in the following way:
a sinusoidal segment shorter than the wavelength cannot be considered as a sinus-
oid. The analogous quantum-mechanical argument is based on the uncertainty
relation ∆k∆x ∼ 1. Since ∆k should be much less than kF, the minimum pos-
sible uncertainty of the electron trajectory is ∆x � 1/kF. It is natural that the
distance l between the trajectory points where two successive scattering events
take place should exceed the minimum uncertainty.

In this chapter, we consider “real metals” in which the concentration n is
such that the mean intercarrier distance is of the order of the mean interatomic
distance a,

n−1/3 � a ≈ 3 Å, n � n∗ ≈ 4 · 1022 cm−3. (1.4)



2 1. METALS WITH STRONG DISORDER

In what follows, metals with n � n∗ are called standard. The Fermi surfaces
of materials with such a high electron density and long-range order have rather
complicated shapes. However, all the necessary estimates can be made based on
the model of a Fermi sphere described by eqn (1.3).

The mean free path l can be evaluated from the value of the conductivity σ.
Substituting the Fermi radius given by eqn (1.3) into the expression for σ, we
arrive at the Drude equation

σ =
ne2l

�kF
= (3π2)−2/3 e2

�
n1/3(kFl). (1.5)

In accordance with inequality (1.2), the minimum value of the dimensionless
parameter kFl equals unity. Then, it follows from eqn (1.5) that the resistivity
cannot exceed ρ∗ � 10(�/e2)a. Of course, the numerical value of this quantity
following from eqn (1.5), ρ∗ ≈ 1000µΩ · cm, is only approximate and should
be refined experimentally. The experiments discussed below yield the following
ρ∗ value for a standard metal, which will be used in what follows:

ρ∗ ≈ (200–300) µΩ · cm. (1.6)

The existence of the limiting ρ∗ value allows us to formulate two questions:

1. What are the transport properties of a strongly disordered standard metal
with a high ρ value obeying, nevertheless, the inequality ρ < ρ∗?

2. Is it possible to overcome the limit ρ∗ and consider a standard metal with
ρ > ρ∗?

In terms of the simplest model described by eqn (1.5), the existence of such a
metal would mean that l < a, i.e., that an electron is blocked within one unit
cell or is located in the vicinity of a single atom so that the metal is transformed
into an insulator. The metal–insulator transition induced by disorder is called
the Anderson transition; it is always observed in systems with electron density
considerably less than the value given in eqn (1.4). Thus, we can reformulate the
second question in this way: Is an Anderson transition possible in systems with
a high electron density?

Below, we give the answer to the first question and also start discussing the
second question and continue it in Chapter 7.

1.1. Diffraction theory of electron transport in liquid metals

The material of this paragraph is also discussed in the books by Faber (1969) and
Ziman (1979).

If static defects in a periodic lattice are located far from one another, they scatter
electrons independently. With a gradual increase in the defect concentration, the
corresponding scattering potentials start overlapping. This makes it difficult to
single out the space regions free from the scattering fields and unambiguously
determine which of the static defects is really responsible for the scattering event.
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A stronger disorder requires the development of a new approach to considering
its possible consequences. This approach was suggested by Ziman in his theory
of liquid metals.

It is well known that liquids possess only short-range order so that the nearest
environment of each atom is almost the same as in a crystal. However, this
“almost the same” gives rise to an uncertainty in the location of the atom with
respect to the initial atom, which increases with the distance from the initial atom
and, finally, leads to disappearance of the long-range order. It might seem that
the absence of the long-range order (so that each atom scatters independently)
should lead to kFl ≈ 1 instead of the condition (1.2). However, in many instances
this is not the case, and, in particular, in elemental liquid metals. This is seen
from the resistivity values ρ = 1/σ. In order to estimate ρ, we express the carrier
concentration n in eqn (1.5) in terms of the valence Z (i.e., the number of free
electrons per atom) and the atomic concentration N = 1/a3 determined from the
specific weight of the melt, n = Z/a3. The values of n and conductivity allow
us to determine the ratio l/a. In most of the elemental liquid metals, this ratio
exceeds 5, whereas in alkali metals it exceeds 100 (the only exception is Li for
which l/a ≈ 13). This signifies that the cross-section of scattering from individual
atoms is not too high (several times less than a2). A decrease in scattering is
explained by a high electron density and resulting pronounced screening. Each
electron “feels” not a true ion potential but only its small renormalized part
preserved after screening by other electrons, the so-called pseudopotential. For
the sake of brevity, we omit in this section the prefix “pseudo” and refer to a
pseudopotential as simply a potential.

The theory stated here describes the electron scattering from a weak but
rather extended random potential. In fact, the scattering is induced by the poten-
tial V (r) extended over the whole sample volume. It is assumed that the energy
spectrum is isotropic and that the electron energy depends only on the mod-
ulus of its wave vector, ε = ε(k), whereas the wave functions have the form of
unmodulated plane waves exp(ikr). The matrix element of the transition of the
electron with such wave functions,∫

ψ∗
2V (r)ψ1 dr =

∫
ei(k1−k2)rV (r) dr = V (q), (1.7)

is the Fourier component of the scattering potential with argument equal to the
wave-vector transfer during scattering, q = k1 −k2. The potential V (r) is a sum
of the potentials v(r − Ri) of individual atoms located at the points Ri,

V (r) =
∑
Ri

v(r − Ri). (1.8)

Therefore, the Fourier component of the potential V (r) is expressed in terms of
the Fourier components of the potentials v(q) of individual atoms,

V (q) =
∑
Ri

∫
eiqrv(r − Ri) dr =

∑
Ri

eiqRi

∫
eiqrv(r) dr = v(q)

∑
Ri

eiqRi . (1.9)
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Note: Equation (1.8), which describes the potential V (r), is derived under the
assumption that the ions overlap only slightly, in other words, that there are no ions
separated by too short Ri − Rj distances.
Compare: Formally the same potential is also used in the model of the structural dis-
order discussed in Chapter 5 dedicated to Anderson transitions. In Chapter 5, we
consider real and not pseudopotentials; the wells v(r − Ri) are supposed to be rather
deep, so that, in principle, each electron may be located in its own well.

Since the scattering probability is expressed in terms of a squared matrix
element, one has to calculate the squared Fourier component V 2(q). Let the
volume occupied by a liquid metal be unity and the ion concentration be N .
Then,

|V (q)|2 = |v(q)|2
∑

Ri,Rj

eiq(Ri−Rj) = |v(q)|2
⎛⎝N +

∑
Ri,Rj ,i�=j

eiq(Ri−Rj)

⎞⎠.

(1.10)

The latter equality is valid because all the N diagonal elements with i = j of the
double sum are equal to unity. Now, fix a certain ion j = j0, translate the origin
of the coordinate system to the point Rj0 , and average the sum∑

Ri

eiq(Ri−Rj0) ≡
∑
Ri

eiqR′
i , R′

i = Ri − Rj0,

over all the possible {Ri} configurations. Then, the summation over Rj can be
changed to multiplication by N . Denoting averaging by a bar above the symbol,
we obtain

|V (q)|2 = |v(q)|2N
(
1 +

∑
Ri

eiqRi

)
= |v(q)|2NS(q). (1.11)

The expression in brackets denoted as S(q) is called a structure factor. To
rearrange S(q) and clarify its physical meaning, we introduce the probability
NP (r)d3r to find an ion in the volume d3r under the condition that another ion
is located at the origin r = 0. The integral

∫
P (r)d3r taken over the unit volume

equals unity. If the positions of all the ions are statistically independent, then
P (r) ≡ 1. The short-range order determines the P values at the r distances of the
order of a, whereas as r → ∞, the function P always tends to unity, P (r) → 1,
so that the integral

∫
P (r)d3r diverges. Therefore, the Fourier transform P (q) of

the function P (r) has a singularity in the form of delta function at the origin
q = 0: P (q) = Q(q) + δ(q). The function Q(q) serves as the Fourier transform
of the pair-correlation function Q(r) = P (r)− 1 related to P (r) and tending to
zero at large r. The function Q(q) is regular at the point q = 0.

Now, replace the sum averaged over all the atomic positions Ri in the defini-
tion (1.11) of the structure factor S(q) by the integral over d3r where the
probability P (r) is a weighting factor. Ignoring the delta function (the difference



1.1. ELECTRON TRANSPORT IN LIQUID METALS 5

between the Fourier transforms P (r) and Q(r)), we obtain

S(q) = 1 +
∑

Ri

eiqRi

= 1 + N

∫
eiqrQ(r) d3r

= 1 + 2πN

∫ ∫
eiqr cos θ sin θ dθQ(r)r2 dr

= 1 + 4πN

∫ ∞

0
Q(r)

sin qr

qr
r2 dr. (1.12)

The function S(q) appears in all the diffraction problems. It can be obtained from
the relevant experiments and, in particular, from neutron and X-ray scattering.
Similar to P (q), this function contains exhaustive information on the correlations
in ion positions. The appearance of this function in the case under consideration
emphasizes that the approach used is based on the assumption that the wave
functions of electrons are plane waves. Therefore, this theory is often referred to
as the spectral or diffraction theory of transport in liquid metals.

The conventional form of the S(q) function is shown in Fig. 1.1. After several
attenuating oscillations, the function attains its asymptotic value, S = 1. The
scale along the ordinate axis depends on the correlations: the weaker the cor-
relations, the smaller the oscillation amplitude. For a system with statistically
independent ion positions, S ≡ 1. The scale along the abscissa is set by the aver-
age interatomic distance, a ≈ N−1/3. The argument value in the first maximum
is determined by the radius a1 of the first coordination sphere, 1/q1 ≈ a1 ≈ a. In
a similar way, 1/q2 ≈ a2 ≈ 2a, etc. Thus, it follows from eqn (1.5) that one may
indicate certain points q = 2kF at various Z (vertical dashed lines in Fig. 1.1) on
the abscissa and also the positions of these points with respect to the maxima of
the function S(q). This leads to some nontrivial conclusions that can be verified
experimentally.

The quantity l in eqn (1.5) “accumulates” the results of all the individual
events of elastic scattering |k1| = |k2| = kF with different scattering angles

S

1

0 q

Z = 1 2 3 4 5

Fig. 1.1. Sketch of the S(q) function showing the 2kF values for various number
Z of free electrons per atom.
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k2 k1u

12

sin u/2 = q/2kF

|k1| = |k2| = kF

q

Fig. 1.2. Illustrating eqn (1.13) and the relation between the angle of elastic
scattering, θ, and the modulus of the transferred momentum q.

θ = 2arcsin(q/2kF) (see Fig. 1.2) in accordance with the formula

1/l ∝
∫ π

0
|V (q)|2(1− cos θ) sin θ dθ ∝

∫ 1

0
S(2kFx)v2(2kFx)x3 dx, x = q/2kF.

(1.13)

The presence of the factor x3 in the integrand in eqn (1.13) indicates that the
main contribution to the integral comes from the region x ≈ 1, i.e., we deal
here with almost backscattering within angles θ ≈ π. This signifies that in the
calculation of 1/l, the important contribution comes not from the whole S(q)
function but only from its value in the vicinity of the point q = 2kF (Fig. 1.1).
Thus, the following elegant statement can be made.

Obviously, with an increase in temperature, the correlations are weakened and
the ion system becomes more chaotic and approaches the state of an ideal gas.
Therefore, with an increase in temperature, the values of the function S(q) at
fixed q tend to unity. As is seen from Fig. 1.1, in this case, the value S(2kF) in
metals with Z = 1 (liquid Na, K, Rb) and Z = 3 (liquid Al, Ga, In) increases,
whereas in metals with Z = 2 (liquid Zn, Cd, Hg) it decreases. Therefore, with
an increase in temperature, 1/l and the resistivity ρ (proportional to 1/l) should
also behave differently. Thus, diffraction theory predicts a nontrivial dependence
of the sign of the temperature coefficient of resistivity on the valence of a liquid
metal – with an increase in temperature, the resistivity of alkali and trivalent
metals should increase, whereas the resistivity of divalent metals should decrease.
As is seen from Table 1.1 that lists the experimental values of the temperature
coefficient of resistivity for a number of metals, the prediction of diffraction
theory turned out to be quite correct. (All the metals indicated in the table have
comparatively low melting points – less than 200 ◦C for all the metals except for
Zn (420 ◦C) and Cd (320 ◦C).)

It is worth considering one more aspect of the results obtained in diffrac-
tion theory. It turned out that a stronger disorder may result in a decrease
in resistivity. The prerequisite for occurrence of this phenomenon is the over-
lap of individual scatterers. If these scatterers were isolated, their effects would
have been additive. It is also important that the thermal phonons act against
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Table 1.1.

Metal Valence ρ(µΩ · cm)
d ln ρ

d lnT

Li 1 25 0.6
Na 1 10 0.85
K 1 13 0.76
Rb 1 22 0.70
Cs 1 37 0.69
Zn 2 37 −0.24
Cd 2 34 −0.22
Hg 2 91 −0.10
Ga 3 26 0.14
In 3 33 0.16

the background of the strong static disorder that has already destroyed the
long-range order and anisotropy.

Note: An increase in resistivity with temperature lowering may also take place under
the conditions of weak localization (see Chapter 2), but in this case, it is associated
with the quantum corrections to conductivity that appear beyond the limits of the
approximation of the kinetic equation. Diffraction theory demonstrates that the kinetic
equation also may lead to a negative temperature coefficient of resistivity.

1.2. The Mooji rule

The success of diffraction theory shows that it is possible to use and refer to the
parameter l even in those cases where l can hardly be called a distance passed by
an electron between two successive scattering events. Calculations show that, in
the case of strong disorder, scattering may be considered as a continuous process
quantitatively described by the length l. Under these conditions, a decisive role
is played by the dimensionless parameter l/n−1/3 ≈ kFl.

The brilliant confirmation of the conclusions that follow from diffraction the-
ory applied to elemental metallic melts promoted the widespread use of this
theory in processing of electrical conductivity data for disordered high-resistance
alloys. First, the sign of the temperature coefficient of resistance is used to
determine the average number of carriers per atom. This number is then used
as an argument for determining the electron spectrum, the band overlap, the
position of the Fermi level, etc. However, it turned out that, in many instances,
the simplest estimates based on eqn (1.5) yielded kFl < 1. In this case, plane
waves are a poor approximation of the wave functions, and diffraction theory
becomes invalid.

Under these conditions, one has to invoke experimental data. Figure 1.3
summarizes the experimental temperature coefficients of resistance, α=
(1/R)(dR/dT ), for more than 100 high-resistance metal alloys (α has the
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Fig. 1.3. The Mooji rule. Correlation between the resistivity and its temper-
ature coefficient in high-resistance alloys (Mooji 1973).

dimensions of a reciprocal energy). These data point to the existence of a cer-
tain correlation between the resistivity and its temperature coefficient and lead
to the empirical Mooji rule which reads that alloys with resistivity lower than
100–150 µΩ · cm usually have a positive temperature coefficient of resistance,
whereas those with resistivity exceeding 100–150 µΩ·cm, a negative temperat-
ure coefficient of resistance. In other words, if a static disorder gives rise to
a “too high” resistivity, an increase in the temperature slightly reduces the
resistivity.

Note: We consider here materials consisting only of metal atoms with the valence elec-
trons weakly bound to the material ions and, therefore, delocalized. In other words,
we consider only the metals which are standard in terms of eqn (1.4) and we do not
consider metal oxides, Bi-type semimetals, MoGe-type compounds, high-temperature
superconductors, and other materials with reduced electron density.
On the other hand: It is seen from Table 1.1 that almost all of the elemental
liquid metals that can be considered within the diffraction theory have resistivity
ρ � 50µΩ · cm and, therefore, do not fall under the Mooji rule either.

It is no accident that Fig. 1.3 has no data on alloys with ρ > 300µΩ · cm.
Hundreds of various metal alloys were prepared by different methods and they
all had resistivity lower than 300µΩ · cm. Although this value is three to four
times lower than the maximum resistivity ρ∗ evaluated using eqn (1.5), it is this
value that seems to be the maximum possible resistivity value of a standard
metal obtained in the limit l ≈ a.

Both the existence of the empirical upper resistivity limit for a standard metal
and the Mooji rule seem to be associated with important physical factors related
to screening in the systems with high free-carrier densities. It is probable that
screening (decreasing the apparent amplitude of a random potential) gives rise,
in a self-consistent way, to the formation of such a critical level of randomness
that the carriers still remain free.
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1.3. Saturation of resistivity

Thus, making the static disorder stronger, we cannot set up the conditions
necessary for an Anderson transition in a standard metal; the formation of
a certain thermal disorder in addition to the strong static disorder can even
result in a decrease in resistivity. However, there is one more chance to cre-
ate such conditions – to take a metal with a weak static disorder but a strong
electron–phonon interaction, which ensures a rapid increase in resistivity with
temperature. This would allow us to study the effect of only thermal disorder.
This attempt is based on the natural idea about the equivalence of the static
(structural) and dynamic (thermal) disorder in terms of electron scattering. The
velocity of the thermal motion of ions is of the order of the sound velocity,
105 cm/s, whereas the Fermi velocity of electrons is vF ≈ 108 cm/s. Therefore,
moving electrons always “see” only the static pattern which includes the atomic
thermal displacements.

The temperature dependence of resistance caused by electron scattering from
phonons is described by the Grüneisen relation

ρ(T ) = ρ0 + βT 5, T � TD,

ρ(T ) = αT, T 	 TD, (1.14)

which is linear above the Debye temperature TD. To reach high ρ(T ) values,
one has to use the maximum possible α values and high temperatures. The
coefficient α is the higher, the more pronounced the electron–phonon interaction,
whereas the temperature is limited by melting. These factors dictate the choice
of materials appropriate for experiments.

Figure 1.4 shows the ρ(T ) curves for single crystals of two intermetallic com-
pounds, Nb3Sn and Nb3Sb. The former compound becomes superconducting at
Tc = 18K and, therefore, is widely used for manufacturing wires for supercon-
ducting magnets. The latter compound is also a superconductor with Tc = 0.2K.
We mentioned superconductivity deliberately. According to the classical theory
of superconductivity, a high temperature of the superconducting transition indic-
ates a strong electron–phonon interaction. This allows one to expect in eqn (1.14)
rather high values of the β and α coefficients for Nb3Sn. However, instead of lin-
ear behavior at high temperatures we see a gradual decrease of the slope of the
ρ(T ) curve.

Now, consider the curve for Nb3Sb. At T < 200K, it is a typical Grüneisen
curve – the portion of the residual resistivity at low temperatures, the portion
proportional to T 3.6, and, finally, the linear portion described by eqn (1.14).
The latter is so steep that one may expect the attainment of the critical values
at admissible temperatures, T ≈ 500K. However, in actual fact, the ρ(T ) curve
shows an obvious tendency to saturation toward about 150µΩ ·cm. It is remark-
able that the saturation level is the same for both compounds, although, at low
temperatures, the phonon-induced resistivity for Nb3Sn is much higher than for
Nb3Sb, which correlates with the difference between their Tc temperatures.
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Fig. 1.4. ρ(T ) curves with the saturation of resistivity for single crystals of two
intermetallic compounds (Fisk and Webb 1976).

Phenomenologically, the experimental curves in Fig. 1.4 are well described by
the model of a shunting resistance

ρ−1 = ρ−1
id + ρ−1

sh . (1.15)

The model assumes that when the resistivity ρid corresponding to the Grüneisen
relation becomes too high, the current starts flowing through the shunting
resistance ρsh. Equation (1.15) describes the experiments quite well, but its
substantiation meets difficulties.

Usually, eqn (1.15) indicates the existence of parallel conduction channels,
e.g., the existence of two independent groups of carriers described by different
parameters and scattering laws. However, there are no grounds for the existence
of such groups in these materials. One can also arrive at eqn (1.15) consider-
ing only one group of carriers by introducing certain correlations between the
scattering events. If there were no correlations, the conductivity σ written in
terms of the mean time between two collisions, τ , and the effective mass m is
σ = ne2τ/m. Assume that two scattering events cannot take place in the same
unit cell, i.e., that the scattering events are separated by a certain minimum
time τ0 = a/vF during which an electron passes to the neighboring unit cell
(Gurvitch 1981). After time τ0, no limitations exist any more, and the scattering
probability starts behaving in the conventional way. If the first scattering event
takes place at the moment t = 0, the probability p of the following scattering
event is

ρ =
{

0, t < τ0,
1/τ, t > τ0.

Then, replacing the average time between the two collisions τ by τ+τ0, we arrive
at the eqn (1.15) with

ρsh � (�/e2)a. (1.16)
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Although this result is consistent with experiment, the above arguments cannot
be accepted as a formal proof of eqn (1.15). The main supposition that the
scattering events occur instantly at a space point contradicts the more convincing
assumption that the scattering events are lengthy either in space or in time. The
latter assumption underlies the diffraction theory.

At the same time, it was experimentally established that saturation is attained
at the resistivity given by eqn (1.16). This resistivity is characteristic of high-
resistance alloys (Fig.1.3) and correspond to the smallest possible mean free path
l ≈ a, i.e., ρsh ≈ ρ∗. This confirms that the static and dynamic disorders produce
almost the same effects on electrons. The equivalence of these types of disorder
is also illustrated by the temperature curves of resistivity of TiAl alloys with
different Al concentrations (Fig. 1.5). Pure titanium is characterized by a low
residual resistivity, a pronounced increase in resistivity with temperature, and an
obvious tendency to saturation. Qualitatively, the ρ(T ) curve for pure titanium
behaves as those for Nb-based compounds in Fig. 1.4. With an increase in the Al
concentration, the static disorder becomes stronger and the residual resistivity
increases, whereas its increase with temperature becomes weaker (so that at 33%
Al, the temperature coefficient of resistivity even becomes negative). At the same
time, the limiting high-temperature resistivity varies comparatively slightly and
does not go outside the range of values typical of high-resistance alloys.

In the light of the existence of the saturation of resistivity, it is interesting
to consider the evolution of the resistivity anisotropy in single-crystal materials.
This anisotropy is clearly seen from the temperature dependence of the electric
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Fig. 1.5. Resistivity of TiAl alloys with different Al concentrations as a function
of temperature (Mooji 1973).
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Fig. 1.7. ρ(T ) curves for a WO2 single crystal measured along the crystallo-
graphic directions with the maximum and minimum resistivity (Gantmakher
et al. 1986). Solid straight lines indicate the Grüneisen relation (1.14) in the
high-temperature limit ρ(T ) = αT . The coefficient α for resistivity with the
current J ‖ a is calculated under the assumption that eqn (1.15) is valid and
that ρsh = 2000µΩ · cm.

conductivity of an yttrium single crystal shown in Fig. 1.6. In the temperature
range 200–300K, both resistivity and its temperature coefficient α measured in
the plane normal to the sixfold axis are about twice higher than the values meas-
ured along this axis. Therefore, the in-plane resistivity approaches the critical
value at lower temperatures and shows a tendency to saturation much earlier. As
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a result, the difference between the resistivity measured in these two directions
at 1400K becomes less than 10%. The saturation resistivity ρsh measured along
both directions is practically the same.

The saturation of resistivity is also observed in a “nonstandard” metal with
a slightly lower concentration of the free electrons than in eqn (1.4). Accord-
ing to the data on the de Haas–van Alphen effect, the WO2 oxide possessing
a metallic conductivity has a carrier concentration of about n ≈ 2 · 1021 cm−3.
This oxide has a monoclinic lattice and shows a pronounced (almost fourfold)
anisotropy of resistivity at room temperature. Figure 1.7 shows the ρ(T ) curves
measured along the directions with the minimum and maximum resistivity.
Along the first direction (high resistivity), the curve has a tendency to satur-
ation, ρsh ≈ 2000µΩ · cm. Along the other direction, the resistivity is ρ � ρsh
in the whole temperature range, follows the Grüneisen relation, and no signs of
saturation are observed.

1.4. The Ioffe–Regel limit at high electron density

It is very useful to bring together all the facts and phenomena discussed above.
Let us draw a diagram with the temperature T along one axis and the collision
frequency (in energy units �/τ) along the other. As a characteristic scale along
both axes we use the Fermi energy εF. Since for a standard metal εF ∼ 10 000K,
the segment (0–εF) on the temperature axis includes all the temperatures we
are interested in. The frequency 1/τ is assumed to be the sum of the frequencies
of scattering from static defects, 1/τ0, and phonons, 1/τph (with due regard
for the small-angle character of the phonon scattering at low temperatures),
so that

1
τ
=

1
τ0

+
1

τph
. (1.17)

This frequency determines the resistivity ρ. The upper limit of the interval along
the frequency axis, �/τ = εF, corresponds to the Ioffe–Regel limit l ≈ k−1

F .
Higher values of collision frequencies would indicate the failure of the model of
itinerant electrons with the wave functions in the form of plane waves. Therefore,
all the transport phenomena in the gas of itinerant electrons should occur inside
the square 0 � T, �/τ � εF shown in Fig. 1.8.

All the topics considered in this chapter are associated with transport phenom-
ena in the vicinity of the upper side of the square – in the region of pronounced
scattering. First, we tried to approach the upper side of the square by mov-
ing along its left side where the temperatures are comparatively low. Here, the
diffraction theory of liquid metals (developed mainly by Ziman) is applicable
at the level of (0.1–0.2)εF. An important element of this theory is the assump-
tion that the wave functions of electrons are plane waves. In the vicinity of the
upper left corner of the square, the dimensionless quantity �/εFτ stops being a
small parameter, and the theory encounters serious difficulties. The experiments
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Fig. 1.8. The temperature–disorder plane (T, �/τ). The dotted ellipses show
the applicability regions of the Ziman theory and the Mooji rule and also the
region where resistivity is saturated. The resistivity plots are drawn in the
(T, �/τ) coordinates for eqns (1.14) and (1.15). Dashed lines on both plots
indicate the high-temperature asymptotic behavior of the Grüneisen function.

established two most important facts in this region, namely:

(i) The low-temperature resistivity of a standard metal does not exceed the
value given by eqn (1.6),

ρ � ρ∗ ≈ 300µΩ · cm,

irrespective of how strong is the structural disorder.
(ii) In the upper left part of the square, the temperature curves of resistivity

obey the Mooji rule, i.e., if the resistivity is close to that given by eqn (1.6),
an increase in the temperature does not result in an increase in resistivity –
it even slightly decreases it.

Now, in order to analyze the temperature dependence of resistivity of the
materials with strong electron–phonon interaction, draw the diagonal of the
square,

�/τ = T. (1.18)

Remember this equation of the diagonal. Being written in the form τ = �/T , it
recalls the expression for the dephasing time of two thermal electrons that determines
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the quantum correction to conductivity induced by the interelectron interference.
Therefore, the same square and its diagonal also appear in Chapter 2 dedicated to
quantum corrections (see eqns (2.29) and (2.39) and Fig. 2.16 in Chapter 2).

Since ρ ∝ 1/τ , one can also draw the Grüneisen function (1.14) in the
coordinate system (T, �/τ) (for better understanding, we also show on the right
the corresponding scale in resistivity units). In the (T, �/τ) axes, the coefficient in
the high-temperature asymptotic part of the Grüneisen function (1.14) becomes
dimensionless; however, for the sake of simplicity, we preserve its notation α.
Depending on the numerical values of the parameters of the metal under con-
sideration, the asymptotic line αT can be located on either side of the diagonal
(if numerical coefficients are ignored in calculations, all the algebraic factors are
cancelled to yield α = 1). If α < 1, the asymptotic part of the curve is located in
the lower triangle Tτ > �. We are more interested in the case α > 1, where the
curve reaches the upper side of the square. However, the experiments described
in the previous paragraph showed that in this case, one observes the saturation
of resistivity at high temperatures not predicted by the Grüneisen relation.

Thus, neither an increase in the static or dynamic disorder nor their joint effect
can ensure the intersection of the upper side of the square in Fig. 1.8, beyond
which the Anderson localization is expected. This signifies that localization in
a standard metal cannot be achieved by increasing the disorder. This is the
experimental fact that should necessarily be taken into account. We shall return
to the discussion of this problem in Chapter 5 when considering the concept of
the metal–insulator transition and in Chapter 7 where we demonstrate how to
find a way across the upper side of the square.
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2

QUANTUM CORRECTIONS TO CONDUCTIVITY

A clear presentation of the main ideas associated with the quantum corrections to
conductivity can be found in the book by Abrikosov (1988). The additional details,
both experimental and theoretical, can be found in the reviews by Bergmann
(1984) and Altshuler and Aronov (1985).

The creation of the theory of metals begins with the Bloch theorem on the
behavior of electrons in an ideal periodic lattice. The next step is the allowance
for deviations from periodicity in the τ -approximation. It is assumed that the
violation of periodicity gives rise to electron scattering, i.e., transition of an
electron from one stationary state in the ideal lattice to another. The sense of the
parameter τ is associated with the electron response to various types of deviations
from periodicity: impurities and other static defects, phonons, magnons, etc.
At this stage, the additivity of scattering is postulated – it is assumed that the
probability 1/τ of the transition of an electron to a new state can be considered
as the sum of the probabilities 1/τi of electron scattering by various defects,
impurities, phonons, etc. This assumption is quite natural if scattering events
are rather rare as is the case, e.g., in pure metals.

The next step is the introduction of the so-called quantum corrections to
conductivity. The necessary condition for their introduction is the occurrence of
a series of scattering events.

Note: Here, conductivity is understood as specific conduction whose dimensions depend
on the space dimension d:

σd[Ω−1 cm2−d] (d = 1, 2, 3). (2.1)

There are two types of elementary scattering events. In the scattering events
of the first type, an electron preserves its energy εj and, therefore, the temporal
variation of the wave function, exp(iεjt/�) , is not changed either. The frequency
of these elastic scattering acts is denoted as 1/τ . However, there are also some
processes of inelastic scattering, e.g., collisions of electrons with phonons or other
electrons. If an inelastic collision takes place at the moment t0, then the elec-
tron changes its energy εj and “forgets” its phase that existed at time t < t0
prior to this collision. We denote the probability of losing the phase memory
as 1/τϕ.
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The quantum corrections we are going to consider may be introduced under
the conditions that

τϕ 	 τ. (2.2)

Inequality (2.2) signifies that the events occurring with the highest frequency are
the events of elastic scattering from static disorder. That is why when considering
the quantum corrections to conductivity one often refers to dirty metals.

2.1. Weak localization

The quantum corrections to metal conductivity are associated with the electron
wave properties that manifest themselves against the background of diffusion
motion in the presence of a large number of elastic scatterers. The electron
statistics is assumed to be degenerate, T�εF. An electron, which, at the moment
t = 0, was at the origin of the coordinate system, r = 0, takes part in the diffusion
motion with the Fermi velocity vF and the mean free path l = vFτ . After time
t 	 τ , this electron may be found at the point r with probability

p(r, t) = (4πDt)−d/2 e−r2/4Dt, r2 =
d∑
1

x2
i ,

∫
p(r, t) dr = 1. (2.3)

Here d is the dimensionality of the space in which diffusion takes place and
D is the diffusion coefficient defined as D = lvF/d. The distribution width ∆r
gradually increases with time (Fig. 2.1) as

∆r �
√

Dt � l
√

t/τ � l
√

N (2.4)

where N = t/τ is the number of steps in the diffusion process, i.e., the number
of elastic collisions within the time t.

Equations (2.3) and (2.4) describe the diffusion of a classical particle. We
will show now that the wave properties of an electron considerably change the
function p(r, t) at the particular point r = 0. To prove this statement, we select
all the possible trajectories that have the form of a loop and return the electron
to the point r = 0 and group them into pairs with equivalent sets of scatterers but
with opposite directions of electron motion. For a classical particle, the probabil-
ity p(0, t) is the sum of the probabilities of its arrival at the point r = 0 along
different trajectories. In quantum mechanics, this corresponds to the summation
of the squared magnitudes of the corresponding wave functions. However, the
quantum particle remembers its initial phase up to the moment t ≈ τϕ. Hence,
until t < τϕ the wave functions should be summed up, and the probability p(0, t)
is the squared magnitude of this sum. The difference is noticeable:

classical summation |A1|2 + |A2|2 = 2A2,
quantum summation |A1 +A2|2 = |A1|2 + |A2|2 + 2|A1A2| = 4A2.

(2.5)

Therefore, the probability of finding an electron at the origin, p(0, t), should be
doubled because of interference (Fig. 2.1), with the peak width being determined
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Fig. 2.1. The function p(t) for two-dimensional diffusion at different moments,
t1 and 2t1. The additional peak on the curve t < τϕ is due to quantum
interference described by eqn (2.5).
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Fig. 2.2. (a) Closed diffusion trajectories which can be passed around by elec-
tron waves in opposite directions; (b) mechanical analogy: waves in a circular
canal connected with a water pond.

by the uncertainty principle δr � λ � 1/kF (λ is the de Broglie wavelength and
kF is the Fermi wave vector). The division of the trajectories into interfering
pairs is possible only for closed trajectories, i.e., the trajectories which end at
the point r = 0 from which the electron started at the initial moment of time
(Fig. 2.2a).
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A higher probability of finding an electron at the point r = 0 means that it
spends more time at this point. This leads to the corrections δσ to conductivity
and is called weak localization.

The physical processes underlying weak localization can be understood by
invoking a mechanical analogy. Let a circular canal be connected with a large
water pond (Fig. 2.2b). A wave approaching the canal from the pond enters both
arms and forms two partial waves. If the waves do not damp in the canal (the
damping time τϕ > t), both partial waves pass around the canal and meet again
at the entrance.

The relative area under the additional peak of the function p(r, t) depends on t.
Therefore, in order to evaluate the relative correction to conductivity, δσ/σ, one
has to calculate the addition dσ to conductivity for the time dt formed because
of the change in the function p(r, t), and to integrate this addition over time.
First, consider the three-dimensional case d = 3. The volume, at any point of
which an electron can be found at the moment t, is of the order of (Dt)3/2.
The volume from which an electron can reach the origin within the time dt is
of the order of λ2vFdt. The ratio of these two volumes determines the relative
number of electrons that “revisit” the origin within the time dt. The minimum
time necessary for an electron to return to the origin is the time of elastic scat-
tering, τ . The returned electron can participate in interference if it has returned
before the phase-breaking time, t < τϕ. As a result, we have for

d = 3:
δσ3

σ
� −

∫ τϕ

τ

vFλ2 dt

(Dt)3/2 � −vFλ2

D3/2

(
1

τ1/2 − 1

τ
1/2
ϕ

)
= −(k2

Fl)−1
(
1
l

− 1
Lϕ

)
.

(2.6)

The quantity introduced into eqn (2.6),

Lϕ �
√

Dτϕ � l
√

τϕ/τ 	 l, (2.7)

is called the diffusion or the phase-breaking length. Although the term with Lϕ

in eqn (2.6) is less than the term with l, it is this term that is responsible for the
temperature dependence in the quantum correction to conductivity, because τϕ

depends on temperature and tends to infinity as T → 0.
Since the normalization factor in eqn (2.3) for p(r, t) and, therefore, the

denominator in the integrand of eqn (2.6), depends on the dimensionality d,
the functions ∆σ/σ for various d turn out to be different. The characteristic
length which is compared with the size of a particular sample is the diffusion
length Lϕ. In terms of diffusion, a film of thickness b and a wire with a diameter b
are the objects of a reduced dimension if

b � Lϕ. (2.8)
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For these objects, instead of eqn (2.6), we have

d = 2:
δσ2

σ
� −

∫ τϕ

τ

vFλ2 dt

(Dt)b
� vFλ2

Db
ln(τϕ/τ) � 1

(kFl)(kFb)
ln(τϕ/τ),

d = 1:
δσ1

σ
� −

∫ τϕ

τ

vFλ2 dt

(Dt)1/2b2 � 2vFλ2

Db2 (Lϕ − l) � 1
(kFb)2

(
Lϕ

l
− 1
)

.

(2.9)

Condition (2.8) for dimension reduction is rather mild. It determines the
configuration of the space operating with scale Lϕ while the diffusion takes
place in scale l. For a film with l � b � Lϕ, the diffusion process remains three-
dimensional; an electron in the film can move between two elastic-scattering
events along an arbitrary direction, including the direction along the film normal.
However, the quantum correction for such a film is determined by eqn (2.9)
assuming that d = 2.

The corrections δσi in expressions (2.6) and (2.9) are negative. Therefore,
irrespective of dimension, beginning with a certain temperature, the conduct-
ivity δσi decreases (resistivity increases) with lowering of the temperature.
The interference effect is the more pronounced, the lower the dimension. In the
three-dimensional case, a decrease in δσ3 is limited and δσ3 tends to a certain
limit as T → 0. At a reduced dimension, the corrections diverge because both τϕ

and Lϕ tend to infinity at T → 0. Since conductivity cannot be negative, there
should exist some limits of the applicability of eqns (2.6) and (2.9). The limitation
reduces to the requirement of the relative smallness of the corrections

δσi � σ (i = 1, 2, 3) . (2.10)

It is useful to consider not the reduced values of corrections (2.6) and (2.9) to
the 3D conductivity σ, eqn (1.5), but the absolute values of the changes of the
conductivity ∆σd = δσd b3−d which have the same dimensions as the conductivity
σd, eqn (2.1):

d = 3: ∆σ3 ≈ −const. +
(

e2

�

)
L−1

ϕ ,

d = 2: ∆σ2 ≈ −
(

e2

�

)
ln
(τϕ

τ

)
≈ −2

(
e2

�

)
ln
(

Lϕ

l

)
,

d = 1: ∆σ1 ≈ −
(

e2

�

)
Lϕ .

(2.11)

All the corrections have the same scale, e2/�. This combination of the atomic con-
stants with the dimensions of reciprocal resistance, �/e2 = 4110 Ω, is encountered
in all the problems associated with localization. It is important that the quantum
corrections (2.11) contain no carrier concentration, whereas the dependence of
quantum corrections (2.11) on τ is weaker than the dependence of conductivity
σd on τ . Therefore, the role of interference corrections increases with a decrease
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in the initial conductivity of the material. This is another explanation of the fact
that weak localization is usually considered as a dirty-metal effect.

Note: Since τϕ → ∞ as T → 0, then, at low temperatures, inequality (2.2) is fulfilled
for any pure metal with an arbitrarily high τ . It is perfectly possible to grow a single
crystal of pure metal, e.g., indium, with a mean free path of the order of l ≈ 0, 1 cm, so
that the parameter kFl would be of the order of kFl ≈ 106. At T = 0, 1K, the ratio τϕ/τ
is of the order of 103–104, i.e., inequality (2.2) is fulfilled. However, the contribution of
the quantum correction to conductivity is negligible:

δσ3

σ
∼ 1

k2
FLϕl

∼ 10−14.

Note also: Formally, even a very thick film at a rather low temperature should be
considered as two-dimensional. As T → 0, the length Lϕ tends to infinity, Lϕ → ∞,
and, below a certain temperature, inequality (2.8) would be fulfilled. Then, the classical
conductivity σ3b should be corrected for ∆σ2.

Equations (2.6), (2.9) and (2.11) were repeatedly verified experimentally
mainly on films. Fig. 2.3 summarizes the results of two experiments performed
on Cu and Au films. Both materials are characterized by a logarithmic increase
in conduction at temperatures below 10K. Despite the fact that the corrections
∆R/R in the temperature range 1–10K considerably differ, the absolute values
of the corrections to conductivity, ∆σ, differ much less, as was to be expected
from eqn (2.11). The weak dependence of ∆σ on the material properties becomes
obvious if one compares the measurements made on Cu and Au films with the
measurements on amorphous In–O films (whose resistivity is 1000 times higher
and a logarithmic increase in resistance starts with lowering of the temperature
below 100K). The ∆R/R values of the In–O films (Fig. 2.4) amount to 15, 6,
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Fig. 2.3. Temperature dependence of resistivity of thin Cu (Van der Dries
1981) and Au (Dorozhkin and Dolgopolov 1982) films. Dashed arrows indicate
increase in resistivity at a tenfold decrease in temperature (from 10 to 1K).
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Fig. 2.4. Resistivity of thin amorphous In–O films as a function of temperature
(Ovadyahu and Imry 1981). The films have different oxygen content, which is
reflected in the concentration of free carriers.
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Fig. 2.5. Logarithmic temperature increase in resistivity in the inverse Si layers
for two samples (Bishop et al. 1980). Straight lines are drawn to guide the eye.

and 3% at a tenfold temperature change, whereas their ∆σ values range within
(1–2)·10−5 Ω−1, i.e., are only slightly lower than for Cu and Au films.

The logarithmic increase in resistance was also observed in true two-
dimensional electronic systems, e.g., in inverse layers on Si surfaces in the
temperature range 0.1–1.0 K (Fig. 2.5). The ∆R/R values for two samples were
16 and 3%, whereas the ∆σ values were of the order of 2.5·10−5 Ω−1.
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Note: Irrespective of the acting mechanism of inelastic scattering of electrons, determ-
ining the phase-breaking time, the τϕ and Lϕ quantities are power functions of
temperature, Lϕ ∝ T s. Therefore, the quantum correction for films always manifests
itself as the specific dependence ∆R ∝ lnT and s enters this relationship as the
proportionality coefficient.

2.1.1. Coherent backscattering of light

Since weak localization is of the wave-interference nature, it should have an
optical analogue. This analogue really exists – it is light scattering in disordered
media. Illuminating the disordered medium from one side, we can see it at any
angle, because the multiply scattered light exits from the illuminated volume
in all directions with equal probability – the phenomenon of a blue sky. Since
scattering is elastic, the modulus of the wave vector does not change and the scat-
tering of a plane light wave A exp(ikr) incident on the medium may be described
by the motion of the end of the vector k over the surface of a sphere |k| = const.
In particular, part of the light beam is scattered in the backward direction. This
part of the beam is described by the point −k on the sphere. In the classical
description, there is nothing particular about this point, because if scattering is
strong, the amplitude of the scattered wave is

A(k) → const. at |k| = const.

For plane waves, there exists an interference effect analogous to weak loc-
alization. The transitions from k to −k is the result of a random walk over
the surface of the sphere with the step-by-step change of point k by ∆ik = qi,
i.e., k +

∑
i qi = −k. There exist an infinite number of sequences {qi} that can

be divided into interfering pairs of the same set of vectors but considered in
the opposite order (Fig. 2.6) (partial permutation, e.g., of two random vectors
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�k1

q1

�k2
�k3

k3
�

q2

q3

q1

q2

q3

q4

q4

Fig. 2.6. Weak localization in the k-representation. Each random-walk tra-
jectory on the surface of the Fermi sphere k → k′

1 → k′
2 → k′

3 → −k
which results in a transition k → −k has the complementary trajectory
k → k′′

1 → k′′
2 → k′′

3 → −k. The interference of waves scattered via these
two series of states increases the backscattering.
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in summation over i is inadmissible because the intermediate ki values would
not lie on the surface of the sphere). For each interfering pair of trajectories in
k-space, the speculations made earlier in the derivation of (2.5) may be repeated.
These considerations indicate a relative increase in backscattering.

The experimental setup for implementation of “weak localization in the
k-representation” is schematically shown in Fig. 2.7. It records the angular
dependence of the light intensity scattered by an aqueous suspension of poly-
styrene beads with diameters 0.46µm occupying 10% of the total volume.
The results of these experiments are shown in Fig. 2.8 (curve a) together with
the analogous signals from the cell with pure water (curve b) and in the absence
of any cell (curve c). The scales for the three curves are identical.
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Fig. 2.7. Experimental setup for studying backscattering of light (Wolf and
Maret 1985).
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Fig. 2.8. Angular dependence of the scattered light intensity (a) by aqueous
suspension of polystyrene beads (solid fraction 10%); (b) by the same cell
filled with pure water, and (c) in the absence of any cell (Wolf and Maret
1985).
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2.2. Effect of magnetic field on weak localization

A magnetic field B bends electron trajectories. Two electrons moving toward
each other are deviated by the field in opposite directions. The angle of electron
motion changes on the way between two impurities by a value of the order
of l/r = Ωτ (here r is the cyclotron radius and Ω = eB/mc is the cyclotron
frequency). Usually, one considers dirty metals with a not too high τ value,
therefore, in moderate fields Ωτ � 1, and the difference between the scattering
angles can be ignored in comparison with other much more pronounced effects.

If an electron travels along the loop in a magnetic field, its wave function Ψ
acquires an additional phase factor

Ψ → Ψexp
(

i
e

�c

∫
A dl

)
= Ψexp

(
± iπBS

Φ0

)
. (2.12)

where A is the vector potential of the magnetic field, Φ0 = π�c/e is a magnetic-
flux quantum, and BS = Φ is the total magnetic flux through the loop. The sign
of the exponent depends on whether an electron moves clockwise or anticlockwise
along the loop. Since an electron waves move along the loop in the opposite
directions, then, upon their return to the origin, the two parts of the electron
wave function would acquire the phase difference ϕ = 2π(Φ/Φ0).

The area S of the projection of a loop onto the plane perpendicular to the
field is of the order of the squared mean distance r(t) covered by the electron for
the time t. Therefore,

ϕ = 2π
(

BS

Φ0

)
� Br2

Φ0
� BDt

Φ0
. (2.13)

The phase difference indicates that the second relationship in (2.5) should be
replaced by

|A1 +A2|2 = |A1|2 + |A2|2 + 2|A1||A2| cosϕ = 2A2(1 + cosϕ). (2.14)

If ϕ is small, this correction is inessential. However, if ϕ > 1, the scatter in
the areas S of the loops becomes important because the phase (2.13) becomes
uncertain. In Fig. 2.2, this scatter is illustrated by the difference between the
areas of the dashed and dotted contours. The average value of the term with
the phase in eqn (2.14) is cosϕ = 0 and, therefore, the magnetic field destroys
the interference. The longer the time t and the larger the average area S � Dt
of the closed trajectories formed within this time, the lower the field B that
destroys the interference contribution. We are not interested in times t > τϕ,
because the interference within these times is destroyed by inelastic collisions.
The neighborhoods of the upper integration limit τϕ in integrals (2.6) and (2.9)
are important because it is these neighborhoods that enter eqn (2.11) via Lϕ.
Therefore, assuming that ϕ = 1 in the left-hand side of eqn (2.13) and sub-
stituting τϕ instead of t in the right-hand side of eqn (2.13), we arrive at the
field value Bϕ sufficient to start breaking weak localization,

Bϕ =
c�

e
(Dτϕ)−1. (2.15)
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Writing the diffusion coefficient as D � εFτ/m and introducing the cyclotron
frequency Ωϕ = eBϕ/mc in the field Bϕ, we obtain from eqn (2.15)

Ωϕτ
εFτϕ

�
≈ 1, whence Ωϕτ � 1. (2.16)

Inequality (2.16) confirms that the bending of electron trajectories in the field
Bϕ can be ignored.

Now, introduce the magnetic time as

τB =
Φ0

BD
≈ r2

B

D
≈ Ω−1(kFl)−1, (2.17)

where rB = (�c/2eB)1/2 is the magnetic length. If τB � τϕ, i.e., if B 	 Bϕ, one
has to change the upper integration limit in eqns (2.6) and (2.9),

∫ τϕ

τ
→

∫ τB

τ
.

Then

0 < ∆σ(B)−∆σ(0) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
e2

�
ln(Lϕ/rB), d = 2,

(l � rB ≤ Lϕ).

e2

�

[
1
rB

− 1
Lϕ

]
, d = 3,

(2.18)

The conductivity σ(B) in eqn (2.18) is compared with the conductivity in the
zero field, σ(0). In some instances, it is more convenient to insert into eqn (2.18)
the conductivity σ(∞) in a very strong field instead of σ(0).

Figure 2.9 illustrates the destruction of weak localization in Mg films by a
magnetic field. The total decrease in conductivity is the more pronounced, the
lower the temperature T . This experimental fact fits eqn (2.9) in which a decrease
in T results in an increase of the upper integration limit. In this case, with a
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Fig. 2.9. Magnetoresistance of a thin Mg film for different temperatures
(Bergmann 1984).
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decrease in T , the region of the pronounced decrease in resistivity is displaced
toward lower fields. This process is completed in the field

Bel = �c/el2, at τB = τ, (2.19)

i.e., when the magnetic time is equal to the elastic time. Gradually decreasing
the strong field, we observe, first, interference on the loops with the minimum
areas S of the projections onto the plane normal to the magnetic field, S ∼ l2.
This happens in the field B � Bel. With a further decrease in the field, the
interference is “switched on” at the trajectories with ever increasing S values,
which is accompanied by an increase in resistivity. This process is finished in
field (2.15)

Bϕ = �c/eL2
ϕ, when τB = τϕ. (2.20)

To conclude, the conductivity depends on the field B in the field interval
Bϕ < B < Bel and only the low-field edge of this interval is temperature depend-
ent. The shift of the R(B) curves in strong fields (Fig. 2.9) is explained by the
temperature dependence of the classical part of the magnetoconductivity.

Thus, the magnetic field may be used to prove the existence of weak local-
ization. What is really seen in the experiments is a negative magnetoresistance in
weak fields. This kind of experimental observation of weak localization looks like
a proof by contradiction, because we evidence the process of breaking the weak
localization. However, in order to demonstrate weak localization, the resistivity
dependence on the magnetic field in Fig. 2.9 is as objective as the resistivity
dependence on temperature (Figs 2.3–2.5).

The consideration of eqn (2.14) shows that the wave correction is destroyed
by a field of the order of Bϕ, because of the scatter in the areas of the closed
interfering trajectories. Designing the experiment in such a way that all the loop
projections onto the plane normal to the magnetic field would have the same
areas S, we avoid the destruction of the interference contribution. Instead, with
an increase in ϕ, the contribution would start oscillating with the field with the
period

∆B =
Φ0

S
=

π�c

eS
. (2.21)

This configuration was implemented experimentally. Evaporating a thin metal
layer (δr � r) onto a quartz filament with diameter 2r � 1–2µm, we obtain a
cylindrical film. The area S of the projection of a closed diffusion trajectory
onto the plane normal to the cylinder axis equals either zero or πr2. The mag-
netic field directed along the cylinder axis does not affect the interference of the
trajectories with S = 0. On the contrary, the contribution from the trajector-
ies with S = πr2 to the conductivity along the cylinder axis should oscillate
with the period given by eqn (2.21). To make this contribution comparable
with the conventional quantum correction, it is necessary to satisfy the con-
dition S < Dτϕ � L2

ϕ (small cylinder diameter and low temperature). However,
it seems that the oscillating addition may be observable also if S ∼ L2

ϕ.
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Fig. 2.10. Longitudinal magnetoresistance oscillations in cylindrical Mg, Al,
and Li films. For Mg, solid lines show the experimental curves, the arrows indic-
ate the calculated values of the field at which the resistivity extrema should be
observed (Sharvin and Sharvin 1981). For Li, the solid line shows the experi-
mental curves and the dashed line, the calculated ones (Altshuler et al. 1982).
For Al, the points indicate the experimental values and the solid lines present
the calculations (Gijs et al. 1984). For Li and Al curves, two various scales (of
resistance variation, ∆R, and of conductance variation, ∆G = ∆R/R2) are
indicated.

Figure 2.10 shows the experimental ∆R/R curves obtained by two groups of
experimentalists on Mg, Li, and Al cylindrical films. It is seen that the theoretical
calculations may explain not only the oscillation periods but also the dependence
of their amplitudes on the field and their monotonic run.

Our previous considerations show that, in the field B = 0, the resistivity
should be maximal. However, this is observed only for Li films, whereas the
oscillations in Mg and Al films have the opposite phases. We return to this fact
in the next section after acquaintance with the effect of the spin–orbit interaction
on interference.

2.3. Antilocalization

Electron waves propagating in opposite directions along a closed diffusion tra-
jectory and interfering at the exit have the fixed spin projection, +1

2 or −1
2 .

In fact, two electrons with different spins coexist on each trajectory. Each of these
electrons generates a pair of electron waves propagating in opposite directions.
The pairs of waves meet at the initial point and each of these waves interferes
with the complementary one. If no spin flip takes place, the two electrons are
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absolutely independent and give their additive contributions into the quantum
correction to conductivity. However, the situation becomes different if the spin–
orbit interaction takes place. Then, the electron spin may flip in the course of
elastic scattering and the two pairs of waves mix.

The spin–orbit interaction arises because the magnetic moment µ moving with
velocity v gives rise to an electric field e ∝ [µv] in the stationary coordinate
system. This field interacts with the field E of the ion charges, which results
in the spin flip. The field intensity E and also the intensity of the spin–orbit
scattering proportional to

Ee ∝ E [µv ], (2.22)

are strongly dependent on the charge of the nucleus, i.e., on the atomic number Z.
We have τ−1

so ∝ (Zα)4, where α = 1/137 is the fine structure constant. Therefore,
the effect of the spin–orbit interaction is more pronounced in materials containing
heavy atoms.

Not every elastic-scattering event is accompanied by a spin flip, and, there-
fore, the spin-flip time is much longer than the elastic-scattering time, τso 	 τ .
The ratio τso/τ is the higher, the weaker the spin–orbit interaction, with the
time τso being independent of the temperature. Since τϕ → ∞ as T → 0, then,
at sufficiently low temperatures, we have

τ � τso � τϕ. (2.23)

To take into account the mixing of wave functions of electrons with different
spins, consider a compound particle consisting of two electrons. The total spin
of this pair can be in one of four possible states. These are the zero total spin
(singlet) and unity total spin with three different projections (triplet). Therefore,
the wave function Ψ of the pair has four components

Ψ =

⎛⎜⎜⎜⎜⎝
Ψ0

Ψ1,−1

Ψ1,0

Ψ1,1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

1√
2
(ϕ(1)

+ ϕ
(2)
− − ϕ

(1)
− ϕ

(2)
+ )

ϕ
(1)
− ϕ

(2)
−

1√
2
(ϕ(1)

+ ϕ
(2)
− + ϕ

(1)
− ϕ

(2)
+ )

ϕ
(1)
+ ϕ

(2)
+

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.24)

where ϕ(1) and ϕ(2) are the wave functions of the first and second electrons,
respectively, and the subscripts + and − relate to the spin part of the wave
function and indicate different spin projections. This electron pair interferes with
itself if the corresponding waves meet after the bypass of a loop trajectory in
opposite directions. The total interference is the sum of four terms – the terms
due to the three components of the wave function Ψ1m with spin 1 (and the
projections m = 0,±1) and the component Ψ0 with the zero spin.
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Omitting the calculations, we indicate and comment here only on the final
result

δσd

σ
� −

∫ τϕ

τ

vλ2 dt

b3−d(Dt)d/2

(
3
2

e−t/τso − 1
2

)
, (d = 1, 2, 3). (2.25)

Comparing this result with eqns (2.6) and (2.9), we see in the integrand a new
factor in parentheses consisting of two terms. The first term is due to the three
triplet components Ψ1m with spin 1. The exponential attenuation of this term
indicates that the interference of these functions is important only until the
moment t < τso, i.e., until the moment at which the electrons still “remember”
the initial spin. Within this time interval, we may assume that exp(−t/τso) ≈ 1,
so that the expression in parentheses is of the order of unity, and the integrand
coincides with that in eqns (2.6) and (2.9) written for a spinless electron. This
is quite natural because up to this moment no spin flip has taken place.

The most interesting events occur within the time interval

τso < t < τϕ, (2.26)

where the first term in parentheses may be ignored and then the expression is
reduced to the negative second term associated with interference of the wave
component Ψ0. The minus sign indicates that the interference addition remain-
ing after the spin flip does not decrease the conductivity; on the contrary, it
even increases it. The final sign of the correction depends on the ratio τso/τϕ.
If τso � τϕ, the interference contribution to conductivity is positive. Sometimes,
this limit is called antilocalization.

One should not think that the phases of the two parts of the wave function of
a singlet pair after the bypass of the loop in opposite directions would differ by
a factor of π. The interference is observed if t > τso, i.e., after all the spins have
been flipped. Each spin flip transforms the triplet pair into the singlet one and,
vice versa, the singlet pair into the triplet one. Therefore, if t > τso, the singlet
part of the wave function (three quarters of it) consist of ex-triplets. The singlet
and triplet wave functions have different structures. It is seen from eqn (2.24)
that the triplet components are symmetric with respect to particle permutations,
whereas the singlet component is antisymmetric. This results in the appearance
of the minus sign before the amplitude of the interference contribution from the
singlet part of the wave function.

Note: All the above is valid only for the spin–orbital interaction and has no relation
to scattering from a paramagnetic impurity accompanied by a spin flip. After the flip
of the spin of the impurity center, an electron with spin µ turns out to be in the
state with the spin −µ, the state that initially was empty. This process is analogous
to conventional scattering without spin flip and results not in antilocalization but in
weak localization.

Of course, all the above speculations cannot replace direct calculations and,
therefore, are somewhat unsatisfactory. But it is expedient to clarify which of
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the antilocalization problems is only a technical one and which one is of principal
importance. Interference may result nor only in an increase, but also in a decrease
of the wave amplitude, with the sign of the changes often being unknown. Suffice
it to recollect the discussion of the Fresnel formulas in the Paris Academy of
Sciences. These formulas indicate the presence of a light spot on the screen
along the axis of the beam diffracting from a nontransparent circular disk. This
fact was first interpreted as an indication of the failure of the wave theory of
light. Later, after the experimental observation of this spot, it was accepted
as convincing proof of this theory. Logically, both weak localization and weak
antilocalization are equally possible results of electron wave interference.

There is another aspect that is quite unexpected and very important – an
electron wave continues taking part in the interference even after the spin–orbit
interaction which resulted in the spin flip. Electrons are in contact with the
surrounding quantum system, which may be called a thermostat. The effect of a
scattering event on the electron-wave coherence (i.e., its ability to interfere) can
be estimated from the state of the thermostat. Elastic scattering of a spinless
electron leaves no traces in the thermostat. Thus, the coherence is preserved
despite the fact that a scattered electron can be in any state on the sphere
|k| = const. Inelastic electron scattering from the lattice results in a change of
the thermostat state – the appearance or disappearance of a phonon. As a result,
the electron becomes incoherent.

The spin flip may also occur in two different ways. If electron scattering from
a magnetic impurity is accompanied by the spin flip, then, because of the conser-
vation of the total spin, the impurity spin also flips. This signifies the change of
the thermostat state although, generally speaking, both electron and thermostat
energies may remain unchanged. Indeed, along with phonon scattering, the scat-
tering from magnetic impurities makes the contribution to 1/τϕ and does not
lead to antilocalization. Because of the spin–orbit interaction, the spin flip in
scattering from nonmagnetic impurities leaves no traces in the thermostat and,
thus, preserves the electron coherence. Nevertheless, the result of the interference
is different because it took place under different interference conditions. Now,
numerous coherent states are located on the surfaces of two spheres, |k−| = const.
and |k+| = const., where the subscripts + and – indicate the direction of the spin
projection.

Now consider the experimental study of antilocalization. It is most convenient
to observe antilocalization by examining the dependence of conductivity on the
magnetic field that destroys the interference. Figure 2.11 shows the corresponding
R(B) curves for copper films. Copper atoms are heavier than magnesium ones,
and, therefore, the spin–orbit interaction in copper should be more pronounced.
Indeed, comparing the curves for Cu and Mg (Figs 2.9 and 2.11), we see a
small minimum on the curve for Cu in weak fields in the zero field. According
to (2.17), the magnetic time is proportional to the field, τB ∝ B−1. Therefore,
increasing the field from the zero value, we see that, first, the τB value becomes
comparable with τϕ, which results in decreasing the upper integration limit and
the gradual disappearance of that part of integral (2.25) which is responsible
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Fig. 2.11. Magnetoresistance of a thin Cu film at different temperatures
(Bergmann 1984). The appropriate selection of the parameters allows one to
make an ideal fit to the experimental points (solid lines).

for antilocalization. This should be accompanied by a decrease in conductivity
and an increase in resistivity. Then, τB becomes comparable with τso, and the
antilocalization region in the integrand completely disappears. A further increase
in the field destroys the conventional weak localization. Since τso is temperature
independent and τϕ decreases with an increase in temperature, then the region
(2.26) does not exist at higher temperatures and, therefore, the R(B) curves
have no minima.

It is interesting to follow the evolution of the R(B) curves with a decrease in
the time τso. This can be made by performing experiments on Mg films coated
with a small amount of gold. Gold atoms play the part of the scattering centers
that provide spin flip. The magnetoresistance of Mg films is shown in Fig. 2.12
for different coverage with Au. The τϕ/τso ratio plays the role of the fitting
parameter for comparing the experimental and calculated curves.

Now, return to the conductivity oscillations in cylindrical films (Fig. 2.10).
It is natural to interpret the opposite phases of oscillations in the Mg and Al
films, on the one hand, and of oscillations in Li, on the other hand, by the
effect of spin–orbit interaction. Although Mg, Al, and Li are light elements, the
atomic number of Li is much lower than the atomic numbers of the two other
metals: ZLi = 3, ZMg = 12, ZAl = 13, so that the difference in τso, with all the
other conditions being the same, amounts to two orders of magnitude.

Note: The inconsistency between the data for Mg in Figs 2.9 and 2.10 (opposite signs of
the derivative ∂R/∂B at B = 0) is only apparent. The time necessary for an electron
to pass around the cylinder is of the order of τcyl � τ(r/l)2. The interference along
such trajectories occurs at times t > τcyl. The magnetic field that destroys interference
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indicated on the right. On the left, the ratio τi/τso used for the theoretical fit
is indicated. This ratio is practically proportional to the coating thickness.

within this time is determined by eqn (2.17). It is of the order of 10 Oe as well as the
oscillation periods in Fig. 2.10. In fact, the oscillation phase for Mg and Al films show
that the corresponding R(B) curves should possess a 10 Oe-wide minimum similar to
that of the curves for Cu. This minimum is indistinguishable in Fig. 2.9.

Equation (2.22) qualitatively describes the spin–orbit interaction. The crystal
potential U enters this formula twice, via the electric field E = ∇U and the
velocity, which is a derivative in dispersion law, v = �

−1∂ε/∂k, which is also
determined by the crystal field. Therefore, the crystal structure of a material
and, in particular, its symmetry is the second (after the atomic number Z)
important factor determining the spin–orbit interaction and, thus, also spin–
orbit scattering. The center of inversion of the crystal field is of key importance.
If there is no center of inversion, eqn (2.22) determines the second contribution
to the spin–orbit interaction, which, in a number of instances, may be the most
important.

Most of the above classical examples of weak localization and antilocaliza-
tion were observed for metal films. Today, studies of a two-dimensional electron
gas are performed mainly on heterostructures in which electrons are localized
in narrow quantum wells formed at the interfaces of two crystals. Usually,
materials with noncentrosymmetric crystal structures are used. However, the
spin–orbit interaction in such a two-dimensional gas also depends on the shape
and asymmetry of the quantum well (the Rashba–Bychkov effect)

∇U = (∇U)cryst + (∇U)heter. (2.27)

The well parameters are varied by applying a gate voltage Vg to the electrode on
the top of the well. Thus, it is possible to pass from localization to antilocalization
and back in a two-dimensional electron gas by varying the voltage Vg at the gate.
Figures 2.13 and 2.14 illustrate the results of these experiments.
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It is not accidental that we carefully follow eqns (2.11) and (2.25) by plotting
conductivity and not resistivity in Figs 2.13 and 2.14. Otherwise, it would be
difficult to compare the curves recorded at different gate voltages Vg because
Vg considerably changes the carrier concentration and resistivity of the two-
dimensional electron gas, and ∆R = ∆σ/R2. In the experiments illustrated by
Figs 2.9, 2.11 and 2.12, no pronounced difference in resistances was observed.
Therefore, these figures show the resistance curves, which are measured in the
experiments.

2.4. Interelectron interference (Aronov–Altshuler effect)

For a comprehensive treatment of the theory, see Altshuler and Aronov (1985).

On the terminology: The title of this section indicates that it is dedicated to the phe-
nomena which, ultimately, follow from the wave properties of electrons. However, the
same may also be said about weak localization. Therefore, the term electron interference
is sometimes used instead of weak localization. In turn, the interference between waves
from different electrons, we intend to discuss below, is often called the electron–electron
interaction or the Aronov–Altshuler effect. However, following the optical terminology,
one should classify weak localization as diffraction and the Aronov–Altshuler effect as
interference.

Weak localization is the result of electron interference with itself provided by
motion of the partial waves along closed trajectories. Interference between the
wave functions of different electrons is also possible, e.g., if electrons meet
twice. In the absence of scatterers, the electrons that happened to be close
to one another at the moment t = 0 fly apart along ballistic trajectories with
the Fermi velocity vF. The distance r between these electrons increases lin-
early with time, r ∼ vFt. Under diffusion conditions, the mean distance between
electrons increases considerably more slowly, r ∼ l(t/τ)1/2 ∼ vF(tτ)1/2. Diffusion
keeps electrons close to one another and, thus, changes the conditions of their
interaction.

In weak localization, the phase-breaking time τϕ is determined by inelastic
collisions. Under interference of two different electrons, it is not the inelastic col-
lisions that are of primary importance, but the difference in initial energies εi the
electrons may have. The change of phase of an electron with time is described
by the relationship exp[iϕ(t)] = exp[i(εi/�)t]. Let two electrons with energies
differing by ∆ε have the same phases at the moment t = 0. After time �/∆ε,
these phases would differ by a value of the order of unity.

Diffusion takes place only for electrons with energies ε ranging within

εF − T � ε � εF + T. (2.28)

For these electrons, the mean ∆ε ∼ T value is proportional to T , and the
characteristic dephasing time is

τee � �/T. (2.29)
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The corresponding size of the interference region is

Lee � l
(τee

τ

)1/2
� vF

(
�τ

T

)1/2

�
√

�D

T
. (2.30)

The τee and Lee quantities play the same role in interelectron interference as
τϕ and Lϕ in weak localization, although the mechanisms of their influence on
conductivity are quite different.

First of all, the diffusion character of motion changes the effective frequency
of electron–electron collisions. In the ballistic regime, the energy and momentum
of each of two charged particles after they fly apart differ from those before they
close in. The event of their meeting is called a collision. The mean momentum
transferred during the collision is of the order of kF, the effective size of the
interaction region is 1/kF, and the effective interaction time is �/εF. Since each
scattering event should satisfy the Pauli exclusion principle and the law of energy
conservation, the initial and final states of the colliding electrons can lie only in
the energy range given by eqn (2.28). Temperature limits the number of possible
collisions – the number of electrons that may collide with the given electron
is proportional to T and the number of finite states of this electron after each
collision is also proportional to T . This results in the factor T 2 in the scattering
probability �/τe, so that the collision frequency is described as

�

τe
∼ T 2

εF
. (2.31)

Above, we added the factor 1/εF to preserve the dimensions, because εF is the
only independent parameter with the dimensions of energy.

In principle, eqn (2.31) for the collision frequency is changed if electrons do not
move along ballistic trajectories, but diffuse in the vicinity of one another and are
scattered by impurities. The effective size of the interaction region, Lee 	 1/kF,
becomes rather large, and the momentum transferred as a result of this interac-
tion, q � 1/Lee, becomes small. It is this limitation on the value of the transferred
momentum (and not the law of energy conservation) that determines the colli-
sion frequency τe in this case. Now, τe includes qd and not T 2. In order to obtain
the dimensions of energy for the variable �/τe, we have to multiply qd ∝ 1/Ld

ee by
the density of states at the Fermi level, also dependent on the space dimension
d, gd ∼ ε

d/2−1
F m1/2 (where m = �kF/vF is the electron mass). Thus, we obtain

the following expression instead of eqn (2.31):

�

τe
∼ 1

gdLd
ee

. (2.32)

Whence, we have

�/τe ∼ T d/2ε1−d
F τ−d/2 =

⎧⎪⎨⎪⎩
T 1/2τ−1/2, d = 1,

T ε−1
F τ−1, d = 2, (T � 1/τ).

T 3/2ε−2
F τ−3/2, d = 3,

(2.33)
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To distinguish between scattering in the ballistic and diffusion modes, we
denote the collision frequency defined by (2.31) by �/τball

e and the frequency
defined by (2.33), by �/τdiff

e .

Note: The diffusion nature of electron motion within a time �/T does not exclude
scattering with the transfer of a large momentum (2.31); it gives rise to additional
scattering defined by eqn (2.33) in the diffusion channel. Scattering rates (2.31) and
(2.33) should be summed.

The collisions described by eqn (2.33) introduce a direct contribution to the
rate of energy relaxation and the formation of the phase-breaking time, τϕ.
However, the momentum exchange between electrons due to this process is unim-
portant and the collisions make no noticeable contribution to resistivity, because
it was assumed at the very beginning that 1/τdiff

e � 1/τ . It is more important for
electron transport that, in parallel with the switching-on of the diffusion channel
of scattering, the electron interactions during diffusion also give rise to changes
of the electron spectrum in the vicinity of the Fermi level.

Consider the interaction between two electrons with the energies measured
from the Fermi level, ε and −ε. The Hamiltonian which describes their interaction
contains the exchange term appearing because the electrons may be exchanged
since they are equivalent. This term does not affect scattering, but introduces
small additions to the electron energy and density of states. Usually, this is
unimportant, because these additions are independent of energy. However, the
correction to the exchange term that comes from the interactions during diffusion
motion is noticeable against the total background, because the corresponding
contribution to the density of states depends on energy and reaches the max-
imum value at the Fermi level. The effective time of interaction between the
electrons with energies ε and −ε is the more pronounced the lower the |ε| value:
τee = �/ε. At T = 0, the density of states in the vicinity of the Fermi level
depends on energy ε as

∆g(T = 0, ε) ∼ (�D)−d/2 ·

⎧⎪⎨⎪⎩
√

|ε|, d = 3,

ln(ετ/�), d = 2,

1/
√

|ε|, d = 1.

(2.34)

This is the most important result of the interelectron interaction in the diffu-
sion channel. Diffusion that keeps the electrons close to one another in r-space
also increases the effective time of their interaction and, thus, pushes the levels
away.

Generally speaking, the definition of the density of states also depends on
interactions, because the energy distribution of the interacting electrons depends
on the number of these electrons. Therefore, the density of states that enters, e.g.,
the formulas of heat capacity differs from the density of states determining the
transport properties and the tunneling probability considered here. We return to
this problem in Appendix B. In particular, it is indicated there that the Coulomb
interaction decreases the effective tunneling density of states, because the space
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Fig. 2.15. The density-of-states minimum at the Fermi level formed due to
interelectron interaction at different temperatures (three-dimensional case).

inhomogeneity of the charges formed by tunneling may be dissolved only within
a certain finite time. This time is affected by the effectiveness of the diffusion.

The interaction results in the formation of a singularity in the g(T = 0, ε)
function at the Fermi level at ε = εF. The temperature determines the average
difference between the energies of interacting electrons and removes the singular-
ity in the function g(0, ε) schematically depicted in Fig. 2.15 by the dashed line

g(T, ε) �

⎧⎨⎩
gF, |εF − ε| > �/τ,
g(0, ε), T < |εF − ε| < �/τ,
g(0, ε = T ), |εF − ε| < T.

(2.35)

The dependence of the density of states on temperature in the direct vicinity
of the Fermi level results in the temperature dependence of the corresponding
correction to conductivity. This correction may be estimated in the same way as
in the theory of weak localization.

The interelectron interaction takes place because the electrons that were close
to one another at the moment t = 0 meet again within the time τee. The prob-
ability η of this meeting is described by the same integrals as in the theory of
weak localization

η(∆ε) �
∫

�/∆ε

τ

vλ2 dt

b3−d(Dt)d/2 , d = 1, 2, 3, (2.36)

where ∆ε is the difference in the energies of two interfering electrons. This
predetermines the functional similarity of the expressions for the quantum cor-
rections to conductivity in the cases of weak localization and interelectron
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interference:

d = 3: ∆eeσ3 ≈ −const +
(

e2

�

)
L−1

ee ,

d = 2: ∆eeσ2 ≈ −
(

e2

�

)
ln
(τee

τ

)
� −2

(
e2

�

)
ln
(

Lee

l

)
,

d = 1: ∆eeσ1 ≈ −
(

e2

�

)
Lee.

(2.37)

These corrections and the corrections described by (2.11) for weak localization
depend on the dimensionality d in similar ways, have the same dimensionality
criteria (2.8), etc. However, eqn (2.37) contains not the length Lϕ determined
by eqn (2.7), but the dephasing length determined by eqn (2.30).

It is natural to observe the Aronov–Altshuler effect experimentally by studying
the transport properties of dirty metals. However, it is impossible to distinguish
between interelectron interference and weak localization. We may use here as
a hook the indifference of interelectron interference toward a magnetic field.
However, it is far from being easy to use this hook. Therefore, the direct mani-
festations of this effect were observed in studies of the densities of states. The
density-of-states minimum can be seen directly in special tunneling experiments
described in Appendix B.

Thus, the interelectron interference is described with the use of three charac-
teristic times – the dephasing time (2.29) of a diffusing electron and the relaxation
times (2.31) and (2.33). To reveal the relations between these times, we construc-
ted the “temperature–collision frequency” plane and used the Fermi energy εF
as a scale along both axes. The squared unit area in this plane includes all the
possible temperatures and collision frequencies (Fig. 2.16).

Note: the same square has been used on another occasion in Chapter 1 – see there
Fig. 1.8.

In the effect of weak localization, collisions with static defects and collisions
with phonons play different roles. The former provide diffusion, whereas the lat-
ter result in phase breaking. In interelectron interference, the two electrons are
characterized from the very beginning by different rates of phase variation, which
are proportional to the electron energies. Collisions of these electrons with phon-
ons do not take the electrons from the thermal range described by eqn (2.28)
and, therefore, do not increase the average difference in electron energies. Thus,
the effective dephasing time τee does not decrease. On the other hand, thermal
displacements of atoms give rise to additional inhomogeneity and the scatter-
ing effects from phonons and static defects are summed up. The efficiency of
the respective contributions of these two sources of scattering to diffusion and
resistivity depends, via the factor (1− cos θ) in the collision integral, on the
scattering angle θ. The frequencies of the electron–phonon, 1/τph, and electron–
impurity, 1/τ0, collisions calculated with due regard for this efficiency yield the
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Fig. 2.16. Electron–electron interaction at relatively high (upper left side tri-
angle) and low (lower right side triangle) elastic-scattering frequencies. In the
upper triangle, no dephasing is observed for the time between two elastic col-
lisions. In the lower triangle, the time between two collisions is sufficient for
dephasing. The dashed line is drawn for the three-dimensional case. In three-
dimensional systems, inequality (2.42) is valid only above this line (see the
text).

so-called transport scattering frequency

1
τtr

=
1
τ0

+
1

τph
. (2.38)

It is this frequency that is plotted along the vertical axis in Fig. 2.16. In metals,
the transport time differs from the total time only in the case of phonon scattering
at low temperatures. Therefore, the corresponding subscript of τ on the ordinate
axis in Fig. 2.16 is omitted.

Now, draw the diagonal of the square in Fig. 2.16. The equation of the
diagonal,

τ = �/T (2.39)

is similar to eqn (2.29) defining the dephasing time τee. However, it follows from
the drawing that this equation includes not τee but the transport scattering
time τ . The diagonal divides the square into two triangles. The states in the
lower triangle are the states of a metal in the pure limit, because the interactions
between electrons take place during their motion along the ballistic trajectories
and are described by the conventional scattering time, eqn (2.31). However, it
is masked by phonon scattering and may be revealed only at low temperatures,
i.e., where ρph ∝ T 5, and ρe ∝ T 2.

Everywhere in the upper triangle, we have

τee > τ, (2.40)
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in other words, the dephasing time is much longer than the time between the
elastic (and quasielastic) collisions. Therefore, interelectron interference takes
place under diffusion conditions. This triangle is the region of diffusion interac-
tion, whereas the states in this triangle are the states of a metal in the dirty limit.
In this region, there are two channels of interelectron scattering – the ballistic
and diffusion channels, and

1
τe

=
1

τball
e

+
1

τdiff
e

. (2.41)

In systems with reduced dimension, d = 1 or d = 2, scattering in the diffusion
channel in the upper triangle is more pronounced;

1
τdiff
e

	 1
τball
e

. (2.42)

It is this scattering that gives the main contribution to the formation of the
phase-breaking rate, 1/τϕ, that controls the weak-localization processes. For
d = 3, inequality (2.42) takes place only above the curve

�/τ = (Tε2
F)

1/3, (2.43)

shown by the dashed line in the upper triangle. Anyhow, irrespective of dimen-
sionality, the interelectron interaction at T > �/τ gives rise to the corrections
to the density of states at the Fermi level described by eqn (2.34) and to the
quantum corrections to conductivity described by eqn (2.37).

Note: No matter how low the residual resistivity ρ0 ∝ 1/τ0, i.e., no matter how pure
the metal, at a low enough temperature, T < �/τ0, this metal turns out to be formally
in the dirty limit, so that its conductivity should necessarily contain the quantum
correction. However, this correction can be formed only if the sample size exceeds Lee.
In any case, this correction is relatively small.
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3

EFFECT OF THE COULOMB INTERACTION ON
THE ELECTRON ENERGY SPECTRUM

Most of the problems considered in this chapter are also considered in the book
by Shklovskii and Efros (1984).

3.1. The Peierls transition

The details of the problems considered in this paragraph can be found in the books
by Peierls (1955) and Grüner (2000).

All the electrons of a solid exist in the initial potential created by the ions.
However, an inhomogeneous distribution of the electrons in space gives rise to the
formation of additional electric fields and renormalization of the bare potential.
Therefore, each electron “feels” not only the potential created by ions but also
the potential created by other electrons. In particular, the screening is a kind
of such renormalization. In metals, the concentration of renormalized electrons
is very high and screening is pronounced, so the initial potential retains only
its small part, the so-called pseudopotential. The pseudopotential affects the
single-electron spectrum mainly due to the preserved translation symmetry of
the initial potential.

However, in many instances the effect of electrons on their own energy spec-
trum is not reduced only to screening. Electrons may considerably change the
bare potential and lower its symmetry. A striking example here is the Peierls
instability. Consider a regular one-dimensional atomic chain with period a. The
corresponding Brillouin zone for this chain is the segment between the −π/a
and π/a values along the k-axis (Fig. 3.1). This zone has 1/a states for elec-
trons per a unit length of the chain. Each state may contain two electrons –
altogether 2/a electron sites. Let one electron of each atom be collectivized so
that the concentration of delocalized electrons is n = 1/a. Let the temperature
be very low, for simplicity, T = 0. Then n electrons would occupy n/2 states
in the central part of the segment, from −π/2a to π/2a, in which the energy
is minimal. Now, imagine that the period of the atomic chain is doubled by a
small displacement of each second atom. Then the period in the reciprocal space
would be twice reduced, so that an additional boundary of the Brillouin zone
would be formed exactly between the occupied and unoccupied states. At the
Brillouin-zone boundary, the ε(k) spectrum has a gap, with the derivative dε/dk
having zero values on both sides. As is seen from Fig. 3.1, the formation of the
additional boundary increases the energy of the unoccupied states |k| > π/2a
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Fig. 3.1. Appearance of a gap around the Fermi level in a one-dimensional
Brillouin zone for a chain of metal atoms with one valence electron per
atom. Right: the density of states g(ε); the hatched areas are equal. The
dashed line shows the density of states g̃(ε) in an unperturbed one-dimensional
electron gas.

but decreases the energy of the occupied states |k| < π/2a. This is accompanied
by a decrease of the energy of the electron system as a whole. The Fermi level εF
with respect to the band bottom at the point k = 0 remains unchanged.

Thus, doubling of the chain period is favorable for an electron system with
one electron per atom because it decreases its energy. The problem is how to
attain period doubling. The simplest way is to provide a small displacement
(∆a)2 of each second atom, although this would result in a certain loss of the
elastic energy that determined the period a. Nevertheless, a small displacement
(∆a)2 is still somewhat advantageous in most cases, and its value is determined
by the minimum of the total energy.

The assumption that the chain has one electron per atom is not very import-
ant. The appropriate period can be selected at any carrier concentration. Let
the electron concentration n be a fraction α of the atomic concentration 1/a,
so that n = α/a. If a new period in the chain is formed, ã = 2a/α, then the
Brillouin zone acquires an additional boundary between the free and occupied
states. Such a period may appear even without displacements of the chain atoms
because of a modulation due to a charge-density wave in the electron system.
Since the formation of the new period gives rise to the formation of a gap between
the occupied and the unoccupied states in the spectrum and the transformation
of a metal into an insulator, we may state that no one-dimensional metal can
exist at the absolute zero of temperature. With an increase in the temperature,
the gain in the electron energy gradually diminishes because of the appearance
of empty states under the gap (where the energy of states is lower than in the
unperturbed spectrum) and occupied states above the gap (where the energy
of states is higher than in the unperturbed spectrum). Therefore, at a certain
critical temperature, the material undergoes a transition to the metal state.

In the Peierls consideration, the assumption that the system is one-
dimensional is essential because the Fermi surface of systems with higher
dimension always has a certain curvature, whereas the Brillouin zone bound-
aries, eqn (1.1), where the energy is discontinuous are always flat. Therefore, it
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is impossible to transform a three-dimensional metal into an insulator by redu-
cing its symmetry. However, a decrease in the total electron energy with the
appearance of new discontinuity planes of the ε(k) function in k-space may often
be important. The very existence of Bi, Sb, and As semimetals and metal alloys
with complicated structures containing a large number of atoms in their unit cells
is due to the tendency to diminish the electron energy by means of new Brillouin
planes. Moreover, it was revealed that anisotropic media may be unstable against
the charge- and spin-density waves whose appearance is accompanied by phase
transitions. All these phenomena gave rise to a new branch of solid state physics
not considered in the present book. Therefore, we only mention here the Peierls
transition but leave aside such problems as the scale of atomic displacements at
T = 0, the critical temperature of the transition where the gap becomes zero,
etc. (see, e.g., Peierls 1955 or Grüner 2000).

Nevertheless, we mention here the Peierls transition by two reasons.
First, the Peierls transition is a very convenient example for the demonstration

of principle of self-action of an electron gas onto its own energy spectrum. Below,
we consider the manifestation of this principle in a disordered medium. The
analogy becomes obvious if one compares Fig. 3.1 with Fig. 3.7 presented below.

Second, in the discussion at the beginning of Chapter 5 on the classification of
electron phase transitions, the Peierls transition is considered as a clear example:
despite the fact that a decrease in the electron energy is the key factor, the
transition point is determined not by the electron energy only, but by the energy
balance that includes other types of energies, e.g., the elastic energy.

3.2. Structure of the impurity band in the case of low doping

The band theory successfully explains the division of solids with ideal crystal
lattices into metals and insulators. The Fermi level in metals lies inside one
band or several overlapping bands, i.e., in the range of allowed energies. In an
insulator, the Fermi level lies in the range of forbidden energies, with the number
of free carriers at the temperature T being determined by the exponent, where
the distance |Eb − µ| from the Fermi level µ to the nearest edge of the allowed
energies, Eb, is compared with T . If |Eb −µ| is of the order of the atomic energy
(1 eV, i.e., 10 000K), so that at room temperatures Tr ≈ 300K

|Eb − µ| 	 Tr, (3.1)

then the conductivity at room temperature is negligible, and the material is a
true insulator. If inequality (3.1) is not too strong, the material possesses a finite
intrinsic conductivity, which is frozen out with a decrease in temperature.

On terminology: In Chapters 3 and 4, we denote the Fermi level by µ in accordance
with the tradition of physics of semiconductors, whereas in all the other chapters of
the book we denote the Fermi energy by εF. Both µ and εF signify the energy level
which, at the absolute zero of temperature, T = 0, separates the occupied electron
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states from unoccupied states. In metals, the states in the vicinity of the Fermi level
are delocalized. In insulators, these levels are localized. They may even be absent if the
Fermi level is located in the energy gap.

Impurities may create electron levels E0 in the forbidden band. We are inter-
ested in those energy levels E0 which are located in the vicinity of the band
edge Eb. These impurities are called donors and acceptors. The presence of
donors or acceptors displaces the Fermi level close to E0, whereas the number of
free carriers and the conductivity are controlled by the impurity concentration
N and the ionization energy of the impurities, |Eb −E0|, compared with T . The
corresponding conductivity is called the impurity conductivity.

The materials possessing intrinsic or impurity conductivity are called semi-
conductors. The above consideration makes it clear that placing a particular
materials among semiconductors is rather conditional and, in particular, depends
on temperature. At low temperatures, semiconductors stop existing as a class of
materials because, with the freezing out of conductivity, all the materials become
insulators. However, a number of materials, such as Ge, Si, GaAs, InSb, InP, etc.,
are traditionally called semiconductors.

For definiteness, consider an n-type semiconductor with band gap ∆. Let
the main impurities in this semiconductor be shallow hydrogen-like donors, i.e.,
donors with ionization energy E0 � ∆ and the electron wave function vanishing
at large distances as exp(−r/aB) (Bohr radius aB = �(2m∗E0)−1/2 = �

2κ/m∗e2,
where κ is the permittivity and m∗ is the effective mass). It is impossible to purify
and dope a semiconductor to such a degree that it would contain solely donors
and no acceptors. The presence of a number of acceptors in an n-type semicon-
ductor becomes crucial. Since the electron energy at the acceptor is considerably
lower than its energy at a donor, all the NA acceptors would capture electrons
from the donors and acquire a negative charge, whereas a certain number NA
from the total number of ND donors, ND > NA, would loose their electrons and
acquire a positive charge. This results in the formation of a random electric field
created by 2NA randomly distributed charges. The energies of all the donors are
modified by this random field:

εj = E0 +∆εj , ∆εj =
e2

κ

[∑
a

1
|rj − ra|

−
∑
id

′ 1
|rj − rid|

]
. (3.2)

The first sum is taken over all the acceptors (variable subscript “a”) and the
second one, over all the ionized donors (subscript “id”). The subscript j indicates
an arbitrary donor, the prime on the second sum indicates that if the subscript j
belongs to an ionized donor, the term j = id with zero in the denominator should
be excluded from the summation.

The energy shifts ∆εi indicate that the existence of a random electric field
even in a low-doped semiconductor (Na3

B � 1) gives rise to spreading of an
ND-tuply degenerate donor level E0 into the so-called impurity band. As we are
interested in the energy shifts, we assume below in this chapter that E0 = 0. The
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Fig. 3.2. Electric field of charged centers. The circles on the energy sketch
(above) show the initial values of the donor and acceptor energies. The hori-
zontal bars show the values of the donor energies corrected for the Coulomb
potential of charged impurities. The contributions to the potential that come
from individual charged impurities are shown below.

Fermi level µ separates the occupied levels of neutral donors and the unoccupied
levels of ionized donors, i.e., lies inside this impurity band (Fig. 3.2).

Note: This transformation of a level into an impurity band at Na3
B � 1 is not associated

with the overlap of the wave functions and is of pure classical origin. The overlap and
delocalization (at a certain degree of overlap) arise under higher doping levels. Until
this moment, all the states in this impurity band are localized and the term “band”
signifies the range of energies with nonzero density of states.

3.2.1. Weak compensation

Consider the case of a relatively small number of acceptors, so that the com-
pensation coefficient is small, K = NA/ND � 1. Since the opposite charges are
attracted, then in equilibrium, only the donors located close to acceptors are
ionized. The inequality NA � ND signifies that the average interacceptor dis-
tance is much larger than the average distance between donors. Therefore, each
ionized donor can be attributed to a certain acceptor and, thus, the problem is
reduced to the consideration of possible local configurations of charged donors
around a charged acceptor.

If two donors are in the vicinity of an acceptor, they both may be ionized. Let
the negatively charged acceptor be located in the middle between two donors
at distances r from these donors (Fig. 3.3a). Now, let one of the donors be
ionized, i.e., be positively charged. The arrival of a positive charge from infinity
to the second donor would result in an energy gain e2/κr because of the donor
attraction to the acceptor, whereas the loss in energy caused by the repulsion
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Fig. 3.3. (a) Possible and (b) impossible configurations of charged centers.

from the first donor, e2/2κr, is less by half. Therefore, such a configuration is
possible and one acceptor may keep in its possession two ionized donors.

However, an acceptor cannot keep in its possession three ionized donors. In the
most favorable configuration, donors are located at the apices of the equilateral
triangle with sides r, with the acceptor being located in the triangle center
(Fig. 3.3b). If two donors have already been ionized, then the ionization of the
third donor (described as the arrival of a positive charge from infinity to this
donor) would result in energy loss, (e2/κr)(

√
3− 2) < 0.

All this allows one to divide all the acceptors into three groups: N0 acceptors
having no ionized donors in their vicinities; N1 acceptors having one donor in
their vicinities; and N2 acceptors with two ionized donors in their vicinities. The
condition of electrical neutrality N0 +N1 +N2 = NA yields for the Fermi level

N0(µ) = N2(µ). (3.3)

Now, write the expression for N0(µ). Let the origin of the energy scale cor-
respond to the energy of an isolated donor. As is seen from Fig. 3.2, an acceptor
belongs to the group N0 if it has no donors within a radius rµ = e2/κµ. There-
fore, N0 is equal to the acceptor concentration NA multiplied by the probability
that the volume (4π/3)r3

µ does not contain a donor:

N0(µ) = NA exp
(

−4π
3

r3
µND

)
= NA exp

[
−4π

3

(
εD

µ

)3
]

, (3.4)

where εD = (e2/κ)N1/3
D is the energy of the Coulomb interaction at the average

interdonor distance N
−1/3
D .

The calculation of N2 is somewhat more complicated. The probability that
two donors closest to the acceptor are located in the volumes elements dr1 and
dr2 at distances r1 = |r1| and r2 = |r2| � r1 from the acceptor is

N2
D exp

(
−4π

3
r3
1ND

)
exp

(
−4π

3
(r3

2 − r3
1)ND

)
dr1 dr2

= N2
D exp

(
−4π

3
r3
2ND

)
dr1 dr2. (3.5)
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Both donors will be ionized if their energy levels exceed µ,

ε1 =
e2

κ|r1|
− e2

κ|r1 − r2|
> µ, ε2 =

e2

κ|r2|
− e2

κ|r1 − r2|
> µ. (3.6)

Then

N2(µ) = NAN2
D

∫
dr1

∫
r2>r1

dr2 exp
(

−4π
3

r3
2ND

)
Θ(ε1 − µ)Θ(ε2 − µ),

Θ(x) =
{

1 at x > 0,
0 at x < 0. (3.7)

The N2(µ) value calculated from eqn (3.7) is somewhat underestimated. It may
happen that two donors closest to the acceptor cannot be ionized simultaneously,
because they are too close to one another. Such an acceptor is not taken into
account in eqn (3.7). However, one more donor may be located on the other side
of this acceptor at a distance of r3 > r2 from it and may form an ionized pair
with one of the closest donors. However, the respective correction is negligible –
less than one percent. Substituting the data calculated by eqn (3.7) with the
necessary correction and eqn (3.4) into eqn (3.3), we obtain N0 = N2 and N1,
and also the position of the Fermi level

N0 = N2 = 0.013NA, N1 = 0.974NA, (3.8)

µ ≈ 0.99εD. (3.9)

The plot of the density of states is sketched in the left-hand side of Fig. 3.4.

Note: The area under the g(ε) curve equals ND and the effective width of the distri-
bution is of the order of εD. The sense of the coefficient 0.99 in eqn (3.9) is symbolic.
Despite the fact that it is almost unity, we write this coefficient here to emphasize
that it was calculated. At the same time, this calculation gives no information on the
symmetry of the g(ε) curve with respect to E0.

The dependence of µ − E0 on ND can be verified experimentally because
this difference is, in fact, the activation energy of the nearest-neighbor hopping

«/«D g(«)

1
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−1

«/«D g(«)
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m

2 2

1−K << 1K << 1

Fig. 3.4. Sketches of the density of states in the impurity band at weak (K � 1)
and strong (1−K � 1) compensation. The origin of the energy scale ε/εD = 0
corresponds to the level E0. The occupied states are hatched.
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Fig. 3.5. Activation energy of the nearest-neighbor hopping conductivity as a
function of the impurity concentration in Ge : P (from Shklovskii and Shlimak
1972) and Ge : Sb samples (from Fritzsche 1958). The straight line shows the
theoretical dependence described by (3.9).

conductivity (see Chapter 4). Figure 3.5 shows the data of two experiments on
n-type germanium. It is seen that, at least at low ND, the relation µ−E0 ∝ N1/3

is confirmed, in accordance with eqn (3.9). At high donor densities ND, the
overlap of the electron wave functions localized at the impurity centers (not taken
into account by the above classical calculation) seems to become important.

Note: Both the density of states and the position of the Fermi level were formed in
the potential relief induced by electrons that, in principle, could be distributed over
donors in CNA

ND
ways. The solution in the limit K � 1 obtained from eqn (3.3) describes

the function g(ε) on the scale of εD. With an increase in K, the number of ways CNA
ND

of possible arrangement of electrons at the donors also increases, which allows one to
expect that the g(ε) function would become more complicated. Indeed, as will be shown
in the last section of this chapter, the g(ε) function forms an additional structure on a
lower scale in the vicinity of µ.

3.2.2. Strong compensation

Consider the other limiting case

1− K � 1, n = ND − NA � ND. (3.10)

On the terminology: The letter n denotes the number of carriers and, if the electrons are
localized, the number of “possible carriers”. Therefore, here n = ND − NA determines
the number of electrons remaining in the donor-impurity band. On the other hand, NA

electrons departed to the acceptors have obviously left the game (both in weak and
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strong compensation). Here, we call the game (or a future game) the participation of
electrons in the hopping conductivity at a low but not zero temperature, the metal–
insulator transition with an increase in n, etc.

Under the conditions defined by eqn (3.10), the larger part of the donors are
ionized. Only a donor too close to another ionized donor may remain neutral; in
pairs of closely located donors, one donor remains neutral because its energy is
reduced by ε = e2/κr in the field of a positively charged neighbor (here r is the
distance between the donors in the pair).

The probability of having a nearest neighbor at a distance from r to r+ dr is

νr dr = ND · 4πr2 dr, (3.11)

and the probability of decreasing the energy by ε = e2/κr at the expense of the
neighbor is

νε dε = ND · 4πr2 dr

dε
dε = −ND · 4π (e

2/κ)3

ε4 dε. (3.12)

Multiplying both sides of the above equation by ND and dividing by 2 (in order
not to take into account a donor twice), we arrive at the density of states for pairs

g2(ε) = 2πND
ε3

D

ε4 , εD =
e2N

1/3
D

κ
. (3.13)

The Fermi level is determined from the condition

∫ µ

−∞
g2(ε) dε = n, (3.14)

whence

µ = −
(
2π
3

)1/3

εD

(
ND

n

)1/3

= −
(
2π
3

)1/3
εD

(1− K)1/3 (3.15)

(see the sketch on the right-hand side of Fig. 3.4).
In addition to ND, eqn (3.15) contains one more variable parameter, (1− K).

Experimentally, the effect of this parameter on conductivity is confirmed by
measuring the activation energy of the hopping conductivity over the nearest
neighbors (Fig. 3.6).
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Fig. 3.6. Activation energy of the conductivity by nearest-neighbor hopping as
a function of the compensation coefficient (Mott and Twose 1963). On the
right, for K > 0.5, the theoretical curve attains the dependence described by
eqn (3.15).

3.3. The Coulomb gap

Within both weak, K � 1, and strong, 1− K � 1, compensations, we obtained
a bell-shaped density of states g(ε) with the maximum close to E0 and the Fermi
level at one of the wings of the distribution (Fig. 3.4). It could be expected that
with a gradual change in K from one limit to another, the Fermi level would
smoothly shift from one edge of a weakly varying function g(ε) to the other,
being located near the maximum at K ≈ 0.5 (when the number of electrons is
half as great as the number of centers in the impurity band).

However, the results of a computer simulation at K ≈ 0.5 (Fig. 3.7) show that
this is not so. The density of states in Fig. 3.7 is plotted in units of g0 and the
energy in units of εD:

g0 =
ND

εD
, εD =

(
e2

κ

)
N

1/3
D , (3.16)

so that the area under the g(ε) curve equals unity. As was to be expected, the
Fermi level µ is really close to E0 = 0, but at ε = µ, the function g(ε) is minimal
and not maximal, g(µ) = 0.

This result should be considered and discussed in more detail.
The prerequisite for obtaining such a result is a large number CNA

ND
of possible

electron distributions over the centers. This signifies the possible existence of
a large number of different density-of-states functions from which the optimum
function with a Coulomb gap should be selected.

One can readily explain why the selected distribution is preferable. Compare
this distribution with the “expected” one g̃(ε) (dashed line in Fig. 3.7) having
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Fig. 3.7. Density of states in the impurity band for the compensation coefficient
K = 0.5 according to the data of a computer simulation (Efros et al. 1979).
The hatched areas are equal (compare with Fig. 3.1).

the same wings and area∫ ∞

−∞
g̃(ε) dε =

∫ ∞

−∞
g(ε) dε = ND, (3.17)

but without a minimum. One can readily see that the average energy ε− of states
below the Fermi level is lower

ε− =
1

ND − NA

∫ µ

−∞
εg(ε) dε <

1
ND − NA

∫ µ

−∞
εg̃(ε) dε, (3.18)

because the center area of this part of the distribution is shifted to lower energies.
At low temperatures, the occupied states are located mainly in this part of the
spectrum. Therefore, the total energy of the electron gas,

Ê =
∫ ∞

−∞
εg(ε)f(ε/T ) dε, f(x) = (expx+ 1)−1 (3.19)

decreases despite an increase in the average energy ε+ of the states in the spec-
trum range ε > µ. These speculations are similar to those explaining the Peierls
transition in a one-dimensional system. Comparing the changes g̃(ε) → g(ε) in
the density of states because of the Peierls instability (Fig. 3.1) and due to the
formation of the Coulomb gap (Fig. 3.7), we see that the equations of type eqns
(3.17)–(3.19) are applicable to both cases. However, it follows from this analogue
that the temperature may change the density-of-states function g(ε) and affect
the Coulomb gap.

To show how the g(ε) function changes in the vicinity of µ, consider the
following situation. Let two states from the energy range (µ − ε/2, µ + ε/2) be
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in equilibrium at T = 0. One of these states with energy εi < µ is occupied,
whereas the other with energy εj > µ is empty. Let these states be spaced by the
distance rij . Now, take the electron from the center i away to infinity. Then, the
energy of the level j decreases down to εj − e2/κrij . Nevertheless, this energy
should exceed εi, otherwise the alternative configuration in which the center j is
occupied and the center i is empty would be preferable. The inequalities

εj − εi − e2/κrij > 0, εj − εi < ε (3.20)

yield the ε-dependent constraint for rij from below and constraint for N from
above:

ε >
e2

κrij
, N(ε) = r−3

ij <
(κε

e2

)3
. (3.21)

Since the energy ε may take arbitrarily small values, the inequality (3.21) limits
the rate of N(ε) variations near ε = 0. We may replace the inequality sign by
equality and differentiate the equality obtained:

g(ε) =
∂N

∂ε
∝ κ3

e6 (ε − µ)2. (3.22)

The equality sign indicates that (ε − µ)2 is the lowest possible power satisfying
eqn (3.21).

This shape of the g(ε) function in the vicinity of µ is referred to as a soft
Coulomb gap. It is called soft because g(ε) goes to zero only at one point and it
is called Coulomb because it is caused by the Coulomb interaction.

Equations (3.21) and (3.22) are written for three-dimensional space. In the
two-dimensional case, a similar consideration yields

N(ε) = r−2
ij <

(κε

e2

)2
, g(ε) =

∂N

∂ε
∝ κ2

e4 |ε − µ|. (3.23)

The compensation coefficient K was not used in explicit form for considering
the Coulomb gap. It should be assumed that the function g(ε) goes to zero at the
Fermi level not only at K ≈ 0.5 but also at the K values closer to the end of
the (0, 1) interval. This is confirmed by the computer simulation illustrated by
Fig. 3.8 on the same scale determined by eqn (3.16) as in Fig. 3.7.

Note: The distribution for K = 0.9 is broader than for K = 0.1. This was to be expected
from the comparison of eqns (3.9) and (3.15). Equation (3.15) has an additional numer-
ical factor of about 1.3 and the factor (1−K)1/3 in the denominator. Although eqns (3.9)
and (3.15) do not include the Coulomb gap, they give the appropriate curve width and
the position of the Fermi level.

The Coulomb gap directly affects the temperature dependence of the hopping
conductivity in the vicinity of the Fermi level (variable-range hopping). This
allows one to study the Coulomb gap experimentally. The problem is considered
in detail in Chapter 4 dedicated to hopping conductivity. The experimental
curves presented there allow one, in particular, to determine to what extent
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Fig. 3.8. Density of states in the impurity band for the compensation coeffi-
cients K = 0.1 and K = 0.9 according to the data of a computer simulation
(Efros et al. 1979).

the Coulomb gap may be considered as a universal phenomenon and answer the
question whether insulators with a nonzero density of states in the vicinity of
the Fermi level may exist at all.

The hopping conductivity is indirect proof of the existence of the Coulomb
gap. This can also be proved by more direct methods, i.e., by measuring the
current–voltage characteristics of tunnel junctions. These characteristics allow
one to directly determine the density-of-state function in the vicinity of the
Fermi level. Usually, one gradually varies the material properties from those of
metal to insulator. In the course of this transformation, the minimum density
of states at the Fermi level is gradually broadened and deepened and, finally,
attains the value g(µ) = 0. As a rule, one simultaneously observes dramatic
changes in the character of the temperature dependence of the conductivity.
The interpretation of these experiments requires the invocation not only of the
Coulomb gap but also of the specific interelectron interaction in dirty metals,
metal–insulator transitions, hopping conductivity, etc. (see Appendix B). The
Coulomb gap plays an important part in the consideration of all the above
problems.

It is useful to trace the studies of the Coulomb gap. They started as a reaction
to experimental studies of hopping conductivity, which revealed that sometimes
the temperature dependence of the conductivity cannot be described either by an
activation law (4.10) or the law (4.15) for variable-range hopping at a constant
density of states in the vicinity of the Fermi level. The introduction of a Coulomb
gap allows one to describe both consistently and fully the experimental data on
the hopping conductivity (Chapter 4). Moreover, the shape of the Coulomb gap
predicted based on eqns (3.22) and (3.23) was confirmed experimentally by the
tunneling experiments.

Figures 3.9 and 3.10 show the characteristics obtained for tunnel metal–
insulator junctions. As is shown in Appendix B, the dI/dV derivative plotted
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Fig. 3.9. Differential conductivity of the tunnel junction formed on an insu-
lating Si : B sample with a low carrier density (Massey and Lee 1996). The
complete series of curves is given in Fig. B.5 of Appendix B. The meaning of
the critical concentration nc is also explained in Appendix B.
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Fig. 3.10. Differential conductivity of the tunnel junction formed on an
ultrathin high-resistance Be film at T =0.7K (Butko et al. 2000). The complete
series of the curves is given in Fig. B.6 of Appendix B.

along the ordinate axis is proportional to the density of states in the insulator,
whereas the voltage V over the junction determines the energy (measured from
the Fermi level) related to this density of states. In both cases, the Coulomb
gaps are revealed. In the bulk Si : B sample, the gap shows parabolic behavior,
in accordance with eqn (3.22). In ultrathin Be films, the gap varies linearly
with the energy, in full accordance with the prediction based on eqn (3.23).
The measurements made on both materials are discussed in more detail in
Appendix B.

At the same time, it was clear from the very beginning that the theory is
far from being perfect. Expressions (3.20)–(3.22) are equivalent to the allowance
of solely the pair interelectron interaction, because it was assumed that the
electron displacement from the center i to the center j leaves the arrangement of
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all the other electrons intact. However, numerous simultaneous displacements of
other electrons are also possible. In this case, one should compare the energies
of the configurations where the occupancies not of two but of a larger number
of centers differ. In turn, this may influence the electron spectrum. Therefore,
decisive arguments in finding the shape of a Coulomb gap should be expected
from experiments. We return to this problem in the next chapter.
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HOPPING CONDUCTIVITY

A somewhat different presentation of this problem may be found in the book by
Shklovskii and Efros (1984); the words “hopping transport” are in the title of the
large book edited by Pollak, M. and Shklovskii, B. (1991).

4.1. Localized states and transitions between these states

This chapter is dedicated solely to the localized states which are defined as the
states whose wave functions are concentrated mainly in a confined region and
exponentially decay outside this region,

ψ → f(r)e−r/ξ as r → ∞.

The coefficient ξ in the exponent is called the localization radius or the
localization length. Thus, in a three-dimensional isotropic potential well

U(r) =
{
0, r > a
−U0, r � a

the wave function at infinity decreases as

ψ ∝ 1
r
e−r/ξ, ξ =

�√
2m|E|

, (4.1)

where E is the position of the electron level measured from the upper edge of
the well.

Electron wave functions at the levels of a one-dimensional rectangular well
attenuate according to the law

ψ(x) ∝ exp(−x/ξ), i.e., f(x) = const. (4.2)

Again, the localization radius ξ is defined by expression (4.1). In particular, the
wave function in a shallow well of width aw and depth U0 � �

2/ma2
w with only

one level attenuates within the length ξ = �
2/mawU0.

Note: the difference in the latter example between the well size aw and the localization
length ξ. We assume everywhere that aw � ξ.

The localization length in an attractive Coulomb potential U = −(e2/r) cre-
ated by a unit charge e is called the Bohr radius aB = �

2/me2.The energy levels
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En and the asymptotic behavior of isotropic electron wave functions ψn in a
hydrogen atom depend on the principal quantum number n and are equal to

En = E1/n2, ψn(r) → C(n)rn−1 exp(−r/naB) as r → ∞, (n = 1, 2, 3, . . .),
(4.3)

where C(n) are constants. It is seen from eqn (4.3) that the localization length
of an electron depends on the principal quantum number as ξn = naB. In the
ground state, ξ1 = aB.

In order to describe impurity centers in solids, in particular, shallow donors
and acceptors introduced in the previous chapter, one usually considers the model
of hydrogen-like centers with the Bohr radius

aB = κ�
2/m∗e2, (4.4)

whose numerator includes an additional factor, the permittivity κ, and the
effective electron mass m∗ replaces the conventional electron mass m in the
denominator.

At finite temperatures, the localized states make their contribution to trans-
port processes. Transport between the localized states arises as a result of carrier
hopping from the occupied to free states and, therefore, is called hopping con-
ductivity. An important postulate of the concept of hopping conductivity is the
assumption that practically all the states have different energies: two states with
equal energies are located at infinite distance from one another. Hence, the hop-
ping is accompanied by emission or absorption of a phonon. When considering
hopping conductivity, we shall proceed from the impurity-band model in lightly
doped material (Chapter 3).

Let impurity centers with coordinates ri have the concentration N so low that
Na3

B � 1 and electron wave functions are localized. Nevertheless, since the wave
functions have exponential tails, the neighboring impurity centers overlap, which
results in a certain finite probability of electron transition (hopping) from one
center to another:

1/τij ∝ F (ϕij , fi, fj)
∫

|Mq|2δ(�qs −∆ij) d3q

∝ F (ϕij , fi, fj)
∣∣∣∣∫ ψ∗

j eiqrψi d3r

∣∣∣∣2 (4.5)

where s is the sound velocity. The factor exp(iqr) in the integrand in eqn (4.5)
is a phonon wave function. A delta function ensures the fulfillment of the law
of energy conservation and selection of phonons that should be either emitted
or absorbed in order to compensate the energy difference between the initial
and finite states, ∆ij = εi − εj . In the first approximation, the squared integ-
ral reduces to the factor exp(−2rij/aB). The function F accumulates all the
statistical factors affecting a transition: according to the Pauli principle, only
a transition to an empty level εj may take place, a phonon may be absorbed
only if the thermostat has such a phonon, etc. The arguments of the function
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F are the Fermi and Bose distribution functions, fi = [exp(εi − µ)/T + 1]−1

and ϕij = [exp(∆ij/T ) − 1]−1, respectively. Performing certain transformations
and ignoring unimportant terms, one may reduce the function F to the factor
exp(−εij/T ), where εij is a certain characteristic energy not necessarily equal
to ∆ij = εi − εj . One can write this factor proceeding from simple physical
considerations.

Note: Although the hopping conductivity may arise only at a nonzero temperature, this
temperature is assumed to be rather low, so that no excited impurity centers appear.
According to eqn (4.3), the energy of a lower excitation attains 3/4 of the ionization
energy. Therefore, with an increase in temperature, excited states appear practically
simultaneously with ionized carriers, so that hopping conductivity is masked with band
conductivity and becomes unimportant.

Thus, the probability of transitions between the centers i and j, 1/τij , is pro-
portional to the product of the two exponents. Now, connect each pair of impurity
centers by a fictitious resistance Rij inversely proportional to the transition
probability,

Rij = R0e
uij , uij =

2rij

aB
+

εij

T
. (4.6)

Thus, we arrive at an Abrahams–Miller network of random resistances modelling
an insulator. In equilibrium, the electron transitions between all the net points
in both directions are equally probable (the principle of detailed equilibrium).
The application of an external electric field to the system gives rise to a directed
flow of electrons, i.e., to finite conductivity. To calculate this conductivity one
has to apply Kirchhoff’s laws to such a net.

At first sight, an Abrahams–Miller net looks frightening because, formally,
each site of this net is connected with all the remaining sites. However, the
resistances between the net sites lying at large distances from one another are
exponentially high, and may be discarded because they are shunted by consider-
ably lower resistances. This underlies the general method of the problem solution.
One gradually removes high resistances from the net unless it remains connected.
The resistance of the net depends on the highest resistances that one was forced
to leave in the net to preserve its connectedness. Therefore, for better under-
standing of the material considered in this chapter, one has to be acquainted
with Appendix A, and, in particular, with Section A.4. Below, we consider several
variants of hopping conductivity. In each variant, we have to single out important
sites, calculate Rij values, and solve the corresponding percolation problem.

Note: The resistivity ρ of a regular orthogonal net with cell size a and bond resistance
R depends on the net dimension d,

d = 1: ρ = R/a,
d = 2: ρ = R,
d = 3: ρ = Ra.

(4.7)

The same relationships are also valid for an arbitrary net, but, in this case, a and R
are assumed to be average values. (see Section A.1)
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4.2. Nearest-neighbor hopping

The simplest form of hopping conductivity is presented by transitions between
the nearest neighbors. The density of states in the donor impurity band at low
donor concentration is maximum at energy value on the order of the ionization
energy of an isolated donor, ED. When the initial and finite points of such a
hop are among the nearest neighbors, it is most probable that the energy levels
of these points are in the vicinity of the maximum density of states. A hopping
event takes place only if the terminating site is free. The probability that it is free
depends on its energy with respect to the Fermi level µ and is proportional to

exp(−|µ − ED|/T ). (4.8)

This is the smallest factor entering the function F in eqn (4.5). The term
exp(−∆ij/T ) determining the number of phonons which may participate in
transitions is larger because ∆ij � |µ − ED|. Therefore, uij in eqn (4.6) for all
the hops is always equal to the distance from the maximum density of states to
the Fermi level, εij = |µ − ED|.
Note: This is the case, where εij �= ∆ij . Above, we have mentioned such possibility.

Since factor (4.8) enters all the uij , it makes no contribution to scattering
in Rij and, thus, may be “factored out”, i.e., ignored in the analysis of net
properties,

Rij = R0 exp(2rij/aB)

(the closer the sites to one another, the lower the resistance between these sites
in the model net).

Thus, the problem is reduced to the determination of the percolation radius
rc in a system of randomly distributed sites with concentration N . Percolation
theory states (eqn (A.10) in Appendix A) that

(4π/3)r3
cN = Bc = 2.7, (4.9)

whence

rc = 0.865N−1/3 and ρ = ρ0 exp(1.73/N1/3aB). (4.10)

Now, consider the experiment. Figure 4.1 shows the temperature dependence
of the resistance of germanium samples with different dopant concentrations.
This experiment has two characteristic features. First, the enormous range of the
measured resistivity (12 orders of magnitude!) and dopant concentrations (almost
three orders of magnitude). Second, a remarkable doping method ensuring the
absence of any correlations in dopant distribution and rigorous maintenance of
the compensation coefficient. A sample of pure Ge was irradiated with a neutron
flux in a reactor. As a result of nuclear reactions with neutrons, nuclei of one of
the Ge isotopes turn into Ga nuclei and create shallow acceptors, and nuclei of
another Ge isotope turn into As nuclei and create shallow donors. The relative
numbers of shallow donors and acceptors are determined by the cross-sections



62 4. HOPPING CONDUCTIVITY

NA[1016cm−3]=0.075

0.15

0.27

0.49
0.72
0.9
1.4
2.4

3.5

7.3

10
15
53

153

0.36

p-Ge

300 10 5 4 3 2 1.5 1.25

0 0.2 0.4 0.6 0.8

T (K)

T −1(K −1)

108

106

10−2

104

1010

102

1

r
(V

⋅c
m

)

Fig. 4.1. Resistivity of p-Ge samples with different dopant concentrations in
(T−1, log ρ) coordinates (Fritzsche and Guevas 1960).

of the corresponding nuclear reactions and relative isotope concentrations in
the irradiated samples. Irradiation of natural germanium yields p-Ge with the
compensation coefficient K =NA/ND =0.4. The NA and ND concentrations and
the carrier concentration n=NA − ND depend only on the irradiation time.

To describe the set of curves thus obtained, it is assumed that there are two
conducting channels acting in parallel with two different exponentially varying
temperature factors

σ = σb + σh = σb0 exp(−εb/T ) + σh0 exp(−εh/T ); εb 	 εh, σb0 	 σh0.
(4.11)

The channel σb is the band conductivity conventional for semiconductors with
shallow impurities, which is provided by thermal excitation of electrons from
the impurity levels to the conduction band and their transformation there into
free carriers. This channel is dominating at higher temperatures. The resistivity
curves in this region attain the limiting line in the left-hand side of the plot in
Fig. 4.1. An exponential increase in resistivity along the straight line

ρ = ρb0 exp(εb/T ) (4.12)

(where εb is the approximate ionization energy of the impurity) is explained by
freezing out of carriers in the conduction band at low temperatures. Resistivity
ceases increasing below the temperature when another conductivity mechanism
becomes prevalent – electron hopping from one impurity to another without
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involving the conduction band. The temperature of cross-over from one con-
ductivity mechanism to another (the channels σb and σh become comparable) is
the higher, the higher the dopant concentration (NA in Fig. 4.1).

We start the analysis of Fig. 4.1 noting the strong dependence of the σh0 values
on the impurity concentration. Extrapolating the functions ρ(T−1) to T =∞, we
obtain Table 4.1.

Table 4.1 indicates that σh0 includes an additional exponential factor, so that
the experimental data are described by the expression

σh(T ) = σh0 exp
(−εh

T

)
= σ∗

h0 exp(−f(N)) exp
(−εh

T

)
. (4.13)

Comparing eqn (4.13) with eqns (4.8) and (4.10), we obtain

σh(T ) = σ∗
h0 exp

( −1.73
N1/3aB

)
exp

(−|µ − ED|
T

)
. (4.14)

The functional dependence following from eqn (4.14), ln ρ ∝ N−1/3, is illus-
trated by the two experimental straight lines in Fig. 4.2. The slopes of these
lines yield the numerical coefficient in the first exponent in expression (4.14).
The values of this coefficient obtained from the two experiments illustrated by
Fig. 4.2 and other analogous experimental data are listed in Table 4.2.

Although Table 4.2 indicates coefficients for different materials, they are all
close to the coefficient value 1.73 in eqn (4.10) following from percolation theory.

Table 4.1.
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Fig. 4.2. Resistivity as a function of the average distance between acceptors,
N

−1/3
A , in Ge :Ga (Fritzsche and Guevas 1960) and Si : B (Ray and Fan 1961).
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Table 4.2.

n-GaAs n-InP p-Ge p-Si

1.7 1.9 1.9 1.8
1.88 1.75
1.9 2.0

It is very important that the temperature dependence in Fig. 4.1 experiment-
ally confirms the functional dependence ln(ρ/ρ0)∝ 1 /T : the right-hand sides of
the experimental curves in Fig. 4.1 are straight lines.

4.3. Variable-range hopping

4.3.1. The Mott law

The condition necessary for realization of nearest-neighbor hopping is the exist-
ence of a large number of pairs of close neighbors with one of them being free.
A decrease in the temperature, such that

T � |µ − ED|, (4.15)

makes the number of empty sites among the nearest neighbors (the majority of
which have energy ED) too small, and hopping to the nearest centers freezes
out. In turn, this increases the importance of hopping between the centers with
energies lying in some ε-vicinity of the Fermi level where empty sites certainly
exist. The problem now is to estimate how close these centers are to one another.

Consider the vicinity of the Fermi level µ± ε and assume that the density of
states in this vicinity is constant, g= gµ. Then the number of states in this vicin-
ity is N(ε)= gµε, the average distance between such states is rij ≈ [N(ε)]−1/3,
and the difference in their energies is on the order of ε. Now, the main statistical
factor F in eqn (4.5) is determined by the existence of phonons ϕij which are
necessary for the fulfillment of the law of energy conservation. Since the energy of
a necessary phonon is ∆ij ∼ ε, the main factor in F is on the order of exp(−ε/T ).

Now, retain in the random Abrahams–Miller net only the sites with energies
lying within the range µ± ε. The density N(ε) and the average distance rij

between the sites of the subnet thus obtained depend on the still unknown ε
value. The neighbors in this subnet are connected by resistances (4.6) in which
uij equals

uij =
2

aB[N(ε)]1/3 +
ε

T
=

2

g
1/3
µ aBε1/3

+
ε

T
. (4.16)

Now determine ε from the condition that the uij value is minimal:

d

dε
uij(ε) = 0, ε = εmin =

(
2T

3g1/3
µ aB

)3/4

= (T 3TM)1/4, TM ≈ (gµa3
B)

−1 > T.

(4.17)
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The average energy change in hopping inside the subnet thus defined is of the
order of εmin ≈ (T 3TM)1/4, whereas the average hopping length is

r ≈
(

aB

gµT

)1/4

≈ aB

(
TM

T

)1/4

. (4.18)

The probability of hopping for a shorter distance is lowered because of the factor
exp(−∆ij/T ), and the probability of hopping for a larger distance is lowered
because of the factor exp(−2rij/aB). The average hopping length r depends on
temperature T ; this justifies the term “variable-range hopping.”

In terms of percolation theory, the hopping length r has the meaning of the
interaction radius (A.10). It is easy to be certain that it exceeds the average
distance rij between the sites of the subnet:

rij = aB

(
TM

T

)1/12

� r.

The subnet itself is temperature dependent, but at any temperature, its centers
connected by a finite hopping probability,

uij ≈ 2
(

TM

T

)1/4

,

form an infinite cluster. The resistivity of the subnet is

ρ = ρ0 exp
(

TM

T

)1/4

. (4.19)

The factor ρ0 is a power function of temperature but this dependence is usually
neglected.

The power 1/4 in eqn (4.19) is inherent only in a three-dimensional insulator.
For a thin film, we have

rij ≈ [N(ε)]−1/2, uij =
2

g
1/2
µ aBε1/2

+
ε

T
, (4.20)

εmin =

(
T

g
1/2
µ aB

)2/3

= (T 2TM)1/3, TM ≈ (gµa2
B)

−1. (4.21)

Then, instead of eqns (4.18) and (4.19), we obtain

r ≈
(

aB

gµT

)1/3

≈ aB

(
TM

T

)1/3

. (4.22)

and

ρ = ρ0 exp
(

TM

T

)1/3

. (4.23)
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Using the notation d for the system dimension, we may combine eqns (4.19) and
(4.23) to obtain one general expression

ρ = ρ0 exp
(

TM

T

)1/(d+1)

, TM ≈ (gµad
B)

−1. (4.24)

4.3.2. The Efros–Shklovskii law

When deriving the Mott law, eqn (4.24), we assumed the density of states, g(ε),
in the vicinity of the Fermi level to be constant. However, the situation becomes
different in the presence of a Coulomb gap. Then

g(ε) ∝
( κ

e2

)d

|ε|d−1, g(0) = 0 (4.25)

(d is the space dimension and the energy ε is measured from the Fermi level,
see eqns (3.22) and (3.23) in Chapter 3). As in the derivation of the Mott law,
consider again a certain vicinity of the Fermi level µ± ε symmetric with respect
to µ. The number of states in this vicinity depends on the dimension d and is
equal to

N(ε) ∝
(κε

e2

)d

.

However, the average distance between the centers in this vicinity, rij , does not
depend on the dimension d,

rij ≈ [N(ε)]−1/d ≈ e2

κε
.

Now, repeating the reasoning of the previous section, we see that the resistivity
exponent in the Abrahams–Miller subnet within the energy range ε

uij =
2

aB[N(ε)]1/d
+

ε

T
=

2e2

κaBε
+

ε

T
(4.26)

is minimum at the values

εmin = (TTES)1/2, TES ≈ e2

κaB
(4.27)

and, irrespective of dimension, the average hopping length is

r ≈
(

e2aB

κT

)1/2

≈ aB

(
TES

T

)1/2

, (4.28)

whereas the conductivity obeys the law

ρ = ρ0 exp
(

TES

T

)1/2

. (4.29)
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Now, we have eqns (4.26)–(4.29) instead of eqns (4.16)–(4.19) for three-
dimensional space and eqns (4.20)–(4.23) for two-dimensional space.

Note: The quantity TES having the dimensions of energy is not the width δε of the
Coulomb gap. It is possible to evaluate δε by equating the quantity given by eqn (4.25)
to the density of states at the Fermi level g(µ) calculated without the allowance for
such a gap.

4.4. Experimental observation of hopping conductivity

Thus, the theory operates with several variants of the hopping conductivity.
Experiment has to establish where and why each variant is implemented in
practice. It should be kept in mind that a variant of hopping conductivity
implemented under certain specific conditions depends not only on the material
parameters but on temperature as well. Figure 4.3 shows a natural sequence of
conductivity mechanisms replacing one another with a decrease in temperature.
This sequence was drawn under the assumption that the Fermi level lies in the
impurity band of the localized states of a lightly doped semiconductor. Each
following sequence stage corresponds to a lower temperature T . However, each
time, a lower T value in Fig. 4.3 is compensated with a larger scale, to keep the
same delineation of the energy interval T .

The cross-over from the band conductivity of thermally excited carriers to
nearest-neighbour hopping is well seen on the example of p-Ge in Fig. 4.1. One
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dot line NNH in (a) shows the expected disposition of the experimental points
if the nearest-neighbor hopping were the leading transport mechanism; the
dash line VRH shows the same for variable-range hopping.

can see a kink between the straight line ln ρ ∝ (1/T ) common for all NA con-
centrations in the left-hand part of Fig. 4.1 and the straight lines on the right
coming to it from the low-temperature region.

Some variants of the change of the prevailing hopping-conductivity mechan-
ism were also observed but they were less obvious. This is explained by the
procedure of the experimental determination of the temperature exponent. Plot-
ting the experimental plots in (T−1/ν , ln ρ) coordinates, where ν = 1, 2, 3, or 4,
we obtain straight lines only for an appropriate choice of the power ν, otherwise
we obtain certain bent curves. To determine with sufficient accuracy whether
the dependence plotted at a certain power of T along the abscissa fits a straight
line or not, we have to consider a rather large range of function variation. This is
illustrated by the plots of the resistivity data for n-InP. One may readily distin-
guish nearest-neighbor hopping from variable-range hopping (ν = 1 from ν �= 1).
Resistivity in the case of nearest-neighbor hopping in the coordinates shown in
Fig. 4.4a should be depicted by a straight line, whereas the dashed curve in
Fig. 4.4a corresponds to the Mott law, eqn (4.19). There is no doubt that the
experimental points are considerably closer to the curve than to the straight line.
However, to be able to distinguish ν = 1/2 from ν = 1/4 in n-InP (Fig. 4.4b),
we have to incorporate the range of ρ variation by five orders of magnitude.

The most often used natural temperature range in experiments on hopping
conductivity is 4–0.04K. Which of the mechanisms really acts in this range
depends on specific parameters of each material. As is seen from Fig. 4.5,
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the resistivity of GaAs obeys the law T−1/2 in this temperature range without
any deviations. Therefore, this material has a Coulomb gap with a width of
several degrees. The resistivity of a Si : As sample (Fig. 4.6) at some range of
As concentrations behaves according to the law T−1/4 in the temperature range
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from about 10K to, at least, 0.5K. This signifies that in Si : As samples, the
Coulomb gap certainly has a width less than 0.5K or that the spectrum has no
gap at all.

All the materials considered up to now in this chapter are classical semicon-
ductors with shallow donors or acceptors. With lowering of the temperature, all
these materials become insulators. One should not think that hopping conductiv-
ity is a property inherent only in this rather limited class of materials. Consider
the conductivity in a material of quite a different nature – in a metal film so
thin that its conductivity is blocked by surface scattering. Tunnel experiments
on an ultrathin Be film performed in the temperature range 1–0.5K prove the
existence of a Coulomb gap (Fig. 3.10 in Chapter 3 and Fig. B.5 in Appendix B).
Figure 4.7 shows that the film is insulating and that transport in it proceeds by
the mechanism of hopping conductivity. As should be expected in the case of
the existence of a Coulomb gap, the film resistivity varies according to the law
ln ρ ∝ T−1/2.

Thus, all the hopping-conductivity mechanisms predicted theoretically were
also observed experimentally. Nevertheless, a number of fundamental questions
still received no experimental answers. First, it is still unclear whether a Coulomb
gap arises in all cases or an insulator with a finite density of states at the Fermi
level is also possible. The fact that the experiments on n-InP (Fig. 4.4) and
Si : As (Fig. 4.6) samples showed that conductivity varies according to the Mott
law does not necessarily signify the absence of a Coulomb gap in these materials.
It allows us only to establish the upper boundary (0.3–5K) for the width of the
possible Coulomb gap.

In principle, the existence of an insulator with localized states at the Fermi
level without a Coulomb gap is quite possible. As we saw above, the gap may be
formed if electrons have enough space for a maneuver: the number of electron
distributions over the centers should be rather large. However, this condition is
not always fulfilled because of some specific structural features associated with
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the defect arrangement in a material. The experimental study of this problem
requires low-temperature measurements. At the same time, with the extension
of the measurement range to lower temperatures, conductivity becomes so low
that it is difficult to perform reliable measurements.

There is another fundamental question: once a Coulomb gap is formed, to
what degree of accuracy it is soft and eqns (3.22) and (3.23) are exact? According
to theoretical estimates, due to higher orders of Coulomb interaction, the gap
should become hard. The experimental answer is hampered by difficulties in low-
temperature measurements of the conductivity. Thus, an important experimental
problem is to descend for one step lower in the scheme shown in Fig. 4.3 and to
determine the structure of the function g(ε) at distances from the Fermi level
closer than the gap width.

One should bear in mind that there is one more possibility. The scheme in Fig. 4.3
is drawn under the assumption that the density of states g(ε) does not depend on
temperature and that the change of a conductivity mechanism is provided by the scale
of energies that may be transferred to a thermostat, i.e., by the temperature. However,
it might happen that g(ε) may depend on temperature by itself; some arguments in
favor of such a possibility were presented in section 3.3, see eqn (3.19) and the text
after it. For instance, the soft gap may transform into a hard gap with a decrease in
temperature.

All these problems and difficulties are well illustrated on a Si : B sample.
Figure 4.8 shows the resistivity data for a Si : B sample in the temperature range
from 4 to 0.1K illustrating cross-over from 1/4 to 1/2 in the exponent of the
activation process. The deviation from the straight line in the lower part of
Fig. 4.8 with T−1/2 designated along the abscissa indicates that at temperatures
T > 1K the 1/2 law becomes invalid. However, the inset shows that this part
of the curve becomes a straight line being plotted as a function of T−1/4. Thus,
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Fig. 4.8. Temperature dependence of resistivity of Si : B samples plotted in
(T−1/2, log ρ) and (T−1/4, log ρ) coordinates (Massey and Lee 1995).
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the Mott (ln ρ ∝T−1/4) to Arrhenius (ln ρ ∝T−1) law (Dai et al. 1995). The
temperature range is extended toward low temperatures as compared to the
range presented in Fig. 4.8.

above 1K, the Mott law is valid, whereas below this temperature, the cross-over
to the Efros–Shklovskii law takes place. This agrees with the electron spectrum
obtained with the use of a tunnel junction, which demonstrates the presence of
a Coulomb gap in a Si : B sample at 1.15K (see also Fig. 3.9 in Chapter 3 and
Fig. B.5 in Appendix B).

However, when a cross-over takes place the involved temperature range is cut
into two subranges. One of them, or even both, may turnout to be not large
enough to determine the exponent with confidence. Although the points of the
lowest temperatures in Fig. 4.8 deviate from the straight line in (T−1/2, ln ρ)
coordinates, these deviations do not exceed the admissible errors. Only extend-
ing the range of measurements in Fig. 4.9 toward lower temperatures makes the
conclusions drawn more accurate. The Mott law for T > 1K is in fact valid. How-
ever, at lower temperatures, the resistivity of a Si : B sample in a comparatively
weak magnetic field and without such a field behaves quite differently. In the
zero magnetic field, a cross-over from the power 1/4 is observed not to the 1/2,
but to 1, i.e., the resistivity at lowest temperatures follows an Arrhenius law,
ρ ∼ exp(T0/T ) (Fig. 4.9). This signifies that a soft Coulomb gap in the vicinity
of the Fermi level with lowering of temperature is changed for a hard gap: the
density of states g(ε) goes to zero not at one point ε= εF, but within a certain
energy region T0 in the vicinity of the Fermi level. It is seen from Fig. 4.9 that
T0 � 0.37K (according to tunnel measurements indicated above, the total gap
width is on the order of 10K).

It is also worth noting that in a magnetic field, the Coulomb gap remains
soft. As is seen from Fig. 4.10, the points in fields H > 2T fit straight lines even
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Fig. 4.10. Change of the functional dependence of resistivity of a Si : B sample
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at the lowest temperatures. It is unclear whether the gap becomes hard due to
Coulomb or some other interaction. Its dependence on the magnetic field gives
some grounds to believe that the gap becomes hard because of spin correlations,
but this problem is beyond our scope.
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5

METAL–INSULATOR TRANSITIONS

The same problems are also discussed, although in a somewhat different style, in
the book by Mott (1990) and the review articles by Lee and Ramakrishnan (1985)
and Kramer and MacKinnon (1993).

The fundamental difference between insulators and metals consists in that the
electron states at the Fermi level in insulators are localized, whereas in metals,
they are itinerant. If, successively varying a certain parameter, one manages
to bring an insulator to a metal state, the symmetry of the wave functions at
the Fermi level changes. It is this symmetry that distinguishes a metal from an
insulator. Defining a metal and an insulator in terms of the wave functions of
electrons, we should like to indicate that the main physical property that distin-
guishes the materials of these two types is the conductivity, i.e., the possibility of
materials to conduct currents in an infinitely weak electric field. This character-
istic is of the “yes–no type” – the conductivity has either a zero value, σ=0, or
any, even infinitesimal, nonzero value. However, at a finite temperature T �=0, an
insulator can also conduct a current by the mechanism of hopping conductivity.
Therefore, the above definition of an insulator is valid only at the temperat-
ure T =0. To answer the question whether the material studied is a metal or an
insulator, it is necessary to extrapolate the experimental σ(T ) dependence to the
temperature T =0 despite the fact that the corresponding procedure is rather
inconvenient and cumbersome and, in many instances, may yield ambiguous
results.

Note: For quite a long time, it has been believed that it is possible to distinguish a
metal from an insulator by the sign of the conductivity derivative at low temperatures.
Materials with ∂σ/∂T � 0 were believed to be metals, whereas those with ∂σ/∂T > 0,
insulators. The study of quantum corrections to the conductivity showed that the
conductivity derivative may be positive, ∂σ/∂T > 0, for metals as well, so that the
sign of the derivative ∂σ/∂T cannot be considered as a criterion for distinguishing
metals from insulators.

Since the existence of conductivity allows one to distinguish a metal from
an insulator only at T =0 and the wave functions (whose symmetries are
compared) are assumed to be functions of the ground state, the definition of
a metal–insulator transition makes sense only at T =0. There are two main
factors that affect the wave functions of the ground state and whose vari-
ation can give rise to a metal–insulator transition. These are disorder and the
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electron–electron interaction. A transition induced by disorder in a system of
noninteracting electrons is called an Anderson transition. A transition induced
by the interelectron interaction is called a Mott transition. As a rule, both factors
vary simultaneously, so that real transitions may be called Anderson–Mott trans-
itions. The real control parameter that affects either one or both main factors
may be an impurity concentration, pressure, magnetic field, etc. We denote the
control parameter by x. On the phase plane (x, T ), the transition is depicted as
an isolated point on the line T =0.

It is very important that hereafter we consider those electron phase transitions which
involve only electrons. There also exist structural transitions in which the change of the
atomic-system state is accompanied by electron delocalization but we do not consider
these transitions here. However, a decrease in electron energy is often the main cause of
a structural phase transition. An example is a Peierls transition. In the model considered
in Section 3.1, the transition to the state of an insulator occurs at a finite temperature.
At this temperature, the gain in the temperature-dependent electron energy associated
with the appearance of a new period becomes equal to the loss in the elastic energy
caused by ionic displacements.

The structural transitions are diverse. The states of an electron subsystem
on both sides of this transitions are usually evaluated based on the band theory
proceeding from the position of the Fermi level with respect to the energy bands.
For example, at the temperature T =18 ◦C, the transition from white to gray tin
takes place. The high-temperature phase (white tin) is a good metal in which
the Fermi level intersects several energy bands and forms Fermi surfaces in these
bands. In gray tin (thermodynamically stable at low temperatures), the Fermi
level lies in the energy gap and, therefore, gray tin is an insulator. We call such an
insulator a band insulator in order to distinguish it from an Anderson insulator,
where, in the close vicinity of the Fermi level, there exist electron states but only
with localized wave functions.

Considering an arbitrary insulator, e.g., Ge or Si or gray tin, as a matrix and
doping it with impurities, it is possible to give rise to an electron transition to the
metal state. In this case, the critical impurity concentration may be determined
experimentally in low-temperature transport measurements.

Thus, a metal–insulator transition is understood here as an electron transition
and, therefore, we consider the occurrence of these transitions with the change
of the electron density and the degree of disorder.

5.1. The Anderson transition

Following Anderson, consider a periodic lattice of rectangular wells having dif-
ferent depths and concentration N = a−d (here a is the lattice period and d
is the lattice dimensions). Let the levels in these wells exist in the energy
interval W and the density of states in this range be constant (Fig. 5.1).
The energy is measured from the point ε=0 in the center of the interval W .
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Fig. 5.1. Anderson model: periodically arranged wells of different depths.

Then, we have

∂N

∂ε
=
{

N/W at |ε| � W/2,
0 at |ε| > W/2. (5.1)

Note: In this case, the level ε=0 is not the Fermi level. The number of electrons in the
system depends on various external factors.

The wave functions have tails exp(−r/aB) and, therefore, the wave functions
of the electrons localized in the neighboring wells (see eqns (4.1) and (4.2) in
Section 4.1) overlap. If the distance r12 between two neighboring wells obeys the
inequality r12 	 aB, then the transfer integral

J =
∫

ψ∗
1Ĥψ2 d3r ∝ exp(−r12/aB) (5.2)

has a low value determined by the factor exp(−r12/aB).
In principle, two limiting cases are possible. Each electron may be localized

in its own well (this is the case, e.g., if wells are very deep and differ from one
another). On the other hand, all the electrons may be delocalized, so that any
electron is spread over all the wells. For instance, if all the wells have the same
depths, the wave functions of electrons are the Bloch waves.

Anderson considered the case of a three-dimensional set (d=3) of periodically
located wells and came to the conclusion that the symmetry of the wave functions
of the ground state depends on the relative degree of disorder. The parameter in
the Anderson problem is the energy ratio J/W . If the condition

J

W
�
(

J

W

)
crit

. (5.3)

is fulfilled, then at least some states are delocalized, and metal conductivity
exists. At the critical value of the ratio J/W , the delocalized states appear in
the band center at ε = 0. A further increase in the ratio J/W results in a gradual
broadening of the layer of delocalized states.

The sense of the ratio J/W and its role may be explained by considering
the simplest problems of quantum mechanics. In first-order perturbation theory,
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Fig. 5.2. (a) Shifts of the levels in two rectangular wells of different depths
and (b) splitting of the levels in two equivalent wells with due regard for the
overlap of the wave functions in the first order of perturbation theory.

a finite overlap of the ϕ1 and ϕ2 wave functions in two wells of different depths
with levels E10 and E20 results in small corrections to the wave functions

ψ1 = c1ϕ1 + c2ϕ2, ψ2 = −c2ϕ1 + c1ϕ2, c2 = J/(E10 − E20). (5.4)

As long as c2 � c1 ≈ 1, all the electrons are predominantly located in their own
wells.

If the wells are equivalent (“resonant”), E10 = E20 = E0, the answer is quite
different. The level E0 is split into E1,2 � E0 ± J (Fig. 5.2b), and the wave
functions of both states are uniformly smeared over the two wells:

ψ1,2 =
1√
2
(ϕ1 ± ϕ2). (5.5)

Not only are the structures of the wave functions (5.4) and (5.5) different,
but the orders of magnitude of the level shifts are also different (Fig. 5.2). For
definiteness, consider rectangular one-dimensional wells. For wells with different
depths, each of the two wells is a perturbation for the electron located in the
other well. Since the unperturbed wave function ϕ1 in the vicinity of well 2 is of
the order of exp(−r12/aB), then the shift of the level E10 is of the order of

∆1E ≡ E1 − E10 �
∫

ϕ∗
1Ĥ2ϕ1 d3r ∝ exp(−2r12/aB), (5.6)

In other words, the squared small factor exp(−r12/aB) of the transfer integral J
enters ∆1E (Fig. 5.2a). For resonant wells (Fig. 5.2b), we have

∆E ∼ J, i.e., ∆E ∝ exp(−r12/aB). (5.7)

The wells behave as resonant wells as long as the difference between their
unperturbed energies obeys the inequality |E10−E20|< J . Therefore, J/W is the
fraction of resonant wells. Then the critical value (J/W )crit may be interpreted
as a percolation threshold above which the spectrum acquires the states with
delocalized wave functions.

If the value of the parameter J/W is lower than the critical value and the
wave functions at the Fermi level are localized, the material is called an Anderson
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insulator. Its structure, in principle, differs from that of a band insulator. In a
band insulator, the Fermi level is located in the forbidden band, where the density
of states equals zero and conductivity is provided by electrons thermally excited
to the conduction band or by holes thermally excited to the valence band. The
density of states at the Fermi level in an Anderson insulator is finite. The energy
level beginning with which the states become delocalized is spaced by a certain
distance from the Fermi level. This level is called the mobility edge. It plays
the role of the bottom of the conduction band. The electrons or holes thermally
excited above the mobility edge participate in conductivity via diffusion; the holes
or electrons below the mobility edge participate in the hopping conductivity.
The transition to the metal state takes place if the Fermi level is brought into
coincidence with the mobility edge. This may be attained either by varying the
parameter J/W or by shifting the Fermi level.

The Anderson model is also studied for systems with reduced dimensional-
ity. In phase transitions, the dimensionality is usually an important parameter.
In Chapter 2, its role was discussed in connection with weak localization. The cri-
terion of dimensionality reduction introduced in Chapter 2 is very soft, because
the characteristic size of an object b was compared in eqn (2.8) with a relatively
large diffusion length Lϕ. Here, we consider strong localization and, correspond-
ingly, the criterion should be much more rigid. It is associated with the structure
of the spectrum of confined electrons. The spectrum takes the form

ε = �
2k2

‖/2m+ ε⊥(i), i = 1, 2, . . . . (5.8)

Here k‖ is the wave vector along the directions of unlimited electron motion, ε⊥
is the part of the energy quantized due to the confinement, and i is the number
of the quantized subband. In the film, k2

‖ = k2
x + k2

y; a standing wave is formed
along the normal Oz and the corresponding energy part is quantized. In a wire,
k‖ is the wave vector directed along the wire axis, and ε⊥ is determined by the
quantization in two transverse directions.

If all the electrons find room in the lower of the quantized subbands, the
system has a reduced dimensionality. For a degenerate electron system, the
criterion is

εF < ∆s, ∆s ≡ ε⊥(i = 2) − ε⊥(i = 1) ∝ b−2. (5.9)

The properties of the Anderson model in systems with reduced dimen-
sionality may be briefly formulated in the following way. In one-dimensional
systems, d = 1, an infinitesimal disorder gives rise to localization, whereas two-
dimensional systems, d = 2, should be considered as a boundary case with respect
to possible appearance of delocalized states.

5.2. The Landauer formula for one-dimensional (1D) systems

The theoretical aspects of this problem are consistently described by Imry (1997).

Connect two reservoirs with an ideal wire of length Λ and apply to these reser-
voirs the potential difference V . The word “ideal” is used to show that there
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is no scattering (even elastic) in the wire. Then, any electron entering one end
would depart from the other end of the wire with probability equal to unity. Let
diameter b of a wire be so small that under the Fermi level εF there is only a
limited number of quantized subbands ν = 2Ns of its spectrum (5.8),

ε⊥(i) < εF for i = 1, 2, . . . , Ns. (5.10)

These subbands are also called channels; in the absence of a magnetic field, each
i � Ns gives rise to two channels with opposite spins.

If Ns =1, then the 1D system is called a one-channel system (taking into
account the spin, it could also be called a two-channel system). Systems with
Ns > 1 are called multichannelled. Since we consider an ideal wire, the wire chan-
nels are independent and cannot exchange electrons. The electron density ni in
channel i, the longitudinal electron velocity vi, and the density of states gi at
the Fermi level are related as

vi = �
−1
(

∂ε

∂k

)
ε=εi

, gi =
(

∂ni

∂ε

)
ε=εi

=
1

2π�vi
, εi = εF − ε⊥(i), 2

Ns∑
i=1

ni = n.

(5.11)

The existence of the potential difference V between the reservoirs signifies
that the difference in the electron density δni = gieV induces the difference
between the electron flows entering the channel i from the right- and left-hand
sides. The specific channel parameters that enter eqn (5.11) are cancelled in the
equation for the current Ji = eviδni in the channel, so that it does not depend
on the subscript i and is equal to

Ji = evigieV =
(

e2

2π�

)
V. (5.12)

The conductance yid = J/V and resistance �id = 1/yid of the wire are determined
by the total current, J =

∑ν
1 Ji, over all ν operating channels and are equal to

yid =
(

e2

2π�

)
ν, �id =

(
2π�

e2

)
(1/ν). (5.13)

The subscript emphasizes that eqn (5.13) is written for an ideal wire.
The result described by eqn (5.13) is remarkable from several standpoints.

First, it turned out that an ideal 1D system (even if it is multichannel) is always
characterized by a certain dissipation though there is no scattering in it. This is
a manifestation of the nonlocality principle. Electrons take the energy from the
field passing the wire and give it away somewhere outside the wire, i.e., being
thermalized in the reservoir. Second, amazing as it is, the wire resistance �id is
independent of its length and is determined solely by the quantization of the
electron spectrum.

It might seem that the statement that the wire resistivity is independent of its length
is inconsistent with the following simple consideration. Imagine that the wire is cut into
two parts connected in series. If each part has resistance �id, then the total resistance
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Fig. 5.3. Conductance y of the ballistic contact between two 2D regions of
the GaAs–AlxGa1−xAs heterostructure as a function of the gate voltage
controlling the contact width (van Wees et al. 1988). Inset: schematic of a
measuring cell.

would have been 2�id. However, it is not sufficient only to cut the wire into two parts.
To make independent resistors from these two parts, one has to insert between them
an additional reservoir–thermostat to make the propagating electron waves incoherent.
If the temperature of the wire differs from absolute zero, T �= 0, so that there exists a
finite length Lϕ < ∞ within which phase breaking takes place, then such “thermostats”
would appear automatically spaced by distances Lϕ from one another.

So, the temperature limits the possible length of the ideal wire from above,
Λ < Lϕ. The limit from below comes from the wire diameter: Λ > b, i.e. the wire
may be very short. This gives a way to verify eqn (5.13), since it is simpler to
prepare a small region without defects.

Figure 5.3 illustrates conductivity measurements in a narrow channel con-
necting two regions of the 2D electron gas under the split gate in the
GaAs–AlxGa1−xAs heterostructure (van Wees et al. 1988). With an increase
in the gate voltage Vg, the nonconducting region becomes somewhat broadened
because it slightly protrudes outside the gate edges. As is seen from the inset
in Fig. 5.3, this narrows the conducting channel, which reduces the number of
channels, Ns. The small length of these channels makes it possible to get rid of
scattering but does not affect applicability of eqn (5.13). In the structure shown
in Fig. 5.3, the electron density is 3.56 · 1011 cm−2, the mean free path at 0.6K
is 8.5µm, and the characteristic wire sizes are of the order of 0.25µm.

It is seen from the inset in Fig. 5.3 that measurements were made using a
two-contact scheme, so that the measured resistance Rmea includes the resist-
ance Rcont of the contacts and the adjacent broad regions of the 2D layer.
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Fig. 5.4. A one-dimensional conductor connecting two reservoirs and consisting
of two ideal end portions and the scattering portion AB in the middle.

The conductance y we are interested in is obtained by subtraction of Rcont from
Rmea, namely y ≡ �−1 = (Rmea−Rcont)−1. We used as Rcont the value of 4.35 kΩ.
This value approximately corresponds to the data of independent measurements.
In full accordance with eqn (5.13), the function y(Vg) after the subtraction of
this value is transformed into a sequence of steps with equal heights

∆yid =
(

e2

2π�

)
∆ν =

e2

π�
, ∆ν = 2. (5.14)

Note: The considerations that result in eqns (5.12) and (5.13) do not predetermine
the electric-field distribution along the wire. Thus, in the ideal one-dimensional edge
channels formed due to the quantum Hall effect along the sample edge between the
contacts, the voltage drop V is concentrated at the boundary with one of the contacts
(see Fig. 9.16 in Chapter 9).

Now, consider a nonideal and, for simplicity, one-channel wire ν = 1 (Fig. 5.4).
Let some elastic scatterers be located in the hatched part of the wire. At the
moment, we do not specify their mutual arrangement and shall consider the whole
region as one scattering object. In the quantum mechanics of a one-dimensional
system, such an object is characterized by complex reflection and transmission
coefficients, r and t, relating the amplitudes of the reflected (backscattered) and
transmitted waves with the amplitude of the incident wave. The electron flows
jin/e and jin′/e are incident onto the hatched region from the left and the right,
with each flow being reflected with probability R= |r|2 and transmitted with
probability T = |t|2. From the symmetry of the quantum mechanical relations
it follows that

R =
jr

jin
=

jr′

jin′
, T =

jt

jin
=

jt′

jin′
, R+ T = 1. (5.15)

If the voltage drop across the hatched region is zero, then the total electron
current in the wire is also zero. The potential difference at the region boundaries,
δV , gives rise to the difference of densities at these boundaries, δn= geδV . In
one-dimensional systems, all the electrons move along the conductor and, there-
fore, they all belong to one of the flows entering eqn (5.15). This allows one
to relate δn to the electron densities in the flows and express δV in terms of



82 5. METAL–INSULATOR TRANSITIONS

currents as

δV =
δn

ge
=

jin + jr + jt′

e2gv
− jin′ + jr′ + jt

e2gv
=

2R(jin − jin′)
e2gv

. (5.16)

Here g and v are the density of states and the magnitude of the electron velocity
at the Fermi level. Since the total current J equals

J = jin − jr − jt′ = jin′ − jr′ − jt = T (jin − jin′), (5.17)

the ratio J/δV allows one to write the conductance yimp = J/δV and resistance
�imp = y−1

imp of the hatched region as

yimp =
(

e2

2π�

)(T
R

)
=
(

e2

2π�

) T
1− T , �imp =

(
2π�

e2

)(R
T

)
=
(
2π�

e2

) R
1− R
(5.18)

Landauer suggested representing elastic scattering centers in the form of
potential barriers. Then the transport characteristics of the system are expressed
in terms of the reflection and transmission coefficients of the wave propagating
across these barriers. Therefore, the corresponding formulas and, in particular,
eqn (5.18) for conductance are called the Landauer formulas. In principle, the
method suggested by Landauer is applicable to systems of any dimensionality,
but it is especially convenient for one-dimensional systems.

Note: The Landauer formula in the form (5.18) was derived under the assumption that
the potential difference is applied directly to the scattering region between the points A
and B (Fig. 5.4). Therefore, the conductance (5.18) for weak scattering (T ∼ 1, R � 1)
may be higher than the conductance (5.13) of the system having no scatterers at all.

If the potential difference in the system shown in Fig. 5.4 is applied to the
reservoirs, the resistances of both an ideal wire and the scattering region are
switched in series and the system conductance is

y−1 = y−1
id + y−1

imp ≡ �id + �imp =
(
2π�

e2

)(
1 +

R
T

)
, y =

(
e2

2π�

)
T . (5.19)

Now, if T → 1, the conductance y → yid, as was to be expected. Equation (5.19)
for y may also be obtained directly by applying a potential difference to the
reservoirs and writing the electron flow from one reservoir to another with due
regard for single scattering (cf. the derivation of eqn (5.13)). This signifies that
the summation of resistances in eqn (5.19) in accordance with Ohm’s law is quite
justified. As is shown below, it is not always justified in one-dimensional systems
because of the interference of the incident and reflected waves.

5.3. Localization and role of correlations in 1D systems

Consider two successive barriers in a one-channel one-dimensional conductor
(Fig. 5.5) and write the parameters T and R = 1− T of a compound scattering
object in terms of the parameters T1, R1, T2 and R2 of the prime defects. If a
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1

A

B

C

DBeiw

Ce–iw

Fig. 5.5. The scattering portion of a one-dimensional conductor consisting of
two barriers. The complex amplitudes A, . . . , D of the waves that arrive at
and depart from the barriers are normalized to the amplitude of the initial
arriving wave 1.

wave with amplitude 1 is incident onto barrier 1 from the left, then the station-
ary wave field thus formed contains four more waves: the reflected wave A, the
transmitted wave D, and two waves B and C propagating between the barriers
in opposite directions (where A, B, C, and D are the complex wave amplitudes).
Expressing the amplitudes of the waves propagating to the right and the left
from each barrier in terms of the amplitudes of the incident waves, we arrive at
four equations

A = r1 + Ct1, B = t1 + Cr1, Ce−iϕ = Beiϕr2, D = Beiϕt2. (5.20)

Above, we used the fact that the reflection coefficients are the same for the
waves incident on the right and on the left, r1 = r′

1. The factors exp(±iϕ) take
into account the phase incursion of the wave within the interbarrier distance.
It follows from eqn (5.20) that

D =
eiϕt1t2

1− e2iϕr1r2
, T = |D|2 = T1T2

1 +R1R2 − 2
√

R1R2 cosϑ
, (5.21)

where ϑ = 2ϕ + arg(r1r2). The conductance Y2 of the compound “two-barrier”
scatterer shown by the dashed line in Fig. 5.5 is

Y2 =
e2

2π�

T
1− T =

e2

2π�

T1T2

R1 +R2 − 2
√

R1R2 cosϑ
. (5.22)

If the barriers in the compound scatterer are equal, r1 = r2 = r′, t1 = t2 = t′,
R1 = R2 = R′, etc., then

Y2 =
e2

2π�

(T ′)2

4R′ sin2 ϑ/2
, ϑ/2 = ϕ+ arg(r′) = kl + arg(r′), (5.23)

where k is the wave vector, and l is the distance between the barriers.
The conductance (5.22) depends not only on the parameters of the two prime

barriers but, via the angle ϑ, also on the distance between these barriers. Since
we are interested in a 1D conductor with a large number of randomly located
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barriers, we may average all the possible distances between the barriers by assum-
ing that the angle ϑ may take any value from 0 to 2π with equal probabilities.
This assumption is not quite justified, but it allows one to follow the tendencies
arising for long chains of one-dimensional barriers; for details, see Imry (1997)
and the original publication by Anderson et al. (1980). Using the average value
cosϑ = 0, we obtain the average conductance Y2 of a system of two barriers as

Y2 =
e2

2π�

T1T2

R1 +R2
=

e2

2π�

(1− R1)(1− R2)
R1 +R2

. (5.24)

For comparison, we also write the classical expression for the sum of the
resistances �1 = y−1

1 and �2 = y−1
2 connected in series:

Y
(cl)
2 = (y−1

1 + y−1
2 )−1 ≡ (�1 + �2)−1 =

e2

2π�

( R1

1− R1
+

R2

1− R2

)−1

=
e2

2π�

(1− R1)(1− R2)
R1 +R2 − 2R1R2

(5.25)

It is seen that, comparing with eqn (5.24), eqn (5.25) has an additional term
in the denominator which is proportional to the product of the transmission
coefficients of two barriers, R1R2.

Consider a long chain of equivalent weakly scattering barriers R′ � 1, T ′ ∼ 1,
located at random distances li. The average distance between the barriers l= li
has the sense of an elastic mean free path. Each barrier introduces the same
low resistance �′ = (2π�/e2)(R′/T ′) � 2π�/e2. Let us calculate the resistance
RN = Y −1

N = (2π�/e2)(RN/TN ) of a compound scattering object consisting of
N barriers by the recurrence formula following from eqn (5.24),

RN

TN
=

RN−1 +R
TN−1T ′ . (5.26)

If the number of barriers N is small so that N�′ � 2π�/e2, the RN value
increases linearly, RN ≈ N� ∝ N . The probability of reflection, RN , at first
also increases linearly. However, as it cannot exceed unity, its growth is limited.
Therefore, beginning with a certain N value, it is possible to assume that RN ≈
RN−1 ≈ 1 in eqn (5.26) and, therefore, to write

TN ≈ TN−1T ′, TN → s(T ′)N = seaN as N → ∞(s = const, a = ln T ′ < 0).
(5.27)

An exponential decrease in the intensity of the transmitted wave TN with an
increase in the length-scale N is a manifestation of the 1D localization.

Consider one specific feature of the transport in one-dimensional systems.
Figure 5.6 shows the transport characteristics of a quasi-one-dimensional system
consisting of an accumulating layer of the field transistor on an n-Si surface
(Fowler et al. 1982). At low temperatures, the dependence of the conductance y
on gate voltage Vg acquires a noise-like component with a very large amplitude. It
is not real noise. The signal does not depend on time. If the sample is not heated
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Fig. 5.6. Conductance y of a long quasi-one-dimensional channel in a field
transistor prepared on an n-Si surface and operating in the mode of an accu-
mulating layer as a function of the gate voltage Vg (Fowler et al. 1982). The
channel width may vary from zero to the maximum value ∼1µ set by the
design (see the schematic in the inset) by applying voltages to the control
electrodes p+ and to the gate.

to room temperature, the y(Vg) curve is reproduced in repeated experiments up
to the smallest details. It is seen that at low temperatures and gate voltages Vg,
which provide a narrow channel and a low carrier concentration, the conductance
shows random oscillations with the variation of Vg, whose amplitude increases
with lowering of the temperature. Another sample shows similar general features
of the signal variation with voltage Vg and temperature, but the details of the
oscillation structure become quite different. The same is true for the sample
cooled for the second time from room temperature

The random oscillations are explained mainly by their one-dimensional
character. All the wire defects are “switched in series” and the current lines
cannot avoid any defect. The elimination of only one strongly scattering defect
may dramatically influence the total resistance. We have to explain how the
variation of Vg (which changes the concentration of the carriers and their Fermi
energy εF) may switch on, switch off, or change the efficiency of individual
defects.

Above, we averaged eqn (5.22) over cosϑ based on the fact that interbarrier
distances li have a certain dispersion. However, the angle ϕ= kli, which enters ϑ,
depends not only on li but also on the wave vector k, i.e., on the electron energy
εF. It is seen from eqn (5.23) that R2 =Y −1

2 of one pair of scattering barriers
with resistances � each and fixed distance l between them varies from zero to 4�:

0 � R2 � 4�, (5.28)

depending on energy of the incident electron.
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It is timely to recall that the transport properties of the 1D system are determined by
the electrons from the vicinity of εF; at lower energies, there are always two electron
flows that compensate one another. Also, we have mentioned above the difficulties in
averaging eqn (5.22) for resistance over the angle ϑ; they are associated just with the
large range (5.28) of the resistance variation R2 of a compound scatterer.

The space between two barriers is a potential well. Generally speaking, this
well has a set of levels εi whose width depends on the transparency of the barriers
t1 and t2. With the displacement of electron energy εF with respect to the levels
in the well, the probability of tunneling starts oscillating and attains a maximum
under the resonance conditions εF = εi. Therefore, enormous random oscillations
of resistance may be theoretically described in terms of resonant tunneling.

The model of localized states in 1D systems uses ideas about electron levels
inside compound scatterers. At sufficiently low temperatures, reflections from far
barriers

1 � N � Lϕ/l (5.29)

remain coherent. Therefore, according to eqn (5.27), these reflections at suffi-
ciently high Lϕ values compensate the transparency of the barriers t1 and t2
and make the state really localized between these barriers. Under these condi-
tions, one can expect the manifestation of the hopping conductivity. And, indeed,
Fig. 5.7 shows the temperature dependence of conductance measured at several
minima of the curve shown in Fig. 5.6. In the left-hand side of Fig. 5.6 (at low
Vg and low conductance) the oscillations are quite pronounced, and there are
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Fig. 5.7. Logarithm of conductance as a function of T−1/2 of a field-transistor
channel at three gate voltages which correspond to different conductance
minima (Fowler et al. 1982).
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grounds to believe that the channel would be one-dimensional. The changes of
this part of the y(Vg) curve with temperature fit the functional dependence

y = y0 exp[−(TM/T )1/2], (5.30)

in full accordance with the Mott law, eqn (4.24). At high Vg values, the channel
is broadened and gradually transformed into a two-dimensional system. The
conductance increases, whereas the amplitude of random oscillations decreases.
The experimental points of the dependence log y(T−1/2) measured at the gate
voltage Vg =6.3V deviate from the straight line in Fig. 5.7, but are linearized in
the (log y, T−1/3) axes, also in full accordance with eqn (4.24).

Let us revisit the general statement that a 1D random potential unavoidably
leads to localization. Equation (5.22), which is the starting point in constructing
the concrete model (5.27) aimed to demonstrate localization, contains a hint that
correlations can help to avoid localization. To show this, consider a simplified
version of eqn (5.22), namely eqn (5.23) for the conductance Y2 of a symmetrical
compound scatterer. It follows from eqn (5.23) that for the wave with a special
wave vector k0 =− arg(r′)/l the compound scatterer is completely transparent
and there is no reflected wave, R′

2 =0. If all the single barriers in the model
(5.26)–(5.27) are substituted for identical compound barriers (5.23), then the
electron with energy ε0 = �

2k2
0/2m turns out to be delocalized, in spite of the

randomness in the disposition of the scatterers.
This idea is elaborated in the so-called dimer model (Dunlap et al. 1990). The

model uses a 1D periodic lattice of potential wells instead of a random set of
barriers. The lattice consists of two types of wells with energy levels Ea and Eb.
These types of wells are randomly distributed over the odd lattice sites without
any correlations and each even site has a well of the same kind as the odd one
on the left. This signifies that the wells of the same type form pairs, whence the
name of the dimer model (Fig. 5.8a). If the distance between the wells is a, the
lattice thus formed may be represented as a sum of two random but equivalent

Ea

Eb

Ea

Eb

2J

(a)

(b)

a

Fig. 5.8. (a) The dimer model of a one-dimensional random potential. The
changes in the level positions due to the overlap of wave functions are not
shown. (b) Electron levels in a one-dimensional lattice with one dimer defect.
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sublattices displaced relative to one another by a distance a. The period of both
sublattices equals 2a.

Assume that the pairs Ea belong to the basic lattice and pairs Eb are defects.
We have already seen that the model of paired defects contains delocalized states
at some separate energies determined by the structure of the defect. The con-
dition that a free electron of the basic lattice with such energy can pass freely
through the defects may readily be understood from Fig. 5.8b, where one dimer-
type defect is immersed into the basic lattice formed by Ea wells. Let the transfer
integral for two neighboring wells be J . Then, both on the right and on the
left of the defect, bands with a quasi-continuous level distribution are formed,
ε = Ea − 2J cos ka. If the relation

|Ea − Eb| < 2J, (5.31)

is fulfilled, then the level Eb turns out to be inside the bands and the reflection
probability becomes zero, R′ = 0, for the wave vector k0 defined from the relation
cos k0 = −2J/(Ea − Eb).

In the dimer model, the correlations were introduced only between the nearest
neighbors. With such correlations, the delocalized states arose only at discrete
energy values. To obtain the band of delocalized states, it is necessary to con-
sider long-range correlations in the potential which should nevertheless remain
random. The routine for construction of such potential was proposed by Izrailev
and Krokhin (1999). In the next section, we shall give an example of this potential
which was written to be tested by microwave modelling.

5.4. Microwave modelling

A comprehensive discussion of these problems is given by Stöckmann (1999).

Both the time-dependent Schrödinger equation,

i�
∂Ψ
∂t

= − �
2

2m
�Ψ+ UΨ, (5.32)

and the classical wave equation,

1
c2

∂2Ψ
∂t2

= �Ψ− UΨ (5.33)

(c is the light velocity), after the substitution Ψ = e−iωtψ, are reduced to the
same equation

(� − U + k2)ψ = 0 (5.34)

with the only difference that for the Schrödinger equation we have

ω = (�/2m)k2, (5.35)
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Fig. 5.9. Sketch of a one-mode waveguide with an array of 100 scatterers used to
measure the transmission coefficient t of an electromagnetic wave as a function
of frequency (Kuhl et al. 2000). All dimensions are given in millimeters.

whereas for the wave equation, the relation between ω and k is linear:

ω = ck. (5.36)

This makes it possible to study localization processes by considering the distribu-
tion of electromagnetic fields in microwave devices. Two examples are presented
below, one with a 1D system, the other with a 2D system.

In the paper by Kuhl et al. (2000), the 1D random potential was imitated
by a long waveguide with scatterers inside and the transmission coefficient of
an electromagnetic wave was measured as a function of frequency. A sketch
of this waveguide is depicted in Fig. 5.9. The working range of frequencies ν
was selected in the frequency range of waveguide operation in the single-mode
regime: 7.5GHz = c/2a < ν < c/a = 15GHz, where a is the maximum size of
the transverse cross-section of the waveguide.

Then, N =100 screw scatterers (modelling a random potential) were screwed
into the waveguide at equal distances from one another. The screw lengths un

(where 1 ≤ n ≤ N) in the waveguide can be varied thus changing the effectiveness
of the scatterers. The screw lengths were determined from the expression

un =
√

u2
n

∞∑
m=−∞

βmZn+m, βm =
2
π

∫ π/2

0

√
ϕ(µ) cos(2mµ) dµ. (5.37)

Here, Zn+m are random numbers ranging from −1 to +1. It is these numbers
that introduce randomness into the potential. The correlation between all the
un depths is provided by the factor βm defined in terms of the function ϕ(µ).
The latter function is selected with the invocation of a specified mathematical
algorithm for the necessary transmission spectrum of a one-dimensional system.
The results obtained with the use of this algorithm are shown in Fig. 5.10. The
ϕ(µ) function was selected in such a way that two transmission bands were
formed inside the working range. The transmission coefficient of the waveguide



90 5. METAL–INSULATOR TRANSITIONS

0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0

kd /π

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
  t

Fig. 5.10. Transmission t through a one-dimensional channel with correlated
periodically arranged random scatterers; the correlation is governed by a spe-
cially selected correlation function. The solid line relates to the numerical
experiment with N = 104 scatterers; the dashed line relates to microwave
transmission through an array of N = 100 scatterers averaged over five inde-
pendent measurements. The correlation function is the same in both cases
(Kuhl et al. 2000).

with the one-dimensional sequence of N = 104 scatterers calculated in the com-
puter simulation is shown by the solid line in Fig. 5.10. The result of the real
microwave experiment with the sequence of N =100 scatterers averaged over the
five measurements with different sets of Zn numbers is shown by the dashed line.

In solid state physics, the existence of a transmission band with a finite width
signifies the existence of a mobility edge and, at a selected value of a control
parameter, also of a metal–insulator transition. Thus, one-dimensional models,
which allow one to achieve considerable progress in the solution of the problem
not only numerically but also analytically, demonstrate the important role of
correlations in a random potential in the localization problems.

The microwave method may also be used for simulating two-dimensional loc-
alization. The corresponding experiments are called microwave billiards. Their
main elements are plane resonators with feeding antennas. The transverse dimen-
sion of such a resonator along the z-axis is of the order of the wavelength or less,
whereas the longitudinal dimension along the x- and y-axes are much larger
than the wavelength. A random potential U is modelled by metal scatterers
randomly located inside the resonator. The stationary distribution of an elec-
tromagnetic field inside the resonator, e.g., of an electric field Ez(x, y), at the
corresponding wave mode satisfies not only the Maxwell equations, but also the
Schrödinger eqns (5.32) and (5.34) for the eigenfunction ψ. This distribution may
be measured, e.g., by moving a small metal sphere inside the resonator. The per-
turbation introduced by this sphere results in a change ∆ω of the resonator
frequency proportional to the squared electrostatic field at the given point,
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1.73 GHz 2.43 GHz 4.89 GHz

Fig. 5.11. Eigenfunctions obtained in a 240 × 340mm2 rectangular billiard
with randomly distributed scatterers (black circles) at different frequencies
(Stöckmann et al. 2001). The values of |ψ|2 are given on a gray scale.

∆ω ∝ E2
z (x, y), and, therefore, also the squared eigenfunction of an electron

at this point, ∆ω ∝ ψ2(x, y), at the energy value �ω.
As an example, Fig. 5.11 borrowed from Stöckmann et al. (2001), shows three

eigenfunctions in a rectangular billiard with random scatterers obtained at three
different frequencies. The values of the squared amplitude ψ2(x, y) are converted
into a gray scale. This example illustrates delocalization of an electron with an
increase in its energy.

5.5. Model of structural disorder

Named after I.M. Lifshitz, this model was applied to the metal–insulator trans-
itions in the book by Shklovskii and Efros (1984). The mathematical aspects of the
model were discussed in detail by Lifshitz in his review (Lifshitz 1965), where this
model was used in the study of the energy spectrum of a metal with impurities.

It is expedient to consider a one-electron model of disorder different from the
Anderson model. In this model a random potential V (r) consists of equivalent
randomly arranged wells v(r) with energy level E0 in each of them:

V (r) =
∑
Ri

v(r − Ri). (5.38)

Disorder in this model is determined by the randomness of the set of vectors Ri.

Note: The Anderson model described by eqn (5.1) and the model of structural disorder
described by eqn (5.38) deal with qualitatively different types of disorder. One may
state that the Anderson model originates from the physics of semiconductors, where
the energies of the impurity centers are always different, whereas the model of structural
disorder originates from the physics of metals, where, because of pronounced screening,
the energies of all the centers are considered to be equal. It was no accident that
the potential (5.38) was used in the diffraction theory of electron transport in liquid
metals (see Chapter. 1). All the electrons were assumed there to be delocalized and the
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potential (5.38) was simply a source of scattering. This corresponded to a large ratio
of the attenuation length aB to the average distance between the wells, n−1/3, i.e. to
the inequality aBn1/3 	 1.

As earlier, we assume that beyond the well, the wave function attenuates as

ψ ∝ e−r/aB

r
, aB =

κ�
2

m∗e2 . (5.39)

Let the concentration n be low so that the attenuation length is much less than
the average distance between the centers, aBn1/3 � 1. Nevertheless, the wave
levels of the neighbors slightly overlap, therefore, the δ-like density of states is
spread into a band. Now, divide all the wells into pairs of nearest neighbors. If the
distance between the wells in a pair is r12, then, since the wells are resonant due
to the overlap of the wave-function tails, eqn (5.39), the level E0 splits into two:

E = E0 ± ε1,2, ε1,2 = J0
exp(−r12/aB)

r12 n1/3 (5.40)

and the collectivized wave functions arise described by eqn (5.5). The distance r12
in the expression for level splitting (5.40) is normalized to the average distance
n−1/3 between the centers in order to ensure that J0 would have dimensions of
energy. The J0 value as well as the aB value depends on the characteristics of the
well, the permittivity κ of the material, the effective mass of the electron, etc.

As is seen from Fig. 5.12, where the resonance pairs are shown by dotted
ellipses, not all the centers may be involved in the formation of resonant pairs.
Thus, well 2, which is the nearest neighbor of well 3, may have well 1 as the
nearest neighbor, so that r12 < r23. Of these three wells, the resonant shifts are
ε1 and ε2, whereas the shift ε3 is nonresonant and is much less than the former
two, because ε3 ∝ exp(−2r23/aB). Figure 5.12 shows two such configurations,
consisting of three and four wells with r12 < r23 < r34 in the latter configuration.

1

2

3

r12

r23

1
r122

3

4

r23>r12

r34>r23

Fig. 5.12. Random impurity distribution. Pairs of nearest neighbors are shown
by dotted ellipses. The centers indicated by the number 3 are adjacent to the
pairs, whose wells are indicated by 1 and 2. These centers form triads. Groups
with larger number of centers are also possible.
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In configurations formed by three and more wells, there always exists at least one
resonant pair with the minimum distance between the wells and the maximum
shift of the levels. The characteristic width ∆ of the resulting function of the
density of states is determined by the resonant pairs of wells, with the average
distance between the wells being n−1/3, so that

∆ ≈ J0 exp
(−n−1/3

aB

)
. (5.41)

The tail of the density-of-states function at |ε| 	 ∆ is formed due to the anom-
alously close pairs of wells with r12 � n−1/3, whereas the states at low ε, for
which |ε| � ∆, are formed due to nonresonant and lone wells.

It is expedient to compare the above transformation of the initially δ-like
density of states into the band and the formation of an impurity band in the
“donors+acceptors” system (Chapter 3). In Chapter 3, spreading was caused by
random electric fields of charged centers. Such a level transformation into a band
may be called classical. In the classical broadened impurity band, the metal–
insulator transition takes place because of the overlap of the wave functions with
a further increase in the concentration of impurity centers. On the contrary,
eqn (5.41) is of a quantum nature. The parameter aBn1/3 controls both the level
transformation into a band and the metal–insulator transition.

As is seen from eqn (5.41), the model of structural disorder has no independ-
ent parameter equivalent to the bandwidth W in the Anderson model described
by eqns (5.1)–(5.3). This fact seems to explain the widespread use of model
(5.1)–(5.3) for the description of metal–insulator transitions. In Fig. 5.1, no ran-
dom classical fields (always present in real systems) are present in explicit form –
instead, they seem to be included into the dispersion of well depths. However,
it is also possible to represent these field in explicit form, by considering not
Fig. 5.1 but another equivalent sketch – Fig. 5.13, which reflects the real situ-
ation much better, e.g., the situation in a partly compensated semiconductor,
where all the impurity centers are chemically equivalent and long-range electric
fields are present.

«

0

 

W
2

–W
2

N
W

∂N
∂ «

Fig. 5.13. Alternative representation of the Anderson model: periodically
arranged wells have the same depths and are located against the background
of a random long-range potential (cf. Fig. 5.1).
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The metal–insulator transition in the model of structural disorder has been
studied theoretically in less detail than in the Anderson model. However, the
computer simulation demonstrated the existence of the transition with respect
to the parameter aBn1/3. In addition to the natural control parameters (such as
the shape and depth of the well v(r − Ri) and the well concentration n), the
model of structural disorder has a latent mechanism of transition control. This
control is performed via the correlations on the set of vectors Ri. By increasing
the correlations, the set of vectors can be transformed from a random into a
regular set. This seems to be implemented in some metal alloys and quasicrystals
(Chapter 7).

5.6. The Mott transition

Consider a system of donors with electron wave functions (5.39). Compare the
Bohr radius aB with another quantity having the dimensions of length – the
screening radius re of an electric field used to describe the systems of free carriers.
In the Fermi statistics, re includes the electron concentration n:

re =
(
4me2n1/3

κ�2

)−1/2

= 1
2 (aBn−1/3)1/2. (5.42)

If all the electrons are localized, the system is described by the length aB; if the
electrons are itinerant, it is described by the length re. Moreover, there is one
more length in both limits – the average distance between the electrons, n−1/3.
Assume that we gradually increase the donor concentration n. Unless re > aB,
the screening is inessential, each electron is in the vicinity of its donor, and the
material is an insulator. However, if the inequality is changed to re < aB, the
state of an insulator becomes unstable. If all n electrons abandon their donors,
they would not be able to return, because they would not be able to find their
donors because of the strong screening. The ionized donors ensure a positive
background compensating the negative charge of itinerant electrons. Hence, the
equality

re = aB, i.e., 1
2 (aBn−1/3

c )1/2 = aB, aBn1/3
c = 0.25 (5.43)

is the condition for the occurrence of the metal–insulator transition, which occurs
when the concentration n attains the critical value nc. This transition is called
the Mott transition.

Note: In this simple speculation, disorder was ignored. The driving force of the Mott
transition is the interelectron interaction. It is possible to imagine that ordered donors
would form a superlattice; then the concentration n is varied by varying the superlattice
period a = n−1/d without introducing any disorder.

To write eqns (5.42) and (5.43), we used eqn (5.39) for the Bohr radius which
is valid only for hydrogen-like impurity centers. Another somewhat more general
line of reasoning can be proposed. Let the energy of an electron at an impurity
center be E0. The Pauli principle admits the presence of two electrons with
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Fig. 5.14. A Mott transition in the Hubbard scheme.

different spins at this level. However, if the center already has one electron,
the other electron may be attached to the center only by it overcoming the
electrostatic repulsion. Therefore, the level of the second electron is higher by a
value of U ≈ e2/κaB, the so-called Hubbard energy. If the impurity centers have
a nonzero concentration, n �= 0, then both levels are spread into minibands, each
with nV levels (V is the volume) because of the overlap of the wave functions
irrespective of the arrangement of the centers – random or regular. Since the
electron concentration is also n, then for nonoverlapping minibands, all the n
levels in the lower miniband are filled and all the nV levels in the upper miniband
are empty. The material is an insulator with the gap at the Fermi level (Fig. 5.14).

Note: For any level of the lower Hubbard band, only one electron may be localized at
a center, but it may have an arbitrarily directed spin. Therefore, the insulator thus
obtained is a paramagnetic. Ferro- or antiferromagnetic ordering may arise in this
insulator only if additional interactions between the centers take place.

The miniband width ∆E is determined by the transfer integral (5.2),

∆E ≈ 2J ≈ 2
∫

ψ∗
i Ĥψj d3r.

The evaluation of the J integrals is based on eqn (5.39) for asymptotic wave
functions. The integral

∫
ψ∗

j Ĥψj d3r determines an unperturbed energy level
and, therefore, is equal to E0. The replacement of ψ∗

j by ψ∗
i indicates that every-

where, where the integrand has a nonzero value, it is decreased by a factor of
exp(−rij/aB). Therefore, we have

∆E ≈ 2J ≈ 2
∫

ψ∗
i Ĥψj d3r ≈ 2E0 exp

(−rij

aB

)
≈ 2E0 exp

( −1
aBn1/3

)
. (5.44)



96 5. METAL–INSULATOR TRANSITIONS

An increase in the concentration results in broadening of the bands and their
overlap. At the critical concentration nc the bands merge together when

U ≈ ∆E ≈ 2E0 exp
( −1

aBn1/3

)
. (5.45)

Since U � E0, both quantities are of the order of the atomic energy e2/κaB, and
the numerical value of the above expression can hardly be considerably different
from the value 0.25 obtained in eqn (5.43).

Thus, we have considered two types of metal–insulator transitions. Now,
compare these types with one another and also with two types of quantum cor-
rections to the conductivity of a dirty metal at low temperatures. The Anderson
transitions take place because of disorder and may be well described within
the one-electron approximation. The same is true for weak localization. On
the contrary, the driving force of the Mott transitions is the Coulomb inter-
actions controlled by screening, whereas the degree of disorder is considerably
less important. In the Aronov–Altshuler effect, disorder is necessary solely to
provide the diffusion motion of electrons, whereas the quantum correction to
conductivity is caused by electron–electron interactions.

For an experimentalist, it is very important to know what type of transition,
Mott or Anderson, he deals with. However, in practice, the choice made is not
quite convincing. Any change of the electron concentration n is the result of
nonstoichiometry or the presence of impurities. Therefore, a change in n is also
accompanied by a change in the disorder. On the other hand, an increase in the
degree of disorder influences the screening. No matter how strange it may look,
the quantitative characteristics of the Mott and Anderson transitions are also
similar. Equation (5.3) of the Anderson transition may be written in the form

aBn1/3 = −
(
ln

caW

E0

)−1

, ca =
(

J

W

)
crit

. (5.46)

and eqn (5.45) of the Mott transition in a similar form

aBn1/3 = −
(
ln

cmU

E0

)−1

, (5.47)

where the constant cm is introduced.

Recall. The formulas for the two types of quantum corrections to conductivity are also
similar.

The quantities W , U , and E0 in the logarithm arguments are of the order of
the atomic energy e2/κaB, whereas the values of ca and cm are of the order of
unity. As a result, the estimates of the product aBn

1/3
c are practically the same

for the transitions of both types (Fig. 5.15). Therefore, the experimental data
on the transitions summarized in Fig. 5.16 are not surprising. The proportion-
ality aB ∝ n

−1/3
c is confirmed in the range of nc variation within six orders of

magnitude, and the proportionality coefficient determined by the least squares
method equals 0.26 (cf. eqn 5.43).
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proportional to 
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aBn1/3 = − (lncmU/E
0)−1

aBn1/3 = − (lncaW/E0)
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Fig. 5.15. Common and distinguishing features of the expressions for Mott and
Anderson transitions.
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Fig. 5.16. Correlation between the critical carrier concentration and the effect-
ive Bohr radius at the points of metal–insulator transitions in 15 materials.
The aB and nc values of all the materials are determined in independent
experiments (Edwards and Sienko 1978).
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Fig. 5.17. Concentration vs disorder diagram. Disorder is measured in W units,
aB is assumed to be a constant. The inclined line describes Anderson
transitions; the horizontal one describes Mott transitions.

Note: Since the criterion aBn1/3 =const. is valid for both types of transitions, the
concentration n may serve as a control parameter not only for the Mott transitions
(which is quite natural), but also for the Anderson transitions induced by disorder. In
this case, n appears not as the electron concentration but as the concentration of the
centers of their localization. The distance between these centers determines the value
of the transfer integral.
Note also that the condition for localization of the carriers in the model of structural
disorder is the smallness of the same parameter aBn1/3.

Despite the variation of the concentration and the degree of disorder coexist
in real transitions, one has to remember the important difference between the
Mott and Anderson transitions. This is illustrated by the diagram in Fig. 5.17.
The quantity W along the horizontal axis is used as a measure of disorder. The
concentration is plotted along the vertical axis. The Bohr radius aB is assumed
to be a constant. The insulator states are on the right of the line of the Anderson
transitions described by eqn (5.46); the metal states are on the left of this line. In
these coordinates, the line of the Mott transitions described by eqn (5.47) is the
horizontal line located the higher, the lower the aB value. The lines intersect at
the point W0 =(cm/ca)U . If the disorder is strong, W > W0, the metal–insulator
transitions are controlled by the disorder and take place along the line given by
eqn (5.46). At concentrations n < nMott, no metallic state exists irrespective of
the level of disorder. The value of nMott follows from eqn (5.47).

Disorder created by atomic displacements has a certain upper limit, which
is attained in the absence of any correlations between the atomic positions. In
Fig. 5.17, this limit is indicated as Wmax on the right-hand edge of the range
of possible disorder strength. By the curve of transitions, the disorder Wmax
determines the concentration nmax. Then, one may ask what are the electron
concentrations n in real metals and alloys. If n > nmax, no structural disorder
may lead to an Anderson transition.



5.7. THE MINIMUM METAL CONDUCTIVITY? 99

Note. The quantity W can be considered as a quantitative measure of disorder only
conditionally. Therefore, the diagram in Fig. 5.17 is only an illustration. Nevertheless,
the question is formulated and the answer may be obtained only by performing the
respective experiments. We have already discussed such experiments in Chapter 1 and
we shall come back to this problem in Chapter 7.

5.7. The minimum metal conductivity?

The suggested criterion for the transition – the value of the parameter aBn
1/3
c –

postulates the existence of a metal–insulator transition, but gives no information
on the nature of this transition. The first serious discussions of this problem were
based on the analysis of the nature of metal conductivity. The expression for
conductivity

σ =
e2

�

nl

kF
, n = (3π2)−1k3

F, (5.48)

proceeds from assuming an electron system to be a gas of charged particles
with free path l. Like in a conventional gas, at a certain stage, some constraints
appear because of the finite sizes of gas particles. The effective electron size
is the de Broglie wavelength 1/kF. This is the natural limit from below of the
quantity l. For the mean free path l ∼ 1/kF, the expression for σ has the value

σMott ≈ (3π2)−2/3(e2/�)n1/3 ≈ 0.1(4 · 103Ω)−1n1/3. (5.49)

The above value limits from below the conductivity possible within the gas
model.

Proceeding from this constraint, Mott assumed that a metal–insulator trans-
ition could not be a continuous phase transition. Being applied to an Anderson
transition, this assumption is formulated as follows: with an increase in the dis-
order in the system with a fixed concentration n, the conductivity first drops to
a minimum, eqn (5.49), and then should go to zero in a jumping manner. The
Mott transition shows an avalanche-like increase in the number of delocalized
carriers in the initial scenario: a delocalized electron makes its contribution to
screening and, thus, promotes delocalization of the remaining electrons.

Moreover, the main statement forming the basis of the concept of a Mott
transition reads that the concentration n cannot be infinitesimal. Substituting
nc from eqns (5.43) or (5.45) into eqn (5.49), one may express σMott in terms
of aB. However, aB cannot have a macroscopically high value, because it is the
characteristic size of the wave function of an individual electron. It seems that
the value aB ≈ 600 Å in InSb (Fig. 5.16) is close to the maximum attainable
value, and hence should follow the existence of the absolute minimum value of
metal conductivity.

It is natural that the concept of minimummetal conductivity and the nature of
a metal–insulator transition were subjected to thorough verification in numerous
experiments, which did not confirm the concept and proved that the transition
is continuous.
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Fig. 5.18. Fine tuning of the metal–insulator transition in Si : P with the aid
of pressure S. Dashed lines in the plot and the inset indicate the minimum
conductivity σMott calculated using the experimental electron concentration
(Paalanen et al. 1982).

One of these experiments is illustrated in Fig. 5.18. Since the conductivity of
Si : P samples depends on the concentration n (in the inset), it becomes possible
to determine the critical concentration nc. However, the insufficiently accurately
determined concentrations in each sample do not allow one to determine the
law of the conductivity variation in the vicinity of the critical concentration.
However, applying a certain pressure to a sample with a concentration slightly
lower than nc, it is possible to pass through the interval of σ values from zero to
the assumed σMott to confirm that there is no jump in conductivity.

Note: Each point on the σ(S) plot is obtained by extrapolating the temperature
dependence σ(T ) measured at the given pressure to T =0. A similar plot for any
finite temperature would be insufficiently convincing, because an insulator at a finite
temperature has a finite conductivity.
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6

SCALING HYPOTHESIS

It would be useful to become acquainted with the problems which are discussed
in the previous chapter and in this one set forth in a somewhat different style;
see, for instance, the book by Mott (1990) and the review articles of Lee and
Ramakrishnan (1985) and Kramer and MacKinnon (1993).

Below, we discuss the phenomenological theory based on the scaling hypothesis.
It was created to eliminate the inconsistencies between the simplest ideas on the
minimum metallic conductivity and experiments.

6.1. Foundations and formulation of the scaling hypothesis

A clear and accessible discussion of the basic ideas considered in this section
exists in the short pioneering article by Abrahams et al. (1979).

A metal–insulator transition is a somewhat unusual phase transition. The basic
property, which allows one to distinguish between different states – conductivity –
manifest itself only under nonequilibrium conditions. Therefore, one of the reas-
ons to consider this phenomenon as a continuous phase transition is its successful
description by the standard mathematical apparatus of the theory of phase trans-
itions. First of all, let us introduce a control parameter x which determines the
distance to the transition so that x − xc has different signs on opposite sides
of the transition. We have learnt in Chapter 5 that this may be the electron
concentration n, the strength of the disorder, the magnetic field B, the pressure,
etc. However, this cannot be the temperature because the transition takes place
at T =0. Then, one has to select from the functions that describe the transport
the one which sets the system state, as is usually done in thermodynamics.

Let the samples have the shape of a hypercube with volume Ld in space
of dimensionality d. The sample conductance Y has dimensions [Ω−1] inde-
pendent of d. We also consider the dimensionless conductance y given by the
formula (e2/�)y = Y in which the combination of the atomic constants e2/�

has dimensions [Ω−1] and is equal to 2.43 · 10−4 Ω−1. The quantity e2/� is often
called a conductance quantum. Apart from the conductance, the conductivity σ
also exists. It has dimensions [Ω−1 cm2−d] dependent on the space dimension-
ality d. The dimensional Y and dimensionless y conductance are related to the
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conductivity by the relationships

Y = σLd−2, y = (e2/�)−1σLd−2. (6.1)

At first glance, it seems natural to select the conductivity σ as the basic
function of a state. However, it remains the “specific conductivity”, i.e., a char-
acteristic of the material, only while the sample size L exceeds a certain internal
material parameter with the dimensions of length.

For instance, in the classical physics of metals, the relation between the sample size L
and the mean free path l gives rise to the DC size effect: the equation Y = σL relating
conductance and conductivity at d = 3 is valid only if L > l.

One of the major quantities in the theory of phase transitions is the correla-
tion length ξ, which is defined on both sides of the transition. At the transition
point, the control parameter x approaches the critical value, x → xc, and the cor-
relation length ξ diverges, ξ → ∞. The theory of conventional continuous phase
transitions is based on the assumption that with the approach to the transition,
ξ becomes a characteristic size of fluctuations. A metal–insulator transition is
observed at the absolute zero of temperature at which the quantum fluctuations
take place instead of thermal fluctuations. In the close vicinity of a transition,
the regions with different ground states of the electron system may flicker when
the system is close to the transition. They are of typical size ξ and last for a
time δt determined by the uncertainty relation δE δt ∼ �.

Since the correlation length ξ diverges in the vicinity of xc, the condition
L > ξ is necessarily violated, the function σ loses its sense, and the relation
between conductance and conductivity is no longer reduced to the factor Ld−2.
This dictates the choice of the basic function – it is conductance y and not
conductivity.

The selection of conductance as the basic function is also favored by important
arguments based on the analysis of the wave functions. Following Thouless, we
consider the transformation of a discrete electron spectrum at the merging of
2d hypercubes of volume Ld into one hypercube of volume (2L)d. The wave
functions in a large hypercube ψ2L may be considered as linear combinations
of the wave functions ψL of small hypercubes. In first-order perturbation theory,
the coefficients ci before the corrections to the initial wave functions ψL have
the form J/∆iE, where J is the transfer integral and ∆iE is the difference
between the energies of the unperturbed states (see, e.g., eqn 5.4). The quantity
∆iE is of the order of the level spacing defined by confinement, ∆iE ∼ (gdL

d)−1,
where gd is the density of states in the space of the corresponding dimensionality.
Therefore, we have

ci � J

∆iE
� J

(gdLd)−1 = J(gdL
d). (6.2)

If the transfer integral J is small, the coefficients ci are also small, and the
wave functions are localized in the initial hypercubes Ld. If the integral J has
a high value, the wave functions become spread over the whole volume of the
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large hypercube (2L)d; whence the assumption that the behavior of the wave
functions during duplication of the hypercube size L may be described with the
aid of only one parameter J , eqn (6.2).

One can readily see that the transport properties of the volume Ld vary
depending on J in a similar way. For high J values, the conductance also has
a high value, because the charge may pass from one cube face to the opposite
one by the mechanism of metallic conductivity. At low J values, the transport is
supported by hopping and tunneling; the lower the J value, the lower the prob-
ability of hopping between the centers or tunneling between the faces. Therefore,
we may consider conductance as a physically measurable quantity from which
the wave functions of electrons in the ground state may be judged. It is con-
ductance and not conductivity, because conductance measured in e2/� units is
dimensionless irrespective of the space dimensionality d and because it retains
its sense at an infinitesimal distance from the transition.

Note: If we wish to estimate the density of states in terms of the energy bandwidth W
and electron concentration nd, gd � nd/W (cf. eqn 5.1), then, in fact, the parameter
given by eqn (6.2) is transformed into the Anderson parameter given by eqn (5.3). This
confirms once again the relation existing between the nature of the wave functions and
conductance.

The sample conductance y was used as the basic physical function of a state
for the first time in the fundamental study by Abrahams et al. (1979) where
one-parametric scaling theory of a metal–insulator transition was introduced.
Following Abrahams et al. (1979), we depict in Fig. 6.1 the logarithmic derivative
of the conductance with respect to sample size L,

β =
d ln y

d lnL
=

L

y

dy

dL
,

−1

0

1

ln yyC

d = 1d = 2d = 3

b =
d ln y
d ln L

yξ

L = j

L = l

yl

Fig. 6.1. Universal β(ln y) functions for different dimensionality (Abrahams
et al. 1979).
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as a function of the argument ln y,

d ln y

d lnL
= f(ln y). (6.3)

To clarify the sense of the scaling variable β,

note: If y is the power function of L, i.e., y ∝ Lφ(d), then β is the exponent, β = φ(d),
and the plot in Fig. 6.1 would become a horizontal line. Equation (6.1) presents just
this type of relation.

Any particular sample in the space with dimensionality d is mapped onto the
curve βd(y) as a point. Arrows show how the point displaces along the curve
with increase of L. According to the scaling hypothesis, the functions βd(ln y)
are universal for any dimensionality d, and the states are determined by only one
parameter y. The asymptotic behavior of the universal functions βd(y) at very
high and very low values of y may be obtained proceeding from general consid-
erations. At high y values, one may use the macroscopic eqn (6.1) of transport
theory, whence

βd → d − 2 as y → ∞. (6.4)

In the limit of low y values, where all the electrons are localized and their wave
functions fade away within distances aB, the final conductance at T = 0 is due to
the exponential tails of the wave functions at the opposite faces of the hypercube
and therefore

y = y0e
−L/aB , ln y = ln y0 − L/aB, β = ln y/y0. (6.5)

Connecting the asymptotic lines (6.4) and (6.5) by smooth lines without extrema,
we obtain the curves shown in Fig. 6.1. The left-hand parts of all the curves
lie in the lower half-plane β < 0. The disposition of the right-hand part which
approaches the asymptotic line β = d − 2 depends on d. This line is in the upper
half-plane β > 0 if d > 2 and it is in the lower half-plane β < 0 if d < 2. The
difference is of utmost importance because the line βd(y) with d > 2 intersects
the abscissa. The existence of the intersection point indicates that the system
undergoes a metal–insulator transition considered in detail below. This allows
us to state that the two-dimensional case with the asymptotic line β = 0 is, in
fact, the boundary case (see Section 5.1).

The boundary properties of two-dimensional systems stimulated the creation
of the so-called “2 + ε models” in the theory of metal–insulator transitions. In
these models, d is considered to be a continuous variable. The expansion in the
vicinity of the value d = 2 is performed with respect to this continuous variable.

The βd(y) curves are assumed to be the final product of the scaling hypothesis,
and we need a prescription for using it. Consider a small cube (or a square film,
or a wire) of size L made from the material we are interested in and measure its
conductance y at the absolute zero of temperature. This measurement gives us
a point on one of the curves in Fig. 6.1. If this point lies in the lower half-plane
β < 0, the material is an insulator. With an increase in L, the conductance y
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of the cube becomes exponentially small. If the point obtained lies in the upper
half-plane β > 0, the material is a metal whose conductance y increases with
dimension L.

Although the above gedanken measurement is unrealistic, the scaling hypo-
thesis has played an important role and allowed one to create a consistent picture
from separate facts. However, the hypothesis itself gives rise to the following
questions.

– What are the physical grounds underlying this hypothesis?
– Are there any theoretical calculations that may confirm this hypothesis?
– What are the physical consequences of the scaling hypothesis and can they
be verified experimentally?

All that was stated above about conductivity, conductance, and asymptotic
behavior only partly answer the first question. However, we limit ourselves to
this partial answer and refer all those interested in this problem to the original
publication (Abrahams et al. 1979) and review article (Lee and Ramakrishnan
1985). However, one circumstance should be emphasized here. At all the stages
of our consideration, e.g., when writing eqn (6.5), we considered the wave func-
tion of one electron and ignored the states of all the other electrons and spin
interactions. Therefore, strictly speaking, the curves in Fig. 6.1 are related to a
system of noninteracting spinless electrons. As a rule, it is not known a priori
to what extent one may consider an electron system as a noninteracting one.
The general strategy reduces to the following. Comparing the predictions of the
scaling hypothesis with the measured data for various electronic systems, one
tries to establish the applicability of the hypothesis, prove its universality, and
clarify the role of interactions.

Now, consider the second question. The possibilities to compare the scaling
hypothesis with direct theoretical calculations are rather limited, but neverthe-
less exist. The transition from itinerant carriers to completely localized ones,
described by the curves βd(y) in Fig. 6.1, begins with weak localization. There-
fore, we project onto these curves all the known theoretical calculations of the
quantum corrections to conductivity discussed in Chapter 2. At T = 0, the
inelastic length is Lϕ = ∞. Assuming that an electron which has reached the sur-
face forgets its phase in scattering, we replace Lϕ by L in all the formulas of the
theory of weak localization. The corrections to βd(y) thus obtained for all three
dimensions are listed in Table 6.1, where σd is the Boltzmann conductivity in
d-dimensional space.

The calculated functions β indicated in the penultimate row of the table are
rewritten in the unified form, βd = (d − 2)− Kd/Y in the last row. These func-
tions show the expected asymptotic behavior as Y → ∞ and deviate from it
downward at finite Y values, in accordance with the scaling hypothesis (Fig. 6.1).
Thus, everywhere where the calculation within the perturbation theory was
performed, the result obtained confirms the validity of the scaling hypothesis.

Note: The latter statement is not as indisputable as it may look at first glance. This
statement is based on the signs of quantum corrections to the conductivity (2.11) and,
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Table 6.1.

d = 1 d = 2 d = 3

σ σ1 +K1l − K1L σ2 − K2 lnL/l σ3 − K3/l +K3/L

y (�/e2)(σ1/L − K1) (�/e2)(σ2 − K2 lnL/l) (�/e2)(σ3L+K3)

β =
d ln y

d lnL
=

L

y

dy

dL

L

y

(
− �

e2

σ1

L2

)
=

−σ1

σ1 − K1L

1
y

dy

d lnL

�

e2
σ3

L

y
=

1
1 +K3/σ3L

βd −1− K1/Y 0− K2/Y 1− K3/Y

The constants K1, K2, and K3 have the dimensions [Ω−1]

in fact, signifies the following. Weak localization is the first step to strong localization
proper. However, the quantum correction is rather intricate and, in strong spin–orbit
interaction, weak localization changes to antilocalization. Then, how do we make the
scaling hypothesis consistent with the spin–orbit interactions? This problem is con-
sidered at the end of this chapter after revealing the circumstances under which this
consistency may be important.

Now, proceed to the third question – the consequences that follow from the
scaling hypothesis.

6.2. Three-dimensional (3D) systems

Consider a small trial cube with edge λ made of some material. If the point that
represents the conductance y of this cube on the scaling curve d = 3 lies in the
lower half-plane β < 0, then an increase of the cube edge to L > λ shifts this point
to the left. Increasing L, one may make the conductance infinitely low (Note: only
at T =0!). Then, the material is an insulator. If the point representing the con-
ductance obeys the inequality β(yλ) > 0, then an increase in L shifts this point
to the right, so that the cube conductance may be made infinitely high. Then,
the material is a metal. The intersection of the curve β3(y) with the axis β = 0
at the point yc signifies that the system undergoes a metal–insulator transition.

Now, approximate the 3D scaling curve β3(y) in the upper half-plane β > 0
by a broken line which consists of a segment originating at the point (ln yc, 0)
with the slope angle s = (dβ/d ln y)yc (it is usually assumed that s is of the order
of unity) and the horizontal half-line β = 1. The conductance value at the salient
point is denoted by yξ, and the corresponding value of L, by ξ (Fig. 6.1). Because
of the specific form of the function β, the segment is described by a differential
equation

d ln y

d lnL
= s ln

y

yc
. (6.6)

Its general solution has the form

ln
y

yc
=
(

L

λ

)s
ln

yλ

yc
. (6.7)
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Here λ plays the role of the initial conditions set at one point of the segment. At
y = yξ (salient point), we have

ln
(

yξ

yc

)
=

1
s
. (6.8)

It follows from eqn (6.7) that then the cube size is equal to

ξ = λ

(
s ln

yλ

yc

)−1/s

. (6.9)

With a further increase in the dimension L > ξ, the point under consideration
moves along the horizontal part of the curve (where conductivity exists) and
one can use eqn (6.1) for y. Since ξ is the minimum length at which the notion
of conductivity makes physical sense, it is called the correlation length. Finally,
substituting eqn (6.8) for yξ and L = ξ into eqn (6.1), we obtain

σ =
(

e2

�

)
yξ

ξ
=
(

e2

�

)
ln yc + 1/s

ξ
∼
(

e2

�

)
1
ξ
. (6.10)

The size λ of a trial cube cannot be infinitesimal. A reasonable minimum size
is equal to the electron wavelength λ ≈ 1/kF. If the conductance yλ of the trial
cube lies in the range yc < yλ < yξ, then the correlation length is ξ > lmin ≈ k−1

F
and σ < σMott.

If yλ is close to yc, then (ln yλ/yc) ≈ (yλ/yc)− 1. Assuming that s = 1, we
obtain from eqn (6.9) the following estimate

ξ � λ
yc

yλ − yc
. (6.11)

At yλ → yc, we have ξ → ∞. Then, eqn (6.10) indicates that the conductivity
tends to zero, σ → 0. Thus, it follows from the scaling hypothesis that the value of
the three-dimensional conductivity of a rather large sample may be infinitesimal,
and, thus, the metal–insulator transition is continuous.

Note: We needed a small trial cube only at the intermediate stage of our consideration.
The conclusions about conductivity σ and the nature of the transition are made for
macroscopic samples.

The curve β(y) is valuable because of its universality, which is important,
first and foremost, in the vicinity of a transition. The universality includes the
assumption that the curve βd(y) for different systems has the same slope s at the
intersection with the β = 0 axis. For noninteracting electrons, the 2 + ε model
yields the slope s = ε. If one assumes that the expansion d = 2 + ε may be used
up to a value ε = 1, then for three-dimensional systems, we have s = 1. The
s value characterizes the so-called universality class, which depends on the fact
whether the interactions change the symmetry properties of the Hamiltonian that
describes the system or not. In the last section of this chapter, we consider how
the universality may be broken by spin–orbit interactions (see below, Fig. 6.12).
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6.2.1. Critical vicinity of the transition

The experimental verification of the above statements requires the extrapolation
of conductance measured at finite temperatures to T = 0. Therefore, first of all,
one has to clarify the situation in the vicinity of the transition at T �= 0.

Consider the phase plane (x, T ) (Fig. 6.2). Let high x values correspond to
metal states, and low ones to insulator states. The phase transition is depicted
by an isolated point (x = xc, T = 0) on the x-axis. Let our sample be always
sufficiently large, L > l, ξ, so that we may always consider the conductivity σ to
exist. Along the abscissa (T = 0), the conductivity σ = 0 at x � xc and gradually
increases on the right of xc. There is one more peculiar point, x1, on the right
of xc at which

σ(x1, T = 0) = σMott =
e2

�
kF =

e2

�
l−1. (6.12)

According to eqn (6.10), in the range from xc to x1, the conductivity σ of large
samples of size L > l, ξ is expressed in terms of the correlation length ξ, whereas
for x > x1, the Drude formula is valid:

σ =
(

e2

�

)
×

⎧⎨⎩
0 x � xc,
1/ξ xc < x � x1,
(kFl)2/l x � x1.

(6.13)
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Fig. 6.2. Neighborhood of a metal–insulator transition in a 3D system on the
phase plane (x, T ), where x is the control parameter. Below the x-axis, the
scale of the reciprocal length is shown, which has zero value at the transition
point and positive values of the variable 1/ξ on both sides of the origin. In the
(1/ξ, T ) coordinates, both dashed curves on the diagram are cubic parabolas.
Between the (1/ξ)- and x-axes, the conductivity values σ(T = 0) are indicated.
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The latter two expressions for conductivity coincide at x = x1, where ξ = l and
kFl = 1.

Let us assume that the transition at xc is an Anderson–Mott transition.
When describing the conductivity at T =0, we used the scaling hypothesis for
noninteracting electrons and eqn (6.13). However, when analyzing the vicinity
of the transition at finite temperatures, we shall proceed from the quantum cor-
rections due to the interelectron interaction (Section 2.4). Consider the phase
plane (x, T ) in Fig. 6.2. On the left, deep in the region of an insulator with
the Coulomb gap, hopping conductivity takes place, whereas on the right, the
Boltzmann expression σ3 for the classical three-dimensional conductivity with
the quantum correction is valid:

σ = σ3 +
e2

�
L−1

ee , Lee =

√
�D

T
. (6.14)

The intermediate region in the vicinity of the point xc is called critical. The
interpolation formula for this region has the form

σ =
e2

�

(
1
ξ
+

1
Lee

)
, σ > 0. (6.15)

Equation (6.15) fits eqn (6.14) along the line x = x1 and yields the appropriate
values of conductivity for the segment xc < x � x1 at T = 0.

Now, move from right to left along the line T = const. At the far right, the
quantum correction is relatively small and electron diffusion proceeds because of
impurity scattering, described by the first term of eqn (6.14). Therefore, the dif-
fusion coefficient D that enters Lee is independent of temperature. However, as
soon as we enter the critical region, σ3 is transformed into (e2/�)ξ−1 and starts
rapidly decreasing. Under these conditions, D starts to vary: diffusion seems
to proceed at the same fluctuations of the electromagnetic field that determine
Lee and, therefore, becomes temperature-dependent. Then, we may write com-
bined equations for the functions σ(T ) and D(T ), the second equation being the
Einstein relation ⎧⎪⎪⎨⎪⎪⎩

σ =
e2

�

(
1
ξ
+

√
T

�D

)
,

σ = e2gFD .

(6.16)

Here gF is the density of states at the Fermi level.
Now, exclude D from these two equations and solve the remaining equation

with respect to σ(T ) using the assumption that we are sufficiently close to the
transition and that 1/ξ � 1/Lee. We obtain the temperature dependence of the
conductivity in the right part of the critical region, x > xc,

σ(T ) =
e2

�

(
1
ξ
+ (TgF)1/3

)
≡ α + βT 1/3. (6.17)
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At the transition point, ξ = ∞ and α = 0.

Note: The power 1/3 arises because the phase-breaking time τϕ was taken to be equal
to the dephasing time τee ∝ T −1. For different mechanisms of phase breaking with
τϕ ∝ T −ν , the temperature in eqn (6.17) would have power equal to ν/3.

The critical region should also exist on the left of the transition point. Natu-
rally, the power value in T 1/3 in the temperature dependence should remain
intact. However, the constant α in eqn (6.17) becomes negative. To estimate it
and establish the boundaries of the critical region, we plot along the abscissa in
Fig. 6.2 the value of 1/ξ > 0, assuming that 1/ξ ∝ |x−xc|. The right-hand bound-
ary of the critical region is determined by the constraint used in the derivation
of eqn (6.17): ξ=Lee. Since at sufficiently low temperatures, only the hopping
conductivity exists on the side of the insulator, the position of the left boundary
of the critical region may be determined from the comparison of the correlation ξ
and hopping r lengths, ξ= r. Using eqn (2.30) for Lee and eqn (4.18) for r with ξ
substituted for aB, one can readily show that, in the (1/ξ, T ) axes, both curves
limiting the critical region are cubic parabolas

T ∝ (gFξ3)−1. (6.18)

At the left boundary of the critical region, eqn (6.18), the critical conductivity
σcrit transforms into the much smaller hopping conductivity σhopp. Neglecting
the later, we may assume that at this boundary σcrit ≈ 0 and

α ≈ −βT 1/3 ≈
(

e2

�

)(
1
ξ

)
. (6.19)

Combining eqns (6.17) and (6.19), we get for the critical region

σcrit = α + βT 1/3, α =
(

e2

�

)
×
{

1/ξ x > xc
β =

(
e2

�

)
(gF)1/3.−1/ξ x < xc,

(6.20)

Note: One may pass from the state of a metal to the state of an insulator (both at
T = 0) avoiding the phase-transition point xc (dashed line in Fig. 6.3). However, in this
case, one has to intersect two cross-over lines, in the vicinity of which the dominating

T

s (0) ≠ 0

s (T ) =
s (0) + aT 1/2

Transition point

Critical
region

xx1xc

s ∝ exp [–(T/T0)m]

Fig. 6.3. The path from a metal state to an insulator state through the critical
region leaving aside the transition point.
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Fig. 6.4. Temperature dependence of conductivity in the vicinity of the metal–
insulator transition for a series of differently doped Ge :As samples (Shlimak
et al. 1996).

processes that determine conductivity alternate. At the concluding part of this path,
the conductivity decreases exponentially with lowering of the temperature.

To observe experimentally a metal–insulator transition, one has to appropri-
ately select the control parameter, measure the temperature dependence of the
conductivity at different values of the selected parameter, construct this depend-
ence in the straightening axes (T 1/3, σ) and, being certain that the dependence
has the form of straight lines, extrapolate it to T =0 to obtain σ(x, 0). The transi-
tion should manifest itself in the values of the function σ(x, 0) in the vicinity
of x = xc.

The most natural control parameter is the carrier concentration n determined
by the number of impurities in a sample. Each experimental curve in Fig. 6.4
corresponds to the measurements made along vertical lines on the diagrams
shown in Figs 6.2 and 6.3. According to the experimental data extrapolated to
T = 0, the critical concentration of As in Ge :As equals nc = 3.5 · 1017 cm−3. At
concentrations n > nc, extrapolation yields positive σ(0) values. The arrow at
the lowest curve σ(T ) indicates the temperature at which the cross-over happens
from the critical region to the region of hopping conductivity in the sample with
the concentration n = 3.0 · 1017 cm−3. The hopping conductivity has a much
lower value than the conductivity in the critical region and, on the scale used in
Fig. 6.4, is almost indistinguishable, so that the dependence σ(T ) seems to rest
against the abscissa. This has been used above in writing eqn (6.19).

As is seen from Fig. 6.4, the series of the σ(T ) curves for a Ge :As sample
reveals one more remarkable impurity concentration, n = 4.45 · 1017 cm−3, at
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which the low-temperature derivative dσ/dT changes sign. It is natural to believe
that it is the value of the control parameter x1 = n1 at which eqn (6.12) is valid,
because at this concentration, the temperature-dependent classical and quantum
corrections to conductivity, having opposite signs, compensate one another. The
Drude description of conductivity becomes invalid and the critical region is
attained (see also eqn 6.13). In fact, knowledge of n1 signifies knowledge of
σMott ≡ σ(n1) � 20Ω−1 cm−3, so that it becomes possible to indicate the con-
crete values of the variables at the abstract diagram shown in Fig. 6.2. These
are the values of the n1/nc ratio and the proportionality coefficient between 1/σ
and ξ in the concentration range nc < n < n1. It also becomes possible to write
the conductivity in the reduced units σ/σMott.

The Ge :As sample with concentration n = 4.6 · 1017 cm−3 is located deep
in the metal region (Fig. 6.4). However, this sample may be transformed into
an insulator by applying a magnetic field which, in this case, plays the role of
a control parameter. It is seen from Fig. 6.5, that 5T is the critical value of
the field. In stronger fields (7 and 8T), the experimental points at the lowest
temperatures deviate from straight lines. This is caused by the proximity to the
region of hopping conductivity – see Fig. 6.2 (in Fig. 6.4, the similar salient point
at n = 3 · 1017 cm−3 looks like a kink).

On many occasions, the accuracy of conductivity measurements and the range
of temperature variations are insufficient for the unique determination of the
functional dependence T 1/3. Sometimes, in order to straighten the curves in
the course of processing of the experimental data, one uses not T 1/3 but T 1/2,
thus continuing using the power that determines the quantum correction in the
Boltzmann region at ∆σ � σ(0) up to the transition point. This alternative
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Fig. 6.5. Temperature dependence of conductivity of a Ge :As sample in
different magnetic fields (Shlimak et al. 1997).



114 6. SCALING HYPOTHESIS

procedure leaves the value of the control parameter at the transition point almost
intact.

Above, we have described the evolution of the transport properties in the vicin-
ity of a metal–insulator transition which corresponds to the description based
on the scaling hypothesis. However, this evolution gives no information on the
wave functions and the mechanism of conductivity. Now, return to the segment
(xc, x1) of the abscissa T = 0 in Fig. 6.2. Formally, the electrons are delocalized,
but since σ < σMott, their wave functions are not conventional Bloch waves. It
seems that the wave functions have a structure such that the electrons propag-
ate only in the fractal part of the space with dimensionality df(x) < 3. Then, at
the point x1, where for certain d = 3, the symmetry of the wave functions of the
ground state would changed, which is the necessary condition for the occurrence
of a phase transition. It is usually assumed that no phase transition takes place
at the point x1. However, the final solution to this problem can be obtained only
after the conductivity mechanism in the range (xc, x1) becomes clear.

6.3. Two-dimensional (2D) systems

The curve d = 2 in Fig. 6.1 lies in the region of negative β values. No matter
what material is used for preparing a 2D film, a gradual increase of its size
L should lower the conductance value, so that the conductance becomes expo-
nentially low and, in the limit L → ∞ and T → 0, would go to zero. In other
words, at a sufficiently low temperature, any sufficiently large film is an insu-
lator. At first glance, this consequence of the scaling hypothesis contradicts the
indubitable fact of the existence of metal films. However, this contradiction is not
fatal. Since the 2D concentration n2 ∝ k2

F, and the Boltzmann 2D conductivity
σ2 = n2e

2l/�kF ≈ (e2/�)(kFl), the conductivity of a 2D system with due regard
for one of the quantum corrections (2.11) or (2.37) has the form

σ = σ2 − e2

�
lnLϕ/l ≈ e2

�
(kFl − lnLϕ/l). (6.21)

The above expression is valid only while the correction is relatively small.
However, the tendency of the conductivity to decrease with lowering of the tem-
perature remains further anyway. Therefore, eqn (6.21) may be used to estimate
parameters at which the state changes considerably. By equating the conductiv-
ity (6.21) to zero, a specific Lϕ value called the localization length and denoted
by the letter ξ is determined:

ξ ≈ l exp(kFl). (6.22)

It is important that the length ξ thus defined depends only on the electron
concentration (via kF) and disorder (via l). Now, assume that the phase break-
ing takes place as a result of the electron–electron collisions occurring with
frequency τ−1

ϕ ≡ τ−1
e = T/(εFτ) under the diffusion conditions (see eqn 2.33).

Then, Lϕ = (DεFτ/T )1/2, and we arrive at the estimate of the temperature Tcr
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at which Lϕ = ξ,

Tcr =
DεFτ

ξ2 ≈ εF exp(−2kFl). (6.23)

Note: If the frequency τ−1
ϕ is controlled by another scattering process so that τ−1

ϕ ∝ T ν ,
then the exponent in eqn (6.23) equals not 2 but 2/ν. This does not considerably
influence the further considerations. If the quantum correction to eqn (6.21) is due to the
interelectron interference and not to the weak localization, so that τ−1

ϕ ≡ τ−1
ee = T/�,

then we arrive at the result given by eqn (6.23) with the only difference of the factor
�/τ instead of εF in the pre-exponent.

The cross-over from the logarithmic to exponential decrease in conductivity
takes place in the region of the temperatures close to that given by eqn (6.23).
However, even at a relatively low “metallic” value of the parameter kFl > 5–10,
this temperature becomes unrealistically low, so that, in fact, no localization
takes place. Moreover, the cross-over may not come into being because of the
finite sample dimensions L. Even after the sample has cooled to the temperature
Tcr, no cross-over would be observed if L < ξ. The cross-over line is shown in
Fig. 6.6, where, based on eqn (6.22), the 1/ξ value is plotted along the abscissa
and indicates a quantitative measure of disorder.

Thus, the length ξ determined by eqn (6.22) is the localization radius at
which the given disorder in a two-dimensional system localizes carriers at T = 0.
In “metallic” films, l 	 k−1

F , and the length ξ is exponentially large, so that loc-
alization takes place only hypothetically. To observe such localization one needs
unrealistically large samples with L 	 ξ and unrealistically low temperatures,
eqn (6.23). With an enhancement of disorder and a decrease in the parameter
kFl, the limitation for L from below subsides, whereas the temperature given by

Cross-over
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disorder

T

T
∝

 (1
/j

)2

1
L

s2– − lne2

h
Lw(T )

l

s0 exp[− (T0 / T )n]

1
j

Fig. 6.6. Cross-over from the logarithmic to exponential temperature depend-
ence of conductivity in two-dimensional systems.
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eqn (6.23) increases. At kFl � 1, both parameters acquire realistic values. It is
for this region that the scaling hypothesis predicts for a 2D system with fixed
disorder the cross-over from weak to strong localization with lowering of the
temperature instead of a metal–insulator transition.

The above considerations are illustrated by experiments on various 2D
systems. These systems may be either specially prepared planar interfaces
between two media along which a two-dimensional electron well is formed
(heterostructures, inversion layers) or, else, thin films.

In the GaAs–AlxGa1−xAs heterostructure, the concentration of 2D elec-
trons can be varied with the aid of a gate. In Van Keuls et al. (1997), the
whole spectrum of concentrations was obtained on one sample by varying the
applied electric field. As is seen from Fig. 6.7, the function ρ(T ) obviously has
the activation character at the concentration n ≈ 0.6 · 1011 cm−2, whereas at
n ≈ 6 · 1011 cm−2 it shows only a weak logarithmic increase in ρ with lowering
of T . Although the possibilities for detailed comparison were rather limited in
this experiment, the qualitative result obtained was just that which could be
expected from the scaling hypothesis.

A more detailed comparison was made for Cu, Ag, and Au films with the
thicknesses b ranging from 0.3 to 2.0 nm (Hsu et al. 1995).

Note: The dimensionality of the electron system in a given sample is determined by
comparing the sample thickness b with the inelastic length Lϕ. Therefore, the films
in the experiments (Hsu et al. 1995) were really two-dimensional. At sufficiently low
temperatures, much thicker films may also become two-dimensional objects.

0 0.5 1.0 1.5 2.0
T (K)

106

10−2

104

102

1

r
(h

/e
2 )

GaAs–AlxGa1−xAs

Fig. 6.7. Evolution of the temperature dependence of 2D-gas resistance in a
heterojunction with a change of the two-dimensional electron density from
n ≈ 0.6 · 1011 cm−2 (the upper curve) to n ≈ 6 · 1011 cm−2 (the lower curve)
(Van Keuls et al. 1997).
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Fig. 6.8. (a) Temperature dependence of conductance, ln y/y00, for films of dif-
ferent metals with different thicknesses; the parameter T0 = 1K (right-hand
curves). The same data are also shown with T0 as a free parameter. The hori-
zontal parallel translations bring all the data to one universal curve ỹ. (b) The
asymptotic behavior of the curve ỹ at high ln y/y00 values indicates the log-
arithmic dependence typical of weak localization. (c) At low ln y/y00 values,
the curve ỹ describes the activation Arrhenius law (Hsu et al. 1995).

The measurements performed on films of the three metals were used to draw
a series of curves shown in the right-hand part of Fig. 6.8a. Initially, these curves
were drawn by selecting T0 equal to 1K and y00 equal to y00 =(2π)−1(e2/�).
With fixed y/y00 ratio, the authors managed to fit all the experimental points
to one curve by making T0 a free parameter, different for different experimental
curves. For the given x-scale in Fig. 6.8a, this signifies parallel translation along
the horizontal axis for a distance of − lnT0. Although the measurements on each
sample fit only a small segment of the summary curve, this curve encompasses
more than three orders of magnitude with respect to T/T0 and has both weak
localization (the curve part ln y/y00 > 0, Fig. 6.8b) and activation (ln y/y00 < −2,
Fig. 6.8c) portions.

In the activation portion (the region of strong localization), the the-
ory of hopping conductivity admits different exponents in the expression
for y ∝ exp[−(T0/T )ν ]. According to Fig. 6.8c, the experimental temperature
dependence y(T ) has the power ν = 1, which indicates the existence of a rigid
gap of width T0.
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Fig. 6.9. Temperature dependence of resistance of a strip of width 0.05 µm
from δ-doped GaAs (Havin et al. 1998).

Compare: Ultrathin Be films have ν = 1/2 (Fig. 4.7 in Chapter 4) and the Coulomb
gap (Fig. 3.10 in Chapter 3 and Fig. B.5 in Appendix B). The materials preserve their
individuality even in the form of ultrathin films.

There also exists the observation of the cross-over from weak to strong loc-
alization on one sample (Havin et al. 1998). Figure 6.9 shows the resistivity
measured on a δ-doped GaAs : Si sample having a quasi-one-dimensional con-
figuration (long strip of width 500 Å) in the range from room temperature to
0.2K (more than three orders of magnitude). The 2D-carrier concentration is
determined by the initial doping in the δ-layer and cannot be varied during the
experiment. Similar to the case of thin metal films, here the “one sample–one
concentration” principle is obeyed. The measurements made below 1K fit the
activation dependence R ∝ exp(T0/T ) with T0 � 2.6K, and above 4K, the R(T )
curve is described by the formulas of the theory of weak localization. It is unclear
to what extent the quasi-one-dimensional nature of the sample is important.
Possibly, the geometric ratio used was especially favorable for increasing the
temperature range of the measurements. In any case, the linear dependence of
resistivity on lnT at temperatures above T0 is characteristic of two-dimensional
samples.

The harmony between the scaling hypothesis and the experimental results
was broken by the experimental data on the inversion layers in silicon, where the
concentration was controlled by the voltage applied to the gate (Kravchenko et al.
1995). An increase of the 2D concentration of carriers, n2, in a 2D layer of the
samples with extremely high carrier mobility changes the sign of the derivative
∂ρ/∂T so that at n2 � 1.4 · 1011 cm−2, the resistivity decreases several times with



6.3. TWO-DIMENSIONAL SYSTEMS 119

0 2 4 6 8
T (K)

r
(h

/e
2 )

103

102

1

10−1

10

n [1010 cm–2] = 7.12

...
...

.

13.7

Si

Fig. 6.10. Temperature dependence of resistance of the inversion layer on a
Si surface at different carrier densities in the layer (Kravchenko et al. 1995).

lowering of the temperature from 4K to several dozens of millikelvins (Fig. 6.10).
This behavior is opposite to the behavior of a GaAs/AlxGa1−xAs heterostructure
in Fig. 6.7 and is inconsistent with the scaling hypothesis.

The interpretation of the evolution of the derivative ∂ρ/∂T as a function of
the concentration in an inversion silicon layer is the subject of numerous dis-
cussions. It is always possible to believe that the experimental temperature was
not low enough. However, at present, it seems to be probable that, at a certain
intermediate concentration at which the low-temperature derivative ∂ρ/∂T � 0
at the attained temperatures, a metal–insulator transition takes place at T = 0.
This may signify the existence of interactions in the electron system, which may
considerably affect the wave functions of the ground state at least on one side of
the transition. One example is well known: the superconducting interaction in
the 2D electron system changes the behavior described by the scaling hypothesis
and may give rise to a quantum superconductor–insulator transition. A classical
illustration of the latter transition is presented in Fig. 6.11 which shows R(T )
curves from several amorphous Bi films with different thickness (Haviland et al.
1989).

Although the patterns in Figs 6.10 and 6.11 are qualitatively similar, the
behavior of silicon cannot be interpreted as superconductivity. Superconductivity
is low sensitive to scattering, whereas, in silicon, the positive derivative ∂ρ/∂T
at high n values is observed only on samples with high mobility. Therefore, these
experiments give rise to new questions rather than to answers. What factor
is responsible for a positive ∂ρ/∂T derivative? How would the σ(T ) ≡ ρ−1(T )
function behave with a further lowering of the temperature, i.e., what is the real
σ(n, T = 0) function, etc.
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Fig. 6.11. Superconductor–insulator transition in amorphous Bi films of differ-
ent thickness deposited onto 5 Å-thick amorphous Ge film on a SiO2 substrate
(Haviland et al. 1989). Here R is 2D-resistivity.

Note: Up to now, all these questions form a vicious circle. To decide whether a metal–
insulator transition really takes place or not, one has to know the function σ(n, 0),
which requires the appropriate extrapolation of σ(T ) to σ(0). This, in turn, requires
a clear understanding of the nature of the temperature dependence σ(T ), i.e., singling
out of the essential interactions, and the a priori knowledge of whether a transition
really takes place or not.

6.4. Scaling and spin–orbit interaction

The existence of the spin–orbit interaction and related antilocalization makes
the question of the universality of the β(ln y) curves in Fig. 6.1 more com-
plicated. The interaction changes the sign of the quantum correction and,
according to Table 6.1 at the beginning of this chapter, also changes the sign
of the derivative in the right-hand part of the β(ln y) curves. This is especially
important in the case d = 2, in the range where the curve β2(ln y) approaches
the line β=0. Allowance for the spin–orbit interaction makes the statement
that two-dimensional systems have no metal–insulator transition somewhat
dubious.
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Fig. 6.12. Two variants of the β(ln y) curve (d = 2) from Fig. 6.1.

In the two-dimensional case, the quantum correction (2.25) has the form

∆σ2 ≈ −
(

e2

�

)∫ τϕ

τ

dt

t

(
3
2

e−t/τso − 1
2

)
. (6.24)

Since we consider conductivity at T = 0, we seemingly may take τϕ = ∞ as
the upper limit of integral (6.24). At the same time, the τso value remains
finite, because the probability of spin flip in elastic scattering is independent
of temperature. The factor

3
2

e−t/τso − 1
2
,

in the parentheses in the integrand in (6.24) in the region t > τso is of the order
of −1

2 . This makes the integral diverge at high t values and makes it negative, and
the quantum correction to conductivity, positive. The β(ln y) curve acquires a
maximum in the upper half-plane β > 0 and also the critical point yc. In Fig. 6.12,
this curve is shown by the dashed line. The solid line shows the curve constructed
without allowance for spin–orbit interaction under the assumption that τso = ∞.

However, one should be very careful with directing T → 0, i.e., with substitu-
tion τϕ → ∞ in the upper limit of integral (6.24). This is seen from the following
considerations.

Let the classical conductance of a sample be y0. Calculate the quantum cor-
rection to the conductivity by gradually increasing the upper limit τ∗ in integral
(6.24) beginning with τ . This signifies that we start with the allowance for inter-
ference at the smallest diffusion loops and then gradually take into account also
the loops with an increasing number of kinks. Until τ∗ < τso, the absolute value
of the correction to conductivity increases, but remains negative. Therefore, we
move along the lower (solid) curve toward lower ln y values. When τ∗ reaches
τso, antilocalization comes into being, and the representative point would jump
to the upper (dashed) curve. The problem reduces to the prediction of the point
when this jump will take place. The more pronounced the spin–orbit interaction,
the lower the τso value and the earlier the jump takes place in the motion from
right to left. The jump at the point y1 > yc indicates that with an increase in the
film size, the representative point starts moving along the dashed curve to the
right, the conductance increases, so that the film remains in the metal state.
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The jump at the point y2 < yc indicates that the representative point remains
in the lower half-plane and continues moving to the left toward the state of an
insulator.

To evaluate the critical value of τso, we note that the critical point is located
on the dashed curve approximately at the same y value as the cross-over from
the logarithmic to exponential dependence of conductance on temperature on
the solid curve defined by eqn (6.23). Using eqn (6.21) and eqn (2.7) for Lϕ, we
obtain the estimate of τ∗

so which brings the point y1 to the critical value yc:

kFl = 1
2 ln τ∗

so/τ, τ∗
so = τe2kFl. (6.25)

In order to move to the right after the jump, i.e., to obtain a two-dimensional
metal state, it is necessary that the inequalities τso � τ∗

so are fulfilled. Since by
definition, τso > τ , then an admissible range of τso values is

τ � τso � τ exp(2kFl) . (6.26)

In strongly disordered films, these inequalities cannot be fulfilled, because
kFl ∼ 1. In such films, the spin–orbit interaction produces practically no
considerable changes.

In films with kFl 	 1, the problem is academic, because the cross-over
temperature Tcr defined in eqn (6.23) is unrealistically low. However, in principle,
a well-conducting film with a considerable kFl value may remain metallic at the
absolute zero of temperature because of the spin–orbit interaction.
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7

CHEMICAL LOCALIZATION

The band theory of metals with its concept of energy-band overlap describes
rather than explains the metallic properties of matter. The fundamental reason
for the existence of the metallic state is that in an isolated metal atom the
valence electrons occupy energy levels close to the upper edge of the potential
well, so that in the condensed state any perturbation introduced by neighboring
metal atoms leads to delocalization of the valence electrons. From this viewpoint,
the grouping of chemical elements into metals and metalloids is caused by the
structure of the atoms; metals are in the lower left corner of the Periodic Table,
and the boundary between metals and metalloids, which is a diagonal of the
Periodic Table, is blurred and extremely conventional.

In metals, valence electrons are itinerant and their concentration n is at
least no lower then the concentration of atoms, n ∼ a−3 where a is the mean
interatomic distance. Electron concentration in alloys is of the same order. At
the beginning of Chapter 1, materials with such a concentration of itinerant elec-
trons were called standard metals. Along with this definition, the question was
brought up whether a metal–insulator transition was possible in a material with
high electron density (see Section 1.4 and Fig. 1.8 in Chapter 1 and Fig. 5.17
in Chapter 5). It followed from the experimental data presented in Chapter 1
that increase of neither static nor dynamic disorder can lead to a metal–insulator
transition. By introducing extreme disorder of any kind into the alloy we only
bring it closer to the brink of localization. For a transition to occur, a frac-
tion of the metal atoms must be replaced by metalloid atoms, which drives the
concentration n of the itinerant electrons down to below of nmax.

Imputing of metalloid atoms can prove to be twice as effective in the sense
that the concentration of metal atoms does not always uniquely determine the
concentration n of the delocalized or potentially delocalizable electrons. If the
metal and metalloid atoms can form stable chemical molecules, metal electrons
enter the chemical bonds: from the shallow potential well of a metal atom they go
to a much deeper potential well of the molecule and, therefore, remain localized,
notwithstanding the surroundings of the molecule. Hence the effective electron
concentration n, which affects the position of the material on the metal–insulator
phase diagram, decreases even more due to the emergence of chemical bonds.

Bearing in mind the tying-up of a fraction of the valence electrons into chem-
ical bonds, we can formulate the following question: Is there a way to build deep
potential wells using only metal atoms, which would transform a material in
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which there are no metalloid atoms into an insulator in spite of the electron con-
centration of a standard metal? The experimental data discussed in the present
chapter show that this is possible.

7.1. Intermetallic compounds in two-component melts

Experimental details may be found in the reviews by Hensel (1979) and van der
Lugt and Geerstma (1987).

It has been known for a long time that the resistivity of a liquid melt of two
very good metals may change severalfold, even by a factor of 10, depending on
the relative concentration of the two components, and reach its maximum at a
certain rational ratio of the atomic concentrations, such as 1 : 1 or 1 : 3 or 1 : 4.
To get such data one needs to measure the resistivity at a fixed temperature as
a function of the alloy component concentration. As an example, we outline here
the experimental setup which was used for measurements of the Na–Pb system
(Fig. 7.1).

Electrically
insulating
tube

Ball
valves

To gas
system

1 2

L1

L2

L3

L4
3

Liquid
component A

Liquid
component B

Fig. 7.1. Electrical resistivity cell for measurements of two-component melts
as a function of alloy component concentration (Calaway and Saboungi
1983). 1, 2 and 3 – thermocouples, L1 and L2 – cooper leads for resistivity
measurements in the left branch, L3 and L4 – the same for the right branch.
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The resistivity measurements were performed using a four-probe technique
independently in two branches of a U-shaped tube made of low-carbon steel
with outer diameter 3 mm and wall thickness 0.4 mm and filled by the melted
alloy. Four cooper leads were attached to the outer side of each branch of the
tube. The resistance of the empty tube as a function of temperature was determ-
ined first; this was used to introduce amendments later. Both sides of the tube
were connected to two tubes of larger diameter which served as reservoirs. By
pressurizing one reservoir with high-purity helium in order to drive all the alloy
to the other side, the mixing of the alloy was achieved. The mixing was repeated
until the resistivity measurements on both sides of the tube confirmed that a
homogeneous alloy composition has been reached. The final measurements were
done after the gas pressure and the melt levels in both branches of the tube were
equalized. Then successive addition of a component was made and the whole
procedure was repeated.

Figure 7.2 shows the results of measurements of the resistivity of Na–Pb melts
at 725 ◦C. Clearly, the concentration ratio Na : Pb∼ 4 : 1 is marked out. An addi-
tion of 20% of lead increases the resistivity compared to that of pure Na by
a factor of about 20. Here the peak value of resistivity is of the order of the
maximum possible value ρ∗ of a standard metal,

ρ∗ ≈ �

e2 n−1/3 ≈ (200–300)µΩ · cm (7.1)

20 40 60 80 PbNa

400

300

200

100

0

r
(m

V
⋅c

m
)

at.%

725 oC

Fig. 7.2. Resistivity of melts of the Na–Pb system at 725 ◦C. The peak value is
reached at a lead concentration CPb = 20%, where stable PbNa4 configurations
emerge (Calaway and Saboungi 1983).
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Fig. 7.3. Resistivity of melts of the Rb–Pb system at different temperatures
(Calaway and Saboungi 1983). The peak value is reached at lead concentration
CPb = 50%.

(see eqns 1.5 and 1.6 in Chapter 1). The Li–Pb system behaves in a similar
manner.

Replacing Li and Na with a heavier alkali metal, K, Rn, or Cs, changes the
resistivity vs. concentration diagram significantly. For example, Fig. 7.3 shows
the diagram for the Rb–Pb system. The peak has shifted to another rational
ratio of the component concentrations Rb : Pb ∼ 1 : 1, while the peak value of the
resistivity increased severalfold. Now this value exceeds the maximum resistivity
of a standard metal, eqns (1.4) and (1.6), by a factor of 10. The resistivity peak
is rather narrow: a small deviation from the ratio 1 : 1 results in a slump of
the resistivity. The survey diagrams in Fig. 7.4 show that melts of alkali metals
with another tetravalent metal, tin, behave in the same manner. The highest
resistivity values are realized in Cs-based melts.

The high values of resistivity mean that near the respective concentration
ratios the melt ceases to be a standard metal in the sense that a fraction of
carriers in it are bound in some manner and the remaining effective concentra-
tion is neff � 4 · 1022cm−3 (cf. 1.4). Indeed, for the Rb–Pb system, the value
ρ ≈ 2200µΩ · cm is 10 times greater than the maximum value for a stand-
ard metal, ρ∗ ≈ (200–400)µΩ · cm. According to eqn (1.5), this implies that the
number of free carriers in the melt is no greater than 10−2–10−3 of the ordinary
number of carriers in a standard metal.

From the rational component-concentration ratios it follows that the increase
in resistivity is due to formation of complexes within which most electrons turn
out to be traped. The position of the peak in resistivity in Li- and Na-based
melts points to the existence of Na4Pb and Li4Pb compounds in the melts. The
five atoms comprising such a compound have eight electrons in their valence
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Fig. 7.4. Survey diagrams of the resistivity vs. concentration for A–B melts
(A = Pb, Sn, B is an alkali metal) (Xu et al. 1992). The resistivity of alloys
with Li and the Pb–Na alloy is a maximum at CA =20%; the resistivity of the
Sn–Na alloy has two maxima at CSn ≈ 25% and 45%; the rest have a resistivity
maximum at CA = 50%.
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Fig. 7.5. (a) Ionic configurations consisting of Pb and Sn atoms and atoms of a
light alkali metal Li or Na; (b) the same with a heavy alkali metal K, Rb, or Cs.

shells. Apparently, they form a single stable outer shell of the Pb4− ion, while
four alkali ions held together by Coulomb forces surround that ion. The four ions
form a barrier thanks to which the eight electrons in the outer shell of Pb are
kept within this electrically neutral atomic configuration and do not participate
in conduction (Fig. 7.5a).
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An increase in the size of the alkali atoms leads to a qualitative change of
the forming compounds, with the ability of these compounds to act as electron
traps gaining in strength. Such structures are well known and are called Zintl
structural units (named after the German chemist who in the 1930s discovered
the rule of formation of ionic configurations). If an electron goes from an alkali
atom to the lead atom, the Pb1− ion will have five electrons in the outer shell, the
same as in the P or As atoms. As is well known, these two elements form, in the
gaseous phase, tetrahedral molecules P4 or As4. Here there are eight electrons
near each atom: five electrons belonging to the atom proper and one electron
from the covalent bonds with each of the three neighbors in the tetrahedron.
Pb1− ions also form such tetrahedra, and the total electric charge −4e of such
a tetrahedron is balanced by the electric charge of the four alkali-metal ions
surrounding it. Sn1− ions form similar tetrahedra (Sn4)4− surrounded by four
alkali ions. It is the structural unit

A4B4, A = Pb,Sn, B = K,Pb,Cs (7.2)

that is the configuration within which 20 valent electrons are locked (Fig. 7.5b).
Binary melts consisting of alkali metals and some other metals behave in a

similar manner. The absolute champion when it comes to forming high-resistive
melt is the melt of two superb metals, the alkali metal Cs and the noble metal
Au in equal concentrations. As Fig. 7.6 shows, the formation of compounds in
the melt reduces the conductivity by a factor of 10 000. Here the conductivity is
comparable to that of salt melts (3Ω−1 · cm−1 for CsAu and 1Ω−1 · cm−1 for the
CsCl salt melt).
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Fig. 7.6. Conductivity of melts of the Cs–Au system at 600 ◦C (Hoshino et al.
1975; Hensel 1979).
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It is quantum chemistry together with chemical thermodynamics that study
where, when, which and how many Zintl structural units appear in a metallic
melt and what are the bond energies of these configurations. Naturally, the melts
exist at high temperature, so that the curves in Figs 7.3 or 7.6 cannot be accep-
ted as demonstration of the metal–insulator transition we are studying here. For
these materials to become objects related to the theory of metal–insulator trans-
itions, they should be quenched into the glass state. Then the low-temperature
transport measurements would probably give quantitative characteristics of these
traps. However, such experiments apparently are not still done.

In the language of physics, Zintl structural units may be called deep wells of
the random potential which trap the electrons in alloys with stoichiometric com-
position and thus localize them (the potential is random because the positions
of Zintl units are assumed to be random in the melt). This legalizes applying
the concepts and ideas from the theory of the metal–insulator transition to this
phenomenon. Since initially all Zintl traps are identical, the most appropriate
concept seems to be the model with structural disorder (see Section 5.5) with
the potential

V (r) =
∑
Ri

v(r − Ri), (7.3)

where the set of vectors Ri is random and v(r) is the potential of a separate
Zintl unit. At low concentration n of the units,

aBn1/3 � 1, (7.4)

this model describes an insulator: each electron is localized in its own well
v(r − Ri) and its wave function fades outside the well at distance aB.

Compare: The same potential (7.3) was treated in Chapter 1 as one producing only
scattering in elemental liquid metals because the inequality opposite to eqn (7.4) was
assumed to be valid there and the electrons were a priori supposed to be itinerant.

Each configuration A4B4 from eqn (7.2) is an almost spherical well for the
4·4 + 4 = 20 valence electrons located inside it on a sequence of energy levels.
The decay length aB which enters eqn (7.4) actually refers to the uppermost
occupied level. The electrons on deeper levels do not leave the well. This reduces
by a factor of 10 the concentration of electrons that can become itinerant and
facilitates the metal–insulator transition.

This model allows us to explain qualitatively the temperature dependence of
the conductivity of CsAu which is presented in Fig. 7.7. In the liquid state, the
conductivity of the melt is controlled by the number of excited carriers; above the
melting-point, the conductivity rises along with temperature. The crystallization
creates clusters of resonance wells which all have identical and identically located
neighbors. The randomness in the location of the wells is partially retained only
to the extent to which the alloy is nonstoichiometric and due to the presence of
crystal defects and intercrystalline boundaries. The result of the increase in the
number of resonant wells is partial delocalization and a tenfold increase in the
conductivity of the crystal compared to that of the melt.
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Fig. 7.7. Temperature dependence of the conductivity of the Cs–Au alloy with
51% of Au in the liquid and solid states (Schmutzler et al. 1976; Hensel 1979).

However, note: as Fig. 7.7 clearly shows, the conductivity of crystalline CsAu is
still about 50 times lower than the minimum conductivity 1/ρ∗ of a standard metal
(eqn 1.6). It remains unclear to what extent and how the conductivity depends on
deviations from stoichiometry, the number of defects, temperature, and other factors.

7.2. Quasicrystals

For a comprehensive discussion of different aspects of physics of quasicrystals,
see, for instance, Stadnik (1999).

Introducing translational symmetry is not the only way to establish long-range
correlations on the set of vectors Ri from the model with structural disorder,
eqn (7.3). Another way is to introduce the quasicrystalline long-range order.

Translational symmetry, always present in crystals, allows for the existence
of axes of 2-, 3-, 4-, and 6-fold symmetry only. At the same time, it is easy to
imagine that of all possible local configurations of a small number of atoms of the
chemical elements A, B, and C, i.e. AnBmCp, the configuration with the lowest
energy has a different symmetry axis, say the axis of 5-fold symmetry. Formation
of a crystal from a material with the composition AnBmCp then becomes a
problem. Sometimes optimal local symmetry is sacrificed, so that a crystal with
a different configuration of the nearest neighbors is formed, with the loss in
local configurations energy balanced by gain caused by translational symmetry.
There is, however, another possibility. Let us arrange optimal configurations of
n+m+ p atoms at the sites of a crystal lattice, say, a body-centered cube, as in
Fig. 7.8. Then the loss in energy emerges caused by mismatch and distortions in
the places where these configurations meet, where the short-range order is sure
to be non-optimal. Nevertheless, some substances have such crystal structures.
They are called crystal approximants or crystal prototypes of quasicrystals.

It occurs, however, that we can do entirely without translational symmetry
by densely packing the space with optimal configurations. That this is possible,
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Fig. 7.8. Crystal packing of Mackey icosahedra, closely resembling body-
centered cubic packing, in the crystal alloy α(AlMnSi), a quasicrystal approx-
imant (Goldman and Kelton 1993). Each icosahedron consists of more than
50 atoms.

at least theoretically, is demonstrated by the Penrose tiling in the lower part of
Fig. 7.9; the plane is covered perfectly (i.e. without gaps and overlaps) by rhombic
tiles of two types, with the acute angles equaling 2π/5 and π/5. Single tiles are
depicted in the upper left corner of the same figure. Since the rhombuses adjoin
each other at preassigned vertices, the correctly specified functions F (r) on the
rhombuses remain continuous at the junctions and form a continuous aperiodic
function whose separate segments are repeated in the plane an infinite number of
times. In the upper right corner of Fig. 7.9 the set of vertices of the rhombuses
are depicted to the scale 1 : 2. Since there is no translational symmetry, it is
rather difficult to notice any correlations in this arrangement. However, there is
long-range order in this system: the rhombic tiles are arranged on the plane in
a well-distinguishable pattern (although the pattern is not unique).

Quasicrystals are built according to the same principles. Optimal configura-
tions with high-order symmetry axes and with matching configuration-spacers in
between, that minimize energy losses at the junctions, form a net which resembles
Penrose tiling. The resulting arrangement has no translational symmetry but
has long-range order. Many families of such materials are known today. Most of
them are metal alloys in the sense that they consist only of metal atoms: Al–Mn,
Ga–Mg–Zn, Al–Cu–Fe, Al–Pd–Re, etc. Here the local base configurations may
be extremely complex. For instance, in quasicrystals with the Al–Pd–Mn com-
position one of the local base configurations consists of three sells inserted into
each other; altogether there are 51 atoms in this configuration (Fig. 7.10).

Basically, quasicrystals are identified and studied by the X-ray diffraction
method. The Fourier transform of the density �(r) in a perfect crystal is a sum
of an infinite number of narrow peaks (ideally, δ-functions):

�(r) =
∑

q

�q exp(iqr). (7.5)



132 7. CHEMICAL LOCALIZATION

1

2
3

4

a

a1a2

Fig. 7.9. Penrose tiling. Below: tiling a plane without gaps or overlaps by two
types of rhombic tiles depicted in the upper left corner of the figure, rhombuses
with equal sides a and acute angles 2π/5 and π/5, respectively (the vertices
marked by open circles adjoin each other in the tiling). Upper right corner: the
set of rhombus vertices of the tiling depicted in the lower part of the figure to
the scale 1 : 2. Although each of the sites 1, 2, 3, and 4 has its nearest neighbors
only at a distance a, the quality of these neighbors differ considerably (see the
main text). The dotted ellipses mark a resonant pair of closely located sites
and a compact triplet of sites.

9 at. 12 at. 30 at. 51 at.

Fig. 7.10. A sequence of atom shells in a Mackey pseudoicosahedron, which
is the base element of the structure of the Al–Pd–Mn quasicrystal; the total
number of atoms is 51 (Janot 1996).

The set of vectors q form a lattice in q-space with the same symmetry as the
initial lattice of atoms. To each site of this reciprocal lattice there corresponds
a Bragg reflection in the Laue diffraction pattern. The more perfect the crystal
the shaper the reflections.

Bragg reflections are not an exceptional property of crystals. For the right
part of eqn (7.5), we can initially select a series of δ-functions δ(q) in which the
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set of vectors q does not possess translational symmetry. By an inverse Fourier
transformation we arrive at a function �(r) that has no translational symmetry
either. The Fourier transforms of quasicrystals are just such series. However,
the width of the Bragg reflections is still determined by the imperfectness of
the structure, namely, by deviation of the local configurations from the ideal
configuration, failure of long-range order because of impurities and vacancies, etc.
The sharper the Bragg reflections the closer the quasicrystal is to a perfect one.

The following correlation is typical for metallic single crystals: the higher
the quality of the Laue diffraction pattern of a certain substance, the lower the
residual resistivity ρ of the crystals. The correlation reflects the wave nature of
electrons: the better the conditions for the propagation of an X-ray wave, the
smaller the scattering of the Bloch wave. In quasicrystals it is just the oppos-
ite: annealing, while increasing the quality of the Laue diffraction pattern, also
increases the resistivity. Here the values of resistivity are extremely high. For
instance, in quasicrystals of the Al–Cu–Ru composition at 4 K, the resistivity
values are as high as 30mΩ · cm, which is approximately 100 times higher than
the value of ρ∗ estimated by eqns (1.5) and (1.6) from the concentration n of the
metallic valence electrons.

The properties of an insulator manifest themselves most vividly for the
Al–Pd–Re system. Ingots of this alloy can be made by arc melting a mixture
of extremely pure Al, Pd, and Re in an atmosphere of pure argon. The resistiv-
ity values of this alloy are stably of order 200–300mΩ · cm. After being annealed
in vacuum for 24 hours at 980 ◦C the alloy becomes an icosahedral quasicrystal
and the corresponding Bragg pattern appears. After this, the material remains
sensitive to low-temperature annealing at 600 ◦C. Such annealing in the course
of one to two hours may double or even triple the resistivity at 4 K, with the
quality of the Laue diffraction pattern remaining the same or even improving.

The temperature dependence of the resistivity of Al70Pd22.5Re7.5 quasicrys-
tals can be described following the theoretical scheme from Chapter 6 used there
to describe conduction in the vicinity of metal–insulator transitions in ordinary
materials (see eqns 6.14 and 6.20 and Figs. 6.2 and 6.4). Figure 7.11 depicts the
conductivity as a function of T 1/3 (the four lower curves) or T 1/2 (the three
upper curves). To distinguish between the various samples and between the vari-
ous states of a single sample obtained in the low-temperature annealing process,
the value σ10 of conductivity at 10 K may be chosen as a parameter (the scales
along the horizontal axes in Fig. 7.11 have been selected in such a way that at
this temperature the two scales coincide, as they also do at T = 0).

Figure 7.11 clearly shows that for all measured functions σ(T ) a linear extra-
polation on the selected scales makes it possible to determine σ(0). For the three
upper states with σ(0) � 6(Ω · cm)−1 we can assume that

∆σ � σ10 − σ(0) � σ(0). (7.6)

This makes it possible to assume that the temperature-dependent part of the
conductivity is a quantum correction, and this is why the function σ(T ) looks
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Fig. 7.11. Temperature dependence of the conductivity of the Al70Pd22.5Re7.5
quasicrystal (Wang et al. 1998, 1999, 2000). In the immediate vicinity of the
metal–insulator transition, the dependence, when represented by a function
of T 1/3, is a straight line (the four lower states). In the bulk of the metallic
region, the dependence becomes a straight line when represented by a function
of T 1/2 (the three upper states). The states can be labelled by the magnitude
of the conductivity σ10 at 10 K.

like a straight line in the (T 1/2, σ) plane. For the four lower states with σ10 �
12–14 (Ω · cm)−1 we have the opposite of eqn (7.6). This means that these states
are in the critical vicinity of the metal–insulator transition. Hence, when depicted
in the (T 1/3, σ) plane, the function σ(T ) is represented by a straight line:

∆σ ≡ σ(T )− σ(0) ∝ T 1/3 (7.7)

and we can conclude that the metal–insulator transition occurs at the state with
σ(10K) ≡ σ10 � 9 (Ω · cm)−1.

For states with smaller values of σ10 low-temperature transport is realized
through the hopping conduction mechanism. This is illustrated by Fig. 7.12.
The diagram shows that the conductivity of high-resistance Al70Pd22.5Re7.5
quasicrystals obeys the Mott law

lnσ ∼ T−1/4. (7.8)

Such temperature dependence implies that near the Fermi level the density of
states of the electronic spectrum has a constant, finite value (cf. eqns 4.17–4.19
and Fig. 4.6).

Thus, low-temperature annealing of Al70Pd22.5Re7.5 quasicrystals improves
the conditions for the propagation of electromagnetic waves, but impedes electron



7.2. QUASICRYSTALS 135

T−1/4(K−1/4) T−1/2(K−1/2)
0.6 0.9 1.2 0.4 0.8

0

1.5

−0.5

0

−1.0

ln
s

(V
·c

m
)−1

15 3 1 15 3 1
T (K ) T (K )

5V
−1cm

−1

3Ω
−1cm

−1

s10K=

−1.0

1.0 1.0

−0.5

0.5 0.5

0.50.5

1.5

1.2

Fig. 7.12. Mott law for the conductivity of Al70Pd22.5Re7.5 quasicrystals in the
insulator region (the conductivities at 10 K are 5 and 3 (Ω · cm)−1) (Wang
et al. 1998, 1999, 2000). The dependence becomes a straight line only when
lnσ is plotted as a function of T−1/4.

movement. The DC transport properties fully correspond to the pattern of
metal–insulator transitions as the parameter aBn1/3 decreases (Chapters 5
and 6).

Note: Although the tendency of the resistivity to increase as the Bragg reflections get
narrower is a characteristic feature of many families of quasicrystals, so far the metal–
insulator transition has been observed only in Al–Pd–Re. The maximum resistivity
values at 4 K for the Al–Cu–Fe, Al–Cu–Ru, and Al–Cu–Mn systems are smaller than
the value for Al–Pd–Re by factor of 10–100. Even these values are higher than the
value of ρ∗ which follows from eqn (7.1) by a factor of 10–100.

Let us try to understand how the insulator Al70Pd22.5Re7.5 is formed. The
Al70Pd22Mn8 structure is the most thoroughly studied one and differs from
Al70Pd22.5Re7.5 in only one aspect, i.e. Re is replaced by isovalent Mn. The
quantitative characteristics of these quasicrystals can be assumed to be the same.
The structure of the Al70Pd22Mn8 and Al70Pd22.5Re7.5 quasicrystals is based on
high-symmetry, close to spherical configurations consisting of 51 atoms (see Fig.
7.10). According to diffraction data, the density of the atoms in these substances
is close to 6·1022 cm−3. Since the atoms of the transition elements “grab” some
of the three valence electrons of aluminum, the number of the remaining “poten-
tially metallic” electrons is somewhat smaller than two per atom, i.e. about
1023 cm−3. For a substance with such a huge electron concentration to be an
insulator, the electrons must reside in deep potential wells, or traps. In inter-
metallic binary melts, the traps are configurations presented in Fig. 7.5, while in
quasicrystals, they are the high-symmetry configuration of Fig. 7.10 which have
levels for about 90 of the former valence electrons. Under favorable condition
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only one to two electron from the upper levels may leave the trap. Hence the ini-
tial electron concentration is reduced by a factor of 100, after which the more or
less standard models describing the metal–insulator transition can be employed.

The arrangement of the levels in all atomic configurations that are bricks of
the quasicrystal is, in the zeroth approximation, the same. If the configurations
were arranged periodically, the levels would transform into bands in accordance
with band theory and the electrons from the upper levels would find themselves
in the metallic band. However, in a quasicrystal there are many ways in which
the neighboring configurations can be arranged in relation to a given configura-
tion. According to the model with structural disorder (Section 5.5), each variant
of the surroundings corresponds to a specific shift of the levels in the given con-
figuration. Let us illustrate this using Penrose tiling as an example, for which we
return to Fig. 7.9.

The distance between a given site and a neighboring site can be equal to the
length a of the rhombus side or to the length of the smaller diagonal of either
the narrow rhombus, a1 = 0.62a, or the wide rhombus, a2 = 1.18a. However, the
number of variants of the surroundings, which determine the shift of the level of
a specific site, is very large. Sites with close neighbors at distance a1 may form
resonant pairs or triplets. For instance, sites 1 and 2 each have five neighbors at
a distance a, but all five neighbors of site 1 enter into resonant pairs or compact
triplets with pairwise distances a1 < a, while site 2 has no such neighbors; site
3 has six neighbors at a distance a, but three of these neighbors form a compact
triplet; site 4 has seven neighbors at a distance a, but six of these neighbors form
two compact triplets, etc. As a result, a single level, which initially was the same
for all configurations (sites), becomes a band. Whether or not the states in this
band are localized depends on the parameter aBn1/3, where the aB is the decay
length of the wave function outside the configuration well.

The very fact that the conductivity of Al70Pd22.5Re7.5 is so small is, appar-
ently, caused by the specific combination of the parameters of the configuration
well, which makes the decay length aB smaller than in other quasicrystals. The
low-temperature annealing of Al70Pd22.5Re7.5 leads to “internal repair” of the
configuration wells in the quasicrystal accompanied by a decrease in the leak-
age of the wave function from the well, i.e. a decrease in the effective decay
length aB.

7.3. Metal–insulator transition in systems with high
electron density

Processes that form the electronic spectrum in two-component melts with an
alkali metal as one of the components and in quasicrystals have proved to be
very similar. In such systems the effective carrier concentration decreases and
the screening weakens during material structuring, which makes an ordinary
metal–insulator transition possible.

The overall scheme is as follows. Suppose that each configuration contains N
valence electrons. The potential produced by the ion cores of the atoms in a
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configuration is so strong, i.e., the potential well is so deep, that the electronic
spectrum of these N electrons becomes radically transformed and the electrons
occupy “positions” on an intrinsic ladder of levels. Only one or two electrons on
the upper levels have a chance of leaving the well. As a result, the concentration
of “potentially itinerant” electrons becomes of order n/N , where n is the concen-
tration of the “initially metallic” valence electrons. In two-component melts, N
is of order 10, while in quasicrystals it is of order 100. Thus, the metal–insulator
transition occurs in a system with a reduced carrier concentration.

The same effect can be described differently if we consider configurations as
quantum dots in 3D space. The concentration of such dots is of order n/N , with
each dot containing N electrons. When one electron leaves a quantum dot, the
dot’s charge increases by e, and this requires energy of order

εe ≈ e2/r, (7.9)

where r is the radius of the quantum dot. This quantity is similar to the Hubbard
energy, eqn (5.45), in the theory of Mott transitions. At the same time, e2/r is
the Coulomb energy of an isolated metal sphere of radius r carrying charge e or
the energy of the capacitor that appears in the theory of the Coulomb blockade
in nanostructures (see Section 8.2). On the metal side of the metal–insulator
transition, the electric field of a charged dot is screened and the energy εe,
eqn (7.9), is insignificant. On the insulator side, there is no screening by free
carriers and the number of charged dots is determined by comparing the energy
equation (7.9) with the temperature. When εe � T , the number ν of charged
dots is exponentially small:

ν = (n/N) exp(−εe/T ). (7.10)

Since conduction under these conditions is determined by tunneling between
charged and uncharged dots, ν acts as the number of carriers. This standard line
of reasoning used to describe granular metals (see Section 8.2) determines the
activation nature of the conduction.

The importance of replacing n with n/N can be illustrated by the follow-
ing experimental fact: when an amorphous alloy is transformed by annealing
into a quasicrystal and it remains metallic, its resistivity nevertheless often
increases severalfold. Localization is also substantially enhanced by the absence
of translational symmetry and of universal short-range order in the mutual
arrangement of configurations. Irregularities in this mutual arrangement pre-
vent resonant tunneling. Of course, the presence of translational symmetry by
itself cannot guarantee metallic conduction. However, near the limiting values of
concentrations, n/N � nMott, disorder is essential. Indeed, when the CsAu alloy
crystallizes, its resistivity decreases by a factor of 10 (see Fig. 7.7).

Thus, the two classes of condensed media briefly discussed in this chapter
provide an affirmative answer to the question about possibility to localize a
system of valence electrons in a medium consisting only of metal atoms. Such
localization is realized through the formation of molecule-like configurations at
least in two cases: in two-component melts with an alkali metal as one of the
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components, and in quasicrystals. In addition, irregularity in the relative position
of the configurations is needed for the localization.
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8

GRANULAR METALS

The basic transport properties of granular metals are reviewed by Abeles et al.
(1975).

8.1. Morphology and classification

Hereafter, a material consisting of randomly arranged small regions (grains or
granules) with essentially different conductivities (in the limit, a mixture of metal
and insulator regions) is referred to as a granular material. A random potential
of such a material is usually characterized by a length considerably exceeding
the interatomic distances up to macroscopic lengths. Let x be the fraction of
d-dimensional space occupied by metal grains. However, the x value is insufficient
for the characterization of a material. It is clear that the conductivities of two
materials with the same value of x but with spherical and fiber metal inclusions
would be different. The material morphology is understood here as the shape
of the grains. It depends on numerous factors and may be quite diverse. As
an example, Fig. 8.1 shows electron micrographs of indium films deposited onto
SiO2 substrates at room temperature obtained in a scanning electron microscope.
Indium does not wet the substrate surface.

Atoms possessing a certain thermal energy reach the substrate and, diffusing
along its surface, form small randomly located droplets (Fig. 8.1a). During fur-
ther deposition, these droplets increase in size and merge together into drops with
larger diameters (Fig. 8.1b). Then the metal regions acquire elongated shapes. It
seems that with an increase of the areas of the drop contact with the substrate,
some regions with substantial cohesion are formed in the drop centers. During
further merging of large drops, regions with high cohesion play the role of pinning
centers for a moving mass of the material and lower the symmetry of the metal
grains thus formed (Fig. 8.1c). And finally, prior to the formation of a continuous
metal film, when the relative area of the 1−x gaps between the metal regions
becomes rather small, these gaps acquire the shapes of relatively thin branching
fibers (Fig. 8.1d). This process is also governed by a certain combination of the
wetting and cohesion rules for a deposited material and the substrate, but we
limit our consideration only to the morphological characteristics of the structure.

Divide the d-dimensional space into elementary volumes ad and assume that
the properties of the material inside these volumes are constant and that the
properties of two different volumes are independent. Thus, we have reduced the
spatial problem to the problem on a lattice with period a, which allows us to use
the simplest models of percolation theory. For the structure shown in Fig. 8.1a,
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Fig. 8.1. Micrographs of island indium films obtained in a scanning electron
microscope. Metal regions are light. The scale and the average film thickness δ
are indicated for each micrograph. The inset shows part of the micrograph (a)
at a higher magnification (Yu et al. 1991).

the characteristic size a of metal drops is of the order of 0.05µm and for the
structure in Fig. 8.1b, it is of the order of 0.2µm. The fact that the variation
of the fraction x of volume of metal also changes the scale is not important.
It is more important that the average transverse size of the metal regions in
Fig. 8.1c is less than the average longitudinal size, b ≈ (2–3)a. This signifies that
there exists a correlation between the properties of the b/a neighboring sites on
a square lattice with period of the order of a (a≈ 1µm).

In terms of mathematics, the lowering of the local symmetry of the structure
is described by special correlators, whose introduction considerably complicates
the situation, so that the simplest models of percolation theory (bond and site
problems) become inapplicable. This is one of the possible explanations of the
experimentally established fact that the critical value xc =0.82±0.02 for the rel-
ative area of indium on the SiO2 surface providing percolation is much larger than
the known critical values in similar problems of percolation theory. The second
explanation is the loss of symmetry between the metal and nonmetal regions. For
the structures in Figs 8.1a and 8.1b, the regions between drops have the same
order of magnitude as the drops themselves, whereas in Fig. 8.1d the insulating
regions between drops are much less than the metal regions. Nevertheless, these
small regions between drops still guarantee the insulating properties of the film.
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Thus, the critical value xc is strongly dependent on such physical factors as
the accommodation coefficient of the incident atoms to the substrate, surface
tension, cohesion forces, etc. Therefore, deposition of other metals under the
same conditions is characterized by other xc values: xc = 0.86± 0.02 for Sn and
xc = 0.67± 0.02 for Pb.

Note: Along with metal granules in an insulating matrix, one may also imagine insu-
lator granules in a metal matrix. However, in what follows, when using the term
“granule” we always mean “metal granule.” Moreover, as has already been indicated,
we call a granular material also a material with the structure of the type shown in
Fig. 8.1d, which, strictly speaking, has no granules at all.

In the system shown in Fig. 8.1, the role of an insulator separating the metal
grains is played by the vacuum. However, this role may also be played by an insu-
lator. If a metal and an insulator making a pair do not dissolve in one another,
they may form a mixture of small metal and insulating regions (grains). This
mixture, termed a cermet, is obtained, e.g., in simultaneous deposition of both
components onto an insulating substrate. The scale of the structure thus formed
is controlled by the physical–chemical factors acting during deposition. Depend-
ing on these factors and also on the deposition time and the film thickness, it
is possible to obtain two- or three-dimensional structures. Figure 8.2 shows an
electron micrograph of the Au+Al2O3 cermet in the range of existence of an
infinite metal cluster (the “plus” sign is used to distinguish this granular system
from the system of Au film deposited onto the Al2O3 substrate).

Sometimes, it is also possible to preserve the spherical shape of the granules up
to high metal concentrations, x > xc. Figure 8.3a shows an electron micrograph
of the structure of a film of granular Al in the matrix of amorphous Ge at the
volume Al concentration x≈ 0.66 obtained in a transmission electron microscope.

100 Åh = 100 Å

Fig. 8.2. Micrograph of a granular Au + Al2O3 film of thickness h =
100 Å(Abeles 1975). Metal regions are dark. The white line is a continuous
pass from left to right.
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Fig. 8.3. (a) Micrograph of a granular Al+Ge film obtained in a transmission
electron microscope. Metal regions are light. (b) Histogram of the size distri-
bution of Al grains and its approximation by a normal distribution (Shapira
and Deutscher 1983).

It is seen that the Al component of the material consists of spherical granules.
Special measurements allowed one to determine the distribution of granules over
their diameters, which turned out to be rather narrow (Fig. 8.3b).

All the above systems show a finite conductivity at a certain stage of increas-
ing a relative volume of the metal in the material, in other words, the systems
undergo a metal–insulator transition. This transition is often called a percolation
transition, which implicitly means that this transition is governed by pure geo-
metrical factors, so that the transition is a pure classical macroscopic transition.
Indeed, the percolation laws are invariant with respect to scale, so that it is pos-
sible to imagine percolation, e.g., in a system of metal balls from a ball-bearing
randomly located on a plane and fixed there with solidified paraffin. However, if
the characteristic lengths of the system also include microscopic lengths, some
specific physical factors may also arise and even play a key part. We are interested
just in the latter systems.

On the other hand, if all the characteristic lengths, such as size of grains, width
of barriers between them, etc., become too small (of the order of interatomic
distances), we come back to a homogeneous disordered material. Theoretical
descriptions of granular and homogeneous disordered materials differ a lot but
their macroscopic physical properties are similar. At least, metallic conductance
and metal–insulator transition exist in both. Hence, it is desirable to set bound-
aries for these different classes of disordered systems. However, the positions of
the boundaries depend on the physical properties we are interested in.

For an illustration of this statement, let us take an important quantitative
parameter of a granular system – the level spacing δε caused by the electron
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confinement in grains. It can be expressed with the help of the grain volume a3

and the density of states at the Fermi level, gF, in a bulky metal,

δε = (gFa3)−1. (8.1)

To make the necessary estimates, we may assume that a = 50 Å and δε ≈ 10K.
If a bulky metal is a superconductor with the critical temperature Tc and

superconducting gap ∆, the relationship

δε ≈ ∆ � Tc. (8.2)

determines the minimum size asc = (gF∆)−1/3 of an isolated grain for which
the notion of a superconducting state retains its sense. If a > asc, then the grains
undergo a superconducting transition at the same temperature as a bulky metal,
and the behavior of the material as a whole depends on the interactions between
the granules. It is this behavior that is typical of thin Pb films deposited onto
mirror-smooth SiO surfaces precooled to helium temperature – see Fig. 8.4a
taken from Frydman (2003). With this deposition technique, Pb atoms coagu-
late into granules which, before merging, amount to a diameter of 200 Å and a
height of 50–80 Å. All the films whose thickness exceeds some critical value have
a superconducting transition at the same temperature Tc ≈ 7K. The thinner
films have no global transition at all but the ρ(T ) curves for these films retain
some particular feature at the temperature T ≈Tc indicating the existence of the
superconducting transition in separate grains.
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Fig. 8.4. Evolution of the superconducting transition in thin Pb films on SiO
substrates with increase of their thickness (from above downward) (Frydman
2003). (a) An example of a granular system. The films are evaporated
directly on SiO. The transition temperature is constant. (b) An example of
a fine inhomogeneous system. The films are evaporated above a thin layer of
amorphous Ge. The transition temperature changes along with the normal
resistance.
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If the inverse inequality a < asc is valid, then a separate grain cannot become
superconducting on its own. In terms of the superconducting transition, such
material is homogeneously disordered and it may have a bulk superconducting
transition at some temperature T ′

c determined by its average characteristics.
The transition temperature may smoothly vary with the change of these char-
acteristics. The Pb films on the SiO substrate evaporated above an additional
intermediate 5 Å layer of amorphous Ge demonstrate the correlation between the
temperature T ′

c and film resistance (Fig. 8.4b).
For a normal metal, the granulation criterion is different and depends on

temperature. The relationship

δε ≈ T (8.3)

determines the minimum grain size at which the notion of a delocalized electron
still makes sense. If the range of thermal spread includes only one electron level,
then, generally speaking, it should rather be considered as a localized level, and
the quantity a should be considered as the wave-function dimension, i.e., the
localization length ξ.

The evolution of granular systems may proceed in two possible ways. The first
way is associated with the variation in x. Figures 8.1–8.3 illustrate such systems.
A metal–insulator transition in these systems seems to be based on percolation.
Since the variation in x results in a change of the average concentration of deloc-
alized electrons in the material, it is timely to recollect here the Mott transition.
The second possible way of evolution may be described as follows. At a suffi-
ciently high x value, the properties of the barriers between the granules, e.g., the
barrier height, would also change. Here, it is also possible to formulate the cri-
terion of a cross-over from a granular system to homogeneously disordered one.
This may be made by comparing the level spacing δε with the transfer integral
of the wave functions of electrons from the neighboring granules, which quant-
itatively describes the efficiency of the insulating barriers. Here, it is timely to
recollect the Anderson transition.

In practice, it is rather difficult to distinguish between these types of evolution;
however, conditionally, we consider systems of the first type in the next section
and systems of the second type in the last section.

8.2. Coulomb blockade and metal–insulator transition

Figure 8.5a shows the resistivity of the cermets in the Au+Al2O3 system
(Fig. 8.2) as a function of the relative metal concentration x measured at two
different temperatures.

Note: The range of the resistivity variation along the ordinate exceeds 12 orders of
magnitude.

We can clearly distinguish two concentration regions. The region 1 � x � 0.4
is that of a metal: the resistivity ρ in it is considerably low, only weakly depends
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Fig. 8.5. Resistance of granular Au+Al2O3 and Ni+SiO2 films as a function
of x at two temperatures (Abeles 1975). Data shown by dash lines are obtained
at helium temperature, those by solid lines and symbols are obtained at room
temperature. Dots and squares on the right plot are taken from two different
experiments; the solid line is the result of averaging.

on temperature, and gradually increases with a decrease in x. The boundary
between the two regions lies in the vicinity of the value x = xc ≈ 0.38. Finally,
the insulating region x� 0.38 is characterized by a dramatic increase in resistivity
with a decrease in x and a pronounced temperature dependence of resistiv-
ity, ρ(T ). A similar dependence of ρ(x) in the Ni+SiO2 system is shown in
Fig. 8.5b. Qualitatively, this system behaves in the same way as the previous sys-
tem. In particular, in the vicinity of the critical value xc, the derivative ∂ρ/∂T of
the function ρ(x, T ) changes sign (solid and dash lines cross near xc). However,
the critical value, xc, for the latter system is different. We have already indicated
a similar discrepancy in the xc values for island films.

The description in terms of the percolation model assumes that at concen-
trations x > xc, the current lines are inside the metal cluster, and at x < xc, the
carriers should tunnel through the insulator, at least at some parts of their path.
Then, the temperature dependence ρ(T ) in the region where x < xc should be
determined by the insulator properties. However, in fact, this is true only to
some extent.

Figure 8.6 shows the resistivity of the materials of the granular Au+Al2O3
and Ni+SiO2 systems as functions of temperature in the insulating mode, i.e., at
x < xc. Since in the temperature range studied, the resistivity changes by several
orders of magnitude, it is possible to determine the functional dependence of the



146 8. GRANULAR METALS

106

108

104

102

10−2

1

0.05 0.1 0.15 0.2
T−1/2 (K−1/2)

x =0.41

0.38

0.28

0.23
0.18

Au + Al2O3

0.1 0.2
T−1/2 (K−1/2)

0.3

106

108

104

102

1010

1012

Ni + SiO2

x =0.44

0.34

0.240.140.08
r

(V
⋅c

m
)

r
(V

⋅c
m

)

Fig. 8.6. Resistivity of granular Au+Al2O3 and Ni+SiO2 films as functions
of temperature at low x values, x < xc (except the curve x = 0.41> xc at the
left panel) (Abeles 1975).

resistivity ρ(T ) as

ρ(T ) = ρ0 exp(T0/T )1/2. (8.4)

This dependence can be reliably distinguished from the dependence of types
exp(T0/T ), or exp(T0/T )1/4. The corresponding bulky insulators, Al2O3, and
SiO2, show no functional dependence determined by eqn (8.4). Moreover, the
slope of the straight lines in Fig. 8.6 determined by the value of T0 from eqn (8.4)
depends on x. Therefore, the transport in the materials considered here is con-
trolled not solely by the insulator, but by the entire configuration of the grains
in the material. Thus, we arrive at the experimental facts that should be clearly
understood and interpreted.

The theoretical model is based on two fundamental assumptions.

1. Tunneling may take place between neighboring granules. In this case, the
invariance with respect to the lattice scale characteristic of the percolation prob-
lems is lost, and no systems similar to a set of metal balls from the ball-bearings
are possible any more. Tunneling from any granule to all the neighboring gran-
ules is not necessary any more either. More exactly, we may assume that a set of
granules which may exchange carriers via tunneling would form a well-developed
infinite cluster. This assumption defines the property which is usually called car-
rier mobility, µ= eτ/m, where τ = τtun is the tunneling time for a charge e with
effective mass m. Indeed, since tunneling is the main mechanism which constrains
the charge motion in space, the charge mobility should be proportional to the
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tunneling probability

1
τtun

∝ exp(−βa),
β = 2(2mU)1/2

�
, (8.5)

where a and U are the barrier width and height, respectively.

2. Each charged metal granule induces an electric field in the gap between this
granule and other granules and, thus, plays the role of a microcapacitor plate.
The capacitance of such a local capacitor is of the order of the product of the
granule radius a and the permittivity κ of the surrounding insulator (capacitance
of a remote sphere)

C ≈ κa. (8.6)

If the capacitor charge is q, then the field energy in it equals q2/2C. Therefore,
for an additional electron q = e to be located at the granule, it must have
Coulomb energy εC ≈ e2/κa; whence it follows that the charge concentration n
is proportional to

n ∝ exp(−εC/T ) ≈ exp(−e2/κaT ). (8.7)

Note: In this case, the material remains electrically neutral, because the numbers of
electrons and holes (positively and negatively charged granules) are approximately
equal. The energies of both electrons and holes are measured from the Fermi level.

The energy εC is far from being low. For a 50 Å granule at κ � 10 it is of the
order of 300K. This signifies that, at low temperatures, the number of carriers
is exponentially small. It is this fact that limits conductivity, whence the term
Coulomb blockade. It is usually applied to isolated nanostructures such as pairs
of tunneling contacts with low capacitance, with the quantity εC describing a
certain particular configuration. However, the inequality

εC 	 T (8.8)

may also determine the properties of the material as a whole.
Formally, eqns (8.5) and (8.7) allow us to single out the most important

exponential factors that enter the expression for resistivity, ρ(T ) = σ−1(T ). Since
conductivity σ is proportional to the product of concentration n and mobility µ,
we obtain

ρ ∝ (nµ)−1 ∝ exp(e2/κaT + βa). (8.9)

Since the exponent in eqn (8.9) consists of two terms and since the length a
in one of these terms is in the numerator, whereas, in the other one, it is in the
denominator, there exists some magnitude of a

amin = e(κβT )−1/2, (8.10)

at which the exponent is minimal. The set of grain sizes a in a real material
is characterized by a certain dispersion. The existence of the minimum signifies
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that the current flows mainly along the chains of grains with a = amin, and the
material resistance is described by eqn (8.4) with T0 equal to

T0 = 2e(β/κ)1/2. (8.11)

Before discussion of the result obtained, we have to make an important stipu-
lation. The length a has different meanings in eqns (8.5) and (8.7). In eqn (8.5),
it has the meaning of a gap between grains, whereas in eqn (8.7), it has the
meaning of a grain size. Micrographs in Figs 8.1–8.3 show that these two lengths
are different. In fact, the above assumption that these lengths are equal may be
lifted and replaced by the much more realistic assumption that these lengths are
proportional. This signifies that, after scaling, various portions of the grain metal
become statistically equivalent. For such a model, the main conclusion remains
the same as earlier with the only difference that eqn (8.11) acquires an addi-
tional multiplier – a root of the proportionality coefficient. Moreover, the main
conclusion remains valid also for any functional relationship between the granule
dimension a and the gaps a′ between them at the given x under the condition
that these two quantities are statistically dependent.

Thus, it turned out that at low concentrations of the metal phase, x < xc, the
current in the granular material flows nonuniformly and is concentrated mainly
in the regions with the optimum average size of the granules. This optimum size
depends on the temperature. Therefore, with the change of the temperature, the
current distribution over the material should also change.

Compare the tunneling conductivity in a granular system with the hopping conduct-
ivity in the presence of a Coulomb gap. Both mechanisms are due to the same type
of initial interaction (Coulomb interaction), result in the same functional dependence
ln ρ ∝ T −1/2, and have similar occasions for changing the main tunneling paths with
temperature.

It is no accident that the two problems are similar. Reducing the granule
size to zero, we transform the granules into charged or neutral impurity centers.
In this limiting transition, one problem should be naturally transformed into
the other. This comment evokes some expectations. An insulator with impurity
centers has a Coulomb gap and in a metal with large number of impurities, the
Coulomb electron–electron interaction results in the inimum density of states
at the Fermi level. One has to expect an analogous situation also in a granular
material. These predictions are confirmed by a tunneling experiment.

Figure 8.7a demonstrates the tunnel characteristics of the Al–Al2O3–Ni+SiO2
structure in which one of the tunnel-junction sides is the film of a granular metal
(in our case, the mixture of Ni (metal) and SiO2 (insulator) not dissolving in one
another). The films were 100 Å thick. Since at all the x values, the characteristic
sizes of the metal granules were less than 50 Å, then, in terms of the processes
forming the electron spectrum, the Ni+SiO2 film should have a three-dimensional
structure. The contact plane is a section of this structure. Tunneling may proceed
only into the metal granules on the contact plane. The fraction x of these granules
in this plane is the same as in the bulk.
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Fig. 8.7. (a) Tunneling characteristics of the Al–Al2O3–Ni + SiO2 structure
with a granular film as one of the electrodes. For a clearer representation, the
curves for different portion x of the metal surface (and volume) are displaced
upward. The dashed lines indicate the corresponding origin of each curve.
(b) The function g(ε) for the granular film at different x values extracted from
the curves in panel (a) (Abeles 1975).

At high x values (in fact, already at x = 0.66, the upper curve), the presence of
insulating inclusions is not important and Ni + SiO2 behaves as a conventional
metal. The structure of the dJ/dV curve is formed due to superconductivity
of the aluminum counter-electrode (cf. the analogous effect in Fig. B.2 of
Appendix B). The changes in the dJ/dV curves at lower x values are fully con-
trolled by a granular electrode, because there are no changes at the aluminum
electrode. Ignoring the inhomogeneity of the junction, one may use a standard
mathematical procedure consistent with eqn (B.1) in Appendix B for extracting
the density of states,

J(V ) ∝
∫ ∞

−∞
g(ε − eV )g1(ε)

[
f

(
ε − eV

T

)
− f

( ε

T

)]
dε, f(x) = (expx+ 1)−1.

(8.12)
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Replacing g1(ε) with the density of states of the superconducting electrode meas-
ured at x > 0.7, we may extract the function g(ε) for the granular electrode from
each experimental dJ/dV curve. The result thus obtained is shown in Fig. 8.7b.

Comparing Fig. 8.7 with Figs B.3 and B.4 in Appendix B, we see that the
evolution of the function of the density of states with the change in the con-
trol parameter in the vicinity of the metal–insulator transition is practically the
same for granular and non-granular materials. In both cases, the spectrum has
a minimum in the density of states at the Fermi level, which is transformed into
a soft gap. According to Fig. 8.7, the critical value of the control parameter in
the Ni + SiO2 system equals xc ≈ 0.56. The same value is also obtained from
the curves in Fig. 8.5b. It is at this x value that the derivative dρ/dT changes
its sign.

Thus, although tunneling occurs into individual granules, the function g(ε)
extracted from the experimental data reflects the state of the material as a whole
and even records the metal–insulator transition taking place with the change of x.
To interpret this phenomenon, we have to extend eqn (8.12) to the case where
one of the electrodes is inhomogeneous. The fact that tunneling occurs only into
the metal fraction x of the total contact area is of minor importance: it only
reduces the effective area of the contact and increases the total resistivity by
a factor of 1/x. Much more essential is the inhomogeneity of the metal region
itself. The part P < x of the electrode area belongs to an infinite metal cluster.
If an electron tunnels into this part of the contact, the processes observed are
the same as for a homogeneous contact. The corresponding part of the current
is described by eqn (8.12) with the density of states g(ε) = const. = g0.

The x − P part of the contact consists of individual granules of size a with
size distribution function D(a) normalized by the condition∫ ∞

0
D(a)a2 da = 1. (8.13)

If an electron is to tunnel into such a granule, it should be given an additional
energy εC ≈ e2/κa. Therefore, the effective density of states geff that should
be substituted into eqn (8.12) instead of g in order to describe the tunneling
process is

geff(ε) = Pg0 + (x − P )
∫ ∞

0
D(a)a2ga(ε) da, (8.14)

where the size-dependent density of final states ga(ε) is

ga(ε) =
{

0, |ε| < εC(a)
g0, |ε| > εC(a)

(8.15)

(hereafter the value ε = 0 corresponds to the Fermi level). This is the function
geff(ε) that is extracted from the experimental data with the aid of eqn (8.12)
and which is depicted in Fig.8.7b at various x values.



8.3. FRACTAL GRANULAR METALS 151

Note: Equation (8.14) could have been transformed further by substituting there
eqn (8.15) for ga(ε), attracting a model function D(a), etc. However, we consciously
avoid these transformations, because eqn (8.6) for capacitance, C ≈ κa, at the begin-
ning of the chain of these transformations which corresponds to the capacitance of
a remote ball is a too-crude approximation. It should be considerably refined to be
applied to specific granular structures.

However, even the unamended eqn (8.14) shows that with the disappearance of
an infinite cluster (occurrence of a percolation transition and P tending to zero),
the density of states at the Fermi level becomes zero.

Thus, neither transport measurements in the vicinity of a metal–insulator
transition, nor tunneling experiments allow one to distinguish between a percola-
tion transition in a granular system and, e.g., a Mott transition in a uniformly
disordered system. This was to be expected from the most general considerations:
the correlation length ξ diverges at the transition. If we are so close to this
transition that

ξ > a, (8.16)

the granulation becomes unimportant. Of course, a should not be too large (as in
the system of balls from the ball-bearing), otherwise the transition region would
be too small to be implemented in practice.

8.3. Fractal granular metals

Granular materials may be obtained not only by evaporation or sputtering. Other
methods of preparation may give rise to structures of other types. As an example,
consider the processes of solid-phase amorphization of some metastable alloys.

There are some alloys, in particular, antimony-based ones, Sb–Zn, Sb–Cd,
and Sb–Ga alloys, and also the Al–Ge alloy, whose equilibrium phases under
atmospheric pressure have low coordination numbers, low densities, and whose
Fermi levels are in the forbidden energy band, whereas their high-pressure
phases have high coordination numbers, high densities, and the Fermi levels
in the region of allowed energies. Cooling a high-pressure chamber with the alloy
to liquid-nitrogen temperature, lowering the pressure to normal, and opening
the chamber, we obtain a high-pressure phase of the alloy in the metastable
state. This metastable metal phase at liquid-nitrogen temperature may be pre-
served for an infinitely long time. Then, placing the thus obtained sample
into a holder with clamping contacts and measuring the temperature depend-
ence of the resistance, R(T ), we may reveal a conventional temperature run
of the resistance and a superconducting transition at liquid-helium temperat-
ure. During sample heating, the metastable state should be transformed into
the stable one. Under rather slow heating, the transformation proceeds in two
stages. First, at a certain temperature T1, the thermal energy is sufficient to
destroy the metastable lattice, but not sufficient for growth of a stable phase.
Therefore, the metastable phase is transformed into the amorphous one with the
coordination number, density, and conductivity being the same as in the stable
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phase. We call this intermediate phase an insulator and the process, amorph-
ization. With further heating, the sample is crystallized, and an amorphous
insulator is transformed into a crystalline insulator. We are not going to discuss
this stage and the extremely interesting thermodynamic details of the whole
chain of the solid-phase transformations; they may be found in the reviews of
the effect.

Since the specific volume of the material considerably increases during
its amorphization (in the Sb–Zn and Sb–Ga alloys, the volume increases by
about 25%), the amorphous-phase seed in the metastable phase cannot grow iso-
tropically, because of an increase in the local pressure. However, seeds may grow
in the shape of flat disks, and their moving growth front is similar to a razor blade
cutting the metastable phase. The layer behind the moving edge thickens very
slowly, because the surrounding medium is compressed. Nevertheless, the stress
increases with time, and, therefore, the layer roughness and its nonuniformly
deformed regions act as nuclei of layer branching. Thus, the layers of an insu-
lating amorphous phase propagate due to branching almost without increasing
layer thickness, whereas the conducting channels during amorphization become
thinner and start winding.

Very slow heating of a sample from liquid-nitrogen temperature accompanied
by measuring of its electrical resistance, allow one to fix the moment when res-
istance starts increasing due to amorphization. The process may be interrupted
at any moment by sharp cooling of the sample. Therefore, the transition to
the amorphous state may be performed in a stepwise manner. The R(T ) curve
may be measured at any intermediate state to reveal the occurrence of the
superconducting transition.

These measurements yield the following main result. Gradual transformation
may increase the sample resistance by several orders of magnitude practically
without a change of the temperature of the superconducting transition Tc. As
an illustration, Fig. 8.8 shows the R(T ) curves for the Sb57Cd43 and Sb50Ga50
alloys. All the curves are normalized to the sample resistance in the given state
R(6K) at the temperature T = 6K. The resistance values, R(6K), are different
for different states, therefore the value q = lg(R/R0)T=6 K at each curve indicates
the order of magnitude of the change in the sample resistance R after amorph-
ization in comparison with the sample resistance R0 in the initial state prior to
amorphization. Thus, the value q = 6.9 indicates that the resistance at T = 6K is
by almost seven orders of magnitudes higher than in the initial state. The initial
values of resistivity 1/σ corresponding to q = 0 differ from sample to sample but
always remain in the range 10 − 100µΩ · cm. This indicates that the mean free
path in the initial “homogeneous metal material” is of the order of l ≈ 10k−1

F .

Note: The superconducting transition in granules in a granular system does not neces-
sarily signify a drop of the total resistance to zero. The main contribution to resistance
along the current channels may be endowed either by granules or by space between these
granules. If the resistance is controlled by tunneling between granules, then the super-
conducting transition in granules does not necessarily diminish the total resistance – it
may even increase it. This is demonstrated by the curve with q=7.8 in Fig. 8.8b.
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In accordance with eqn (8.2), the constancy of Tc signifies that granules remain
large at all the transformation stages. At the same time, they may become porous
and permeated with insulating amorphous phase forming a fractal. The current
channel inside such a granule in the normal state is similar to the trajectory of a
particle in Brownian motion. We term such materials fractal granular materials.
To explain the high q values of these materials, consider Fig. 8.2 where the white
curve shows a possible current path from left to right through the labyrinth
structure. The length of this channel is about twice as long (αL ≈ 2) as the
length of the part of the sample shown in Fig. 8.2, whereas its width is about
αh ≈ 0.1 of the width of this part. Now, assume that the width of the part shown
in Fig. 8.2 is the average distance between two through channels (in terms of
percolation theory, the correlation length ξ). Then, assuming that Fig. 8.2 shows
part of a two-dimensional sample, the net of insulating interlayers in it increases
the resistance by a factor γ = αL/αh ≈ 20. If we assume that Fig. 8.2 shows a
section of a three-dimensional material, we find that the resistance in it increases
by a factor of γ=αL/α2

h ≈ 200.
If the granular lead sample (Fig. 8.4) and the Sb-based alloys (Fig. 8.8)

underwent no superconducting transition (or if one managed to perform the
experiments described above in a strong magnetic field), then these systems
would have undergone a metal–insulator transition. However, in actual fact, they
underwent a superconductor–insulator transition (we mean here the change in
conductivity along a series of curves in Figs 8.4 and 8.8 at T = 0). We do not dis-
cuss this transition, because superconductivity itself is beyond our consideration.
However, we may make an attempt to perceive “through this transition” a metal–
insulator transition. With this aim consider the region of a metal–insulator
transition for uniformly disordered systems (Fig. 6.2 in Chapter 6).
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The critical region in the vicinity of the metal–insulator transition is limited
from the side of high temperatures by the condition

τee > τ, (8.17)

which means that the dephasing time of interfering electrons should exceed the
time of their elastic scattering. However, this condition is rather mild because
τee ≈ �/T and τ may be as small as τ ≈ �/εF, so that eqn (8.17) means only that
the temperature should be T < εF. Since the temperature of the superconducting
transition Tc � εF, then, generally speaking, in order to distinguish metal from
insulator and determine the position of the metal–insulator transition, it should
be enough to measure the resistance above Tc and extrapolate the temperature
dependence σ(T ) from the region T > Tc to T = 0.

Figure 8.9a shows the R(T )/R(6K) curves at different stages of amorphization
of the Sb–Cd alloy. These curves reflect the changes in resistance at T > 6K and
complement the R(T )/R(6K) curves for the same alloy in the superconducting
region T < 6K (Fig. 8.8a). These data replotted in Fig. 8.9b on the (T 1/3, σ ≡
1/R) axes single out the state with (R/R0)T=6 K ≈ 2 · 104 (i.e. q=4.3) as an
in-between state separating the metal and the insulator. This demonstrates that
a metal–insulator transition is also possible in fractal granular materials.

At the same time, this transition does not necessarily take place. Figure 8.10
shows an analogous representation of the experimental data in the (T 1/2, σ) axes
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for the most high-resistance states of the Sb–Ga alloy. Even for resistances as
high as 1MΩ, the extrapolation to T =0 does not reveal a transition to the state
of an insulator. Possibly, the point is that the sizes of fractal granules remain
comparable with the size of the sample, which makes inequality (8.8) invalid.
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9

INTEGER QUANTUM HALL EFFECT

For a comprehensive discussion of the integer quantum Hall effect, see Prange
and Girvin (1990) and Butcher et al. (1993); the latter book also contains a
description of the general properties of a two-dimensional electron gas.

The application of a magnetic field B to an ideal system of free electrons gives
rise to the finite motion of electrons in the plane normal to this field and quant-
ization of the energy of the transverse motion (Landau quantization). Only the
spectrum of the motion along the field remains quasicontinuous. If, in addition,
the electrons are confined in a layer with the thickness b of the order of b ∼ 1/kF,
which is normal to the field, their motion along the field is also restricted. Then,
in fact, the electrons are localized and their wave functions are independent of
time and have nonzero values only in the vicinity of classical electron orbits.

Under these conditions, the conventional notion of electron localization
becomes invalid. In a magnetic field, the electrons in an infinite plane in the
absence of any random potential and electric field are localized in cyclotron
orbits. Now, a random potential gives rise not to the localization of electrons,
as usual, but to their transitions between various cyclotron orbits and, thus, to
their delocalization.

The following discussion of the quantum Hall effect, one of the most remark-
able discoveries in solid state physics of the second half of the 20th century, is
made against this background. The quantum Hall effect (QHE) is an import-
ant part of a large field – the physics of two-dimensional systems. Earlier, we
only briefly visited this field in Chapter 6 when considering metal–insulator
transitions. The present chapter deals only with two-dimensional (2D) systems,
but, in accordance with the principles used for selection of the material for
this book, we discuss here only the integer quantum Hall effect because it
may be considered within the concept of noninteracting electrons. The frac-
tional quantum Hall effect, which would not exist at all under these conditions,
is beyond our scope here. Even when discussing the integer quantum Hall
effect, we shall focus on those aspects that were among the main topics of the
preceding chapters – localization, metal–insulator transitions, scaling, hopping
conductivity, percolation, etc.

The first section of this chapter deals with those concepts of the usual metal
physics which are necessary for an understanding and description of the QHE
and which form the background mentioned above. Then, after setting forth the
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basic experimental facts underlying the QHE, we suggest a self-consistent inter-
pretation of this phenomenon. And, finally, the last sections of this chapter are
dedicated to the phase transitions accompanying the QHE.

9.1. Spectrum and dynamics of two-dimensional electrons
in strong magnetic fields

Below, we briefly consider the problems of the classical physics of metals
discussed in detail elsewhere (Abrikosov 1988; Gantmakher and Levinson 1987).

Consider an infinite homogeneous thin metal film in the plane normal to the
Oz-axis. In a constant magnetic field B ‖ Oz, the classical orbit of electrons
having no velocity component along the applied magnetic field is a circle. If one
applies, in addition to the magnetic field B ‖ Oz, also an electric field E ‖ Ox,
two types of electron motion are superimposed: circular motion with frequency
Ω = eB/mc and a drift along the direction Oy⊥B, E with drift velocity v =
c(E/B) (where c is the velocity of light and m is the electron effective mass).
Since the drift velocity is normal to the electric field, v⊥E, the linear local
relation of the field E and the current j =nev is described not by a scalar but
by a tensor (here n is the concentration of the itinerant carriers). Therefore,
describing the linear transport properties of a two-dimensional electron gas, one
has to relate the components of the current j and the electric field E either by
the conductivity tensor σ̂,

jx = σxxEx + σxyEy,
jy = σyxEx + σyyEy,

σxx = σyy, σyx = −σxy (9.1)

or by the resistivity tensor ρ̂,

Ex = ρxxjx + ρxyjy,
Ey = ρyxjx + ρyyjy,

ρxx = ρyy, ρyx = −ρxy. (9.2)

Since these tensors are mutually reciprocal, their components are related as

σxx =
ρxx

ρ2
xx + ρ2

xy

, σxy =
ρxy

ρ2
xx + ρ2

xy

. (9.3)

In the relaxation-time τ -approximation for a free electron gas, the expressions
for σxx and σxy may be obtained directly from the equation of motion for a free
electron with due regard for its scattering by introducing a force of effective
friction, −mv/τ , as

mv̇ =
e

c
[vB] + eE − mv

τ
. (9.4)

Taking into account eqn (9.1) and the fact that the current is j = nev, we obtain
from eqn (9.4)

σxx =
ne2τ

m

1
1 + Ω2τ2 , σxy =

ne2τ

m

Ωτ

1 + Ω2τ2 . (9.5)
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It follows from the above equations that the longitudinal conductivity of
an infinite film containing no impurities (τ = ∞) is σxx = 0, whereas the Hall
conductivity and resistivity are

σxy =
nev

E
=

nec

B
, ρxy =

B

nec
. (9.6)

Usually, a low conductivity indicates a high resistivity and vice versa. It follows
from eqn (9.3) that the zero σxx value, σxx = 0, at nonzero σxy value, σxy �= 0,
indicates that resistivity also has the zero value, ρxx = σxx = 0. However, it
should be taken into account that the conducting region is limited along the
Oy-direction. This influences the latter relationship. Moreover, there are always
some scattering centers in the bulk. At finite temperatures, their role may be
played by phonons. Therefore, the classical longitudinal conductivity has the
zero value only approximately, σxx ≈ 0.

Let a film with scattering centers be a strip elongated in the direction of
the Ox-axis and let the boundary conditions set the field component Ex and
the current j = (jx, 0). The drift along the Oy-axis results in the appearance
of charges at the strip side edges and the component Ey of the electric field
across the strip. Therefore, the electric field in the film has two components,
E = (Ex, Ey). The current along the field E is caused by scattering because the
center of the circular orbit can be shifted along the field only due to scattering.
The ratio of the electric-field components Ex and Ey and the σxx value are
determined by the scattering frequency 1/τ .

One more circumstance makes an edge important – in the vicinity of an edge,
electrons are scattered more often. Equations (9.1) and (9.2) include the cur-
rent densities far from the edges. When calculating these densities based on
sample sizes and the current measured outside the strip, one has to bear in mind
the possible existence of some additional edge currents which do not depend
on the frequency 1/τ . Let us consider some classical orbits in the film plane
which are located in the vicinity of its edge. An electron that once reached
the edge and was scattered from it would necessarily be scattered from this
edge at the next turn of its trajectory. As a result of this multiple scatter-
ing, electrons will move along the edge irrespective of the type (specular or
diffuse) of scattering from the edge (Fig. 9.1). Thus, under certain particular
conditions, the current along the external electric field in a pure metal will
flow mainly along its surface. The possible concentration of the direct current
near the surface of a pure metal was first revealed by Azbel in 1963. This
phenomenon is called the static skin effect. It will be clear from the follow-
ing that the quantum analogue of the static skin effect is very important for
the QHE.

On the terminology: Proceeding from the classical considerations alone, one may state
that, far from the edges of an ideal film, the electrons are localized on circular magnetic
orbits but that this localization is soft – in an infinitely low electric field, the electrons
become delocalized in the direction normal to this field. Moreover, at the film edges,
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υ

(a)

(b)

(c)

Fig. 9.1. Motion of classical electrons along the film edge in a normal magnetic
field (a, b) for specular reflection from the edge and (c) for diffuse reflection. In
all cases, the average velocity of electrons, v, has a nonzero value, is directed
along the edge, and, in the first approximation, is independent of the external
electric field.

the electrons are delocalized in principle, i.e., they may participate in infinite motion
along this edge.

Now, we proceed to the quantum description. An ideal spectrum of spinless
electrons in a magnetic field may be represented as a sum of the energies of the
transverse motion ε⊥(N), which depends on the quantum number N , and the
longitudinal motion ε‖(kz) as

ε(N, kz) = ε⊥(N) + ε‖(kz) = �Ω
(

N +
1
2

)
+

�
2k2

z

2m
, N = 0, 1, 2 . . . , (9.7)

where kz is the wave vector along the magnetic field B. The degeneracy γ of the
levels at the given N and kz is

γ =
S

2πr2
B

, (9.8)

where S is the area of the cross-section of the volume occupied by electrons by
the plane normal to field and rB is the magnetic length or magnetic radius

rB =
(

�c

|e|B

)1/2

. (9.9)

If the region occupied by electrons is a slab of thickness b lying in the plane
(x, y) and if the field B is applied along the z-axis, then the kz value in eqn (9.7)
is also quantized, kz = (2π/b)Nz(Nz = 1, 2, . . .) and ε(N, kz) → ε(N,Nz). The
quasicontinuous one-dimensional spectrum ε‖(kz) in each magnetic subband
with the magnetic quantum number N is transformed into a set of discrete
nonequidistant levels

ε‖(kz) → ε‖(Nz) =
�

2

2m

(
2πNz

b

)2

, ∆ε‖(Nz) = ε‖(Nz + 1)− ε‖(Nz)

= 2π2(2Nz + 1)
�

2

mb2 . (9.10)

The spectrum becomes completely discrete, and each level is characterized by
two quantum numbers, N and Nz. The degeneracy γ is the same for all levels;
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according to eqn (9.8), it depends only on the area S filled with a two-dimensional
electron gas and on the magnetic field B. The density of states in such an ideal
two-dimensional gas normalized to unit area is a sum of δ-functions∑

N,Nz

1
2πr2

B
δ(ε − ε(N, Nz)). (9.11)

The coefficient nL =(2πr2
B)

−1 that enters in all the terms of the sum (9.11) is
the electron density for any completely filled Landau level. It may be expressed
in terms of a quantum of the magnetic flux Φ0 as

nL =
γ

S
= (2πr2

B)
−1 =

B

Φ0
, Φ0 =

2π�c

e
. (9.12)

Equation (9.12) signifies that, for a completely filled Landau level, one magnetic-
flux quantum falls to the share of each electron.

Now, let n3 be the electron concentration in three-dimensional space. There-
fore, the electron concentration per unit area of the film is n2 = n3b. Then it
follows from eqn (9.8) for γ that the number of the filled levels at the temperature
T = 0 is determined by the filling factor ν,

ν =
2π�cn2

eB
=

n2

nL
. (9.13)

The integer part of the filling factor ν is the number of completely filled levels,
whereas the fractional part indicates the existence also of a partly filled level
and shows to what extent it is filled. With an increase of the field intensity, the
degeneracy γ also increases, whereas the number of filled levels decreases. The
next level starts emptying when the fractional part of ν becomes zero in the fields

Bi =
2π�c

e
n2

1
i
= Φ0n2

1
i
, (i = 1, 2, 3, . . .). (9.14)

We are interested in very thin films in strong fields in the case where only
several discrete levels are filled. It is convenient to consider a sketch which may
be called “a translation from quantum into quasiclassical language”. Figure 9.2a
shows the section of a Fermi sphere ε(kz, k⊥) = εF0 in k-space for the three-
dimensional case. With no applied magnetic field, the Fermi radius εF0 depends
only on the concentration n3 and sets the energy scale for this diagram. An
applied magnetic field quantizes the transverse momentum k⊥. The integers N
indicate the allowed values of this momentum and the vertical lines are the
sections of the so-called Landau cylinders used in the analysis of the de Haas–
Van Alphen effect in the physics of metals. The finite thickness b of the slab
quantizes the longitudinal momentum kz; its allowed values are indicated by
numbers Nz. Filled dots inside the circumference of the radius εF0 are filled levels
with the quantum numbers (N,Nz). There are nine such levels in Fig. 9.2a plus
one more level (N,Nz) = (3, 1) which seems to be only partly filled (the gray
dot). Since the Fermi level depends on the applied magnetic field and oscillates
in the vicinity of εF0, i.e., εF(B) �= εF0, it is impossible to determine from the
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Fig. 9.2. The allowed states in the (k⊥, kz) plane with their energies propor-
tional to the squared distance from the origin. Filled circles indicate completely
filled levels; partly filled circles indicate partly filled levels, and open circles
indicate empty levels. (a) Levels with different magnetic numbers N and size
magnetic numbers Nz are filled; (b) only the levels with the minimum size
quantum numbers, Nz = 1, are filled; and (c) only the levels with the minimum
magnetic quantum number, Nz = 0, are filled.

sketch to what extent the intermediate level is filled; this may be determined
from eqn (9.13).

In stronger magnetic fields, the transition to the ultraquantum limit takes
place when only one of the discrete quantum levels is filled, (0, 1). As is seen
from Fig. 9.2, this transition may occur in different ways depending on the
b value. In ultrathin films and at heterojunctions, where ∆ε‖(1) ≥ εF0, only
the levels (N, 1) on the horizontal line are filled (Fig. 9.2b). It is these ultrathin
objects that are conventionally used in QHE experiments. However, another case
is possible where for several levels we have ε‖(Nz) < εF0, e.g., if ε‖(Nz) < εF0 at
Nz ≤ 4 (Fig. 9.2a, c). Then, with an increase in the field, only some levels of type
(0, Nz) on the vertical line remain filled. Since the degeneracy is independent of
the quantum numbers N and Nz, eqns (9.8), (9.13), and (9.14) are applicable to
both cases. All the following conclusions made in this chapter are also applicable
to both cases.

The existence of a spin doubles the number of discrete levels. The sets shown
in Fig. 9.2 are implemented for both spin projections but they are shifted by
the value of the Zeeman splitting. An additional increase in the number of levels
and a more complicated spectrum may be caused by the multivalley electron
spectrum of a crystal.

The discrete levels thus obtained correspond to the classical circular orbits
of radius rN ≈

√
NrB with fixed centers. (If Nz �= 1, the rotation along the

orbit is accompanied by the periodic motion across the film between its sur-
faces but still remains finite.) A constant uniform electric field E ‖ Oy applied
to the film transforms the discrete levels into bands, ε(N,Nz)→ ε(N,Nz) +Ey.
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Fig. 9.3. Energies of 2D electrons at discrete Landau levels as functions of the
distance r between the wall of a rectangular potential well and the most remote
point of the classical orbit. Dashed lines indicate the quasiclassical images of
the wave functions – the complete circumferences far from the edge and the
circumference segments in the vicinity of the edge. Open dots indicate the
states with r = rN whose image is an exact semicircle.

Correspondingly, as follows from eqns (9.1)–(9.6), the classical motion in the
direction perpendicular to the electric field E becomes infinite.

The introduction of a finite area S into eqn (9.8) for the degeneracy γ takes
into account the limited size of the conducting two-dimensional region. For sim-
plicity, we assume that the region is a rectangular well, i.e., has vertical walls.
The degeneracy γ is provided by translation invariance, i.e., the equivalence of
orbits having different coordinates of the centers. If the distance from the orbit
center to the edge is less than the classical orbit radius r, the wall imposes a
limitation on the classical electron motion and on its quantum wave function
and the energy of the electron level increases (Fig. 9.3). The abscissa in Fig. 9.3
indicates the distance r from the edge to the most remote point of the classical
orbit. It is also assumed that Nz = 1 (which corresponds to the case shown in
Fig. 9.2b). In particular, the energy of the orbit at the level N with the center
located at the wall (the classical trajectory is a semicircle) equals the energy of
the orbit far from the wall at the level N ′ = 2N + 1,

ε(N, r = rN ) = ε(N ′, r 	 rB).

As a result of an increase in the energies of the levels in the vicinity of the wall,
all the Landau levels intersect the Fermi level. Thus, all of them may contribute
to the conductivity via the edge current. Again, the transformation of discrete
levels into bands at the film edges immediately results in the appearance of
extended orbits (Fig. 9.1).

The above ideal quantum picture will a priori be violated by a random
potential U(r) even in the purest real system. Since a magnetic field sets the char-
acteristic length-scale given by eqn (9.9), two limiting types of random potential
should be considered – a potential with large-scale fluctuations with character-
istic lengths ζ 	 rB and a short-range potential with ζ � rB. Both potentials
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remove the degeneracy of the (N,Nz) levels and give rise to their broadening.
Then, Landau levels are transformed into Landau minibands and the problem
reduces to the determination of the wave functions in these minibands.

Consider in more detail the long-range potential U(r). The effect of such a
potential on the electron may be described by the force ∇U lying in the 2Dplane
and constant within the size of a classical orbit. Now replace E in eqn (9.4) by
∇U and assume that τ = ∞. Under the action of the force an electron drifts along
the direction normal to ∇U , i.e., it moves all the time along the equipotential
lines of the function U(r). Thus, each electron, for all time, is in its own constant
potential U . It is from this potential that one should measure the energy of the
levels (N,Nz). As a result, “inhomogeneous broadening” of the initial δ-like
degenerate (N,Nz) levels takes place.

In the vicinity of the local extrema, the equipotential lines of the function
U(r) are closed contours around these extrema. The direction of the electron
motion along these contours depends on whether they are located around the
local maxima U+ or the local minima U−. The characteristic sizes of the con-
tours, R̃, are the distances within which the wave functions of the corresponding
electrons are localized.

On the terminology. We shall call the wave function of an electron in an ideal 2D
layer in a strong normal magnetic field a softly localized wave function because, as
was shown above, an infinitesimal electric field delocalizes an electron in the direction
normal to this field. On the contrary, quasiclassical states on the equipotential lines of
finite size R̃ are truly localized ones because an applied electric field may only deform an
equipotential line and the weaker the applied field, the smaller the deformation. Thus,
large-scale fluctuations of a potential transform soft localization into true localization
at least for some of the electrons in the Landau miniband.

A random 2D potential has a percolation threshold, on approaching to which,
infinite clusters with the energies higher and lower than the threshold energy both
vanish. The equipotential lines at the threshold are transformed into an infinite
net with an infinite number of self-crossings (see Appendix A). At saddle points,
the quasiclassical electron velocity equals zero and, therefore, formally, one may
consider an electron to be softly localized at the segments of the equipotential
line between its self-crossing points. Taking into account that degeneracy at the
self-crossing points is removed by an applied electric field and that saddle points
may be overcome due to tunneling, the electrons at the percolation level are often
called delocalized electrons. Thus, each Landau miniband has one percolation
level with delocalized electrons. If the random potential is statistically symmetric,
this percolation level is located in the center of the miniband.

Note: generally speaking, one level is not equivalent to one state, because the level
may be degenerate. In the context of the integer QHE, this problem is far from being
simple. Later we shall return to this problem (see eqn 9.28 and also the discussion in
connection with Fig. 9.21).

The width δε of the energy range with the delocalized wave functions depends
on some fine processes such as, e.g., tunneling between two closely located
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quasiclassical trajectories in the vicinity of a saddle point (magnetic breakdown).
In fact, δε is the energy uncertainty of any of the delocalized states.

The true localized states may also arise in a short-range potential. Consider
a short-range potential ζ � rB formed due to isolated impurities. The energy of
an electron moving in the direct vicinity of an impurity varies, which results in
broadening of the Landau level. However, it is not the only effect produced by
an impurity. The classification of the levels formed in the vicinity of an impurity
may be made on the basis of the model of a hydrogen-like impurity in three-
dimensional space. Without a magnetic field, an impurity forms a discrete set
of localized states below the continuum of the extended states. Similar to a
hydrogen atom, this discrete set is described by a set of quantum numbers.
The application of a strong magnetic field results in splitting the continuum of
extended states into a set of one-dimensional magnetic Landau subbands. The
localized states turn out to be located below each of these subbands because,
being detached from an impurity, an electron may be found in any of the Landau
subbands. A decrease in the film thickness and transition to a two-dimensional
system transforms the Landau subbands into discrete levels at which electrons
are softly localized, but the initial true localized states are also preserved. Thus,
impurities not only broaden initially discrete (N,Nz) levels but also create
discrete (and, therefore, localized) levels in their vicinity.

9.2. Experimental observation of integer quantum Hall effect

The most widespread circuit for transport measurements is a Hall bar (Fig. 9.4a),
in which the current J12 flows along the x-axis through side contacts 1 and 2,
whereas the potential difference is measured between the remaining contacts.
The component ρxx of the resistivity tensor ρ̂ is determined from the potential
difference at the contacts located along one edge and the component ρxy is
determined using the contacts located opposite to one another. The formula
for ρxx indicated in Fig. 9.4a is valid under the assumption that the current is
uniform over the whole bar. Since the conditions for observation of the QHE
do not necessarily guarantee a uniform current, it is better to assume that in
the experiments on the QHE, a Hall bar measures the values of the resistance
Rxx = V34/J12.

A circular structure depicted in Fig. 9.4b (the so-called Corbino disk) allows
one to measure the component σxx of the tensor σ̂.

Usually, a two-dimensional electron gas is formed due to bending of the bands
either at the surface of a semiconductor or at the planar boundaries of specially
selected semiconductors. A device of the first type is called a MOS (abbreviation
for metal-oxide-semiconductor) structure; a device of the second type, a hetero-
structure. In the majority of cases, the upper insulating layer of the measuring
structure is additionally coated with a metal film which, together with a 2D gas,
forms a plane capacitor. The film is called a gate. Supplying the voltage Vg to the
gate, one may vary the concentration n of the two-dimensional gas. Therefore, it
is possible to vary the number of filled levels in eqn (9.13) not only by varying the
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rxy = V35/J12

rxx = (V34/J12)(b/a)

sxx = (J12/2pV12)ln(a2/a1)
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Fig. 9.4. (a) Hall bar used for the experimental determination of the component
ρxx of the resistivity tensor by measuring the potential difference between
contacts 3 and 4 or 5 and 6 and for the experimental determination of the
component ρxy by measuring the potential difference between contacts 3 and
5 or 4 and 6 at the current J12 flowing through side contacts 1 and 2; the
specific role of the points A and B is considered in the text. (b) Corbino disk
with two coaxial circular electrodes of radii a1 and a2 used to determine the
component σxx of the conductivity tensor by measuring the potential difference
V12 and current J12 between the coaxial electrodes.

magnetic field B but also by applying a potential difference Vg between the gate
and the 2D gas. If the gate lies at a distance s from the plane with 2D electrons,
then the change of the voltage at the gate, ∆Vg, and the electron concentration,
∆n, are related by the linear dependence

∆Vg = 4π∆n es. (9.15)

Figure 9.5 shows the experimental data (v. Klitzing et al. 1980), which, in
fact, were the first observation of the integer QHE and started its experimental
study. The curves reveal three main features of the phenomenon: (i) plateaus on
the ρxy(Vg) curves in the vicinity of the Vg values at which the magnetic field B
satisfies eqn (9.14) for fields Bi; (ii) the quantized ρxy values on these plateaus,

ρxy =
1
i

(
2π�

e2

)
, (i = 1, 2, 3, . . .); (9.16)

and (iii) the tendency of Rxx(Vg) to go to zero in the vicinity of the same Vg
values. All these features are well seen in Fig. 9.6 which shows on an enlarged
scale the close vicinity of one of these plateaus (in Figs 9.5 and 9.6, Vg values are
different because the corresponding experiments were made on different samples).

Figure 9.5 allows one to formulate the first questions that would be answered
experimentally prior to any serious discussion of the nature of the integer QHE.
Here are the questions and the answers to these questions.

(i) The accuracy of the fulfillment of eqn (9.16). The very first study
(v. Klitzing et al. 1980) showed that the measured ρxy values on the plateau
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Fig. 9.5. Magnetoresistance Rxx and Hall resistivity ρxy as functions of gate
voltage Vg in the MOS structure on the top of a Si surface (v. Klitzing et al.
1980). Magnetic field 17.9T, temperature T = 1.5K. The device dimensions
in the notation of Fig. 9.4a are: a = 130µm, b = 50µm, and current j12 = 1µA.
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Fig. 9.6. Magnetoresistance Rxx and Hall resistivity ρxy as functions of gate
voltage Vg in the MOS structure on a Si surface (v. Klitzing et al. 1980).
Magnetic field 13T, temperature T = 1.8K. The device dimensions a = 130µm
and b = 50µm are the same as in Fig. 9.5, but the distance s to the gate is
different. The accuracy of the measurement of Hall resistivity is 0.1Ω.
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coincide with the values given by eqn (9.16) with an accuracy higher than 10−4.
Today, reproducibility of the e2/2π� value is about 10−8. This showed that
the effect could successfully be used in metrology. However, it was necessary
to answer experimentally the question whether the measured ρxy values also
depend on the carrier sign, multivalley nature of the spectrum, and some other
factors defined by the crystal structure (it turned out that they do not depend
on these factors). Metrology applications also dictated the necessity of studying
the possible effect of impurities, temperature, geometric size of a sample, meas-
uring current, and electron concentration (these factors also turned out to be
inessential over a rather wide range), the variation of ρxy along the plateau, etc.
The results of such studies may be found in the review articles, e.g., Krasnopolin
et al. (1987); Mohr and Taylor (2000). For the following, it is only important
that the quantized values given by eqn (9.16) are well distinguished against the
background of smoothly varying Hall resistivity ρxy(B) or ρxy(Vg).

(ii) Relative extension of plateaus, i.e., their width in comparison with the
distance between these plateaus either along the field B or the gate voltage Vg.
This characteristic is not as stable as the quantized values of Hall resistivity.
The plateau width also depends on the material of the two-dimensional layer of
carriers, impurities, and temperature. Figure 9.7 shows the QHE curves obtained
on a GaAs–AlxGa1−xAs heterostructure. The plateaus occupy a larger part of
the ρxy(B) curve so that the curve looks like a staircase with horizontal steps.
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Fig. 9.7. Magnetoresistance Rxx and Hall resistivity ρxy as functions of mag-
netic field B in a GaAs–AlxGa1−xAs heterostructure (Ebert et al. 1982).
Electron density in the 2D layer 3.7 · 1011 cm−2, mobility µ = 4.1 · 104 cm2/V·s,
temperature T = 8mK.
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The influence of the temperature on the plateau width is illustrated by Fig. 9.8.
The Rxx(B) function also has a specific structure consisting of rather narrow
peaks with the nonzero values being observed only in the intervals between the
plateaus. We shall revisit the problem of plateau width several times.

(iii) Temperature dependence of longitudinal conductivity in the vicinity of
plateaus. In accordance with eqn (9.3), in the vicinity of plateaus, where ρxx ≈ 0,
one has also to expect that σxx ≈ 0. However, this formula is valid only for a
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Fig. 9.8. Illustrating narrowing of the Hall plateau ν = 1 in a GaAs–
AlxGa1−xAs heterostructure with an increase in temperature (Koch et al.
1991). Electron density in the 2D layer is 2.4 · 1011 cm−2, mobility µ=9 ·
104 cm2/V·s.
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Fig. 9.9. Longitudinal conductivity in a GaAs–AlxGa1−xAs heterostructure at
different temperatures; measurements were made on a Corbino disk (Ebert
et al. 1983). Electron density in the 2D layer 3.2 · 1011 cm−2, mobility
µ = 10.5 · 104 cm2/V·s. At the peaks, the uppermost of the fully filled Landau
minibands are indicated.
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spatially uniform current distribution and, therefore, the simultaneous smallness
of the ρxx and σxx values, ρxx ≈ 0 and σxx ≈ 0, requires experimental confirm-
ation. Such confirmation came from the experiment on Corbino disks with the
direct measurements of the σxx values. As is seen from the curves in Fig. 9.9
measured on a Corbino disk, the σxx(B) curve consists of a number of peaks.
With lowering of the temperature, the conductivity between these peaks (in the
field intervals with the Hall plateaus) tends to zero. The law of σxx decreasing
with temperature will be discussed in Section 9.5.

9.3. Mechanism of plateau formation

First, consider the experimental observations of the QHE based on the material
of Section 9.1 of this chapter. Let us change the electron concentration of an ideal
2D system by varying the gate voltage Vg. Considering eqns (9.6) and (9.15), we
may assume that the Hall conductivity would depend linearly on Vg. Indeed, if
the electron spectrum of a 2D gas was continuous, we would have

σxy =
nec

B
=

c(Vg − Vg0)
2πsB

, (9.17)

with voltage Vg0 compensating the contact potentials in the circuit. However, in
strong magnetic fields, one of the capacitor plates has a discrete energy spectrum.
The energy spectrum of the system consisting of an ideal 2D gas plus a gate at
three different gate voltages Vg is illustrated by Fig. 9.10.

Under equilibrium conditions with Vg − Vg0 = 0, the Fermi levels at the gate
and in the 2D gas lie at the same height and are located opposite to one another.
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Fig. 9.10. Fermi level in an ideal 2D gas at various gate voltages Vg. Solid lines
indicate the filled states, dashed lines indicate the empty states. (a), (c) filling
factors ν are fractional and the Fermi level coincides with the Landau Level;
(b) filling factor ν is an integer and the density of states at the Fermi level
equals zero.
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The position of the Fermi level with respect to the Landau levels is set by the
initial concentration n0. Changes in Vg vary the concentration n. Hence, the Vg
changes are described by a displacement of the level εF in the gate relative to
the 2D gas. In the diagram with the voltage Vg =Vg1, the partly filled Landau
level N =2 coincides with the Fermi level. Upon the attainment of a certain
voltage, the level N =2 becomes fully filled so that a further increase in the
carrier concentration in the two-dimensional gas becomes possible only if the
electrons were localized at the Landau level N =3. This is possible only if the
Fermi level in the gate is located in front of this level, i.e., if it is displaced in
the upward direction by a value of �Ω (the right diagram). In turn, this requires
a more intense electric field between the gate and the 2D gas. Therefore, in the
range of voltages Vg,

∆id = �Ω/e (9.18)

the Fermi level is located in the gap between the third and fourth Landau levels
and moves toward the latter (voltage Vg2 > Vg1 in the diagram). The two-
dimensional gas at Vg2 is an “insulator” because it cannot absorb additional
electrons and screen the external electric field. The additional force lines of the
electric field, providing the potential Vg is in the range ∆id, pass through the 2D
layer. The electron concentration in the gate increases but it remains constant in
the 2D gas with the integer filling number ν. The compensating charge arises in
the so-called reservoir outside the 2D layer. The role of such a reservoir may be
played by the impurities in the bulk of the substrate of the 2D layer, the opposite
surface of this substrate, the contacts, etc. If the Fermi level at the voltage
Vg3 > Vg2 reaches the next (fourth) Landau level, the charges from the reservoir
would return back to the 2D layer. The electron concentration in the layer would
first change in a jumping manner and then would smoothly vary in accordance
with eqn (9.15).

At a constant charge concentration in the 2D layer, the Hall voltage remains
constant. Therefore, in an “ideal material,” plateaus with the widths given by
eqn (9.18) would be formed in the vicinity of the V

(i)
g values determined by

eqn (9.14). The plateau heights ρ
(i)
xy are determined by i completely filled Landau

levels and, therefore, would have the exact quantized values given by eqn (9.16).

Once more, these considerations are pertinent to the gedanken experiment with an ideal
2D layer and hence cannot be accepted as an explanation of the QHE phenomenon.
The exact quantized values described by eqn (9.16) were obtained in experiments
performed on real samples characterized by finite disorder and localized states.

In order to evaluate the relative width of the plateaus, ηid, compare the value
of ∆id with the change in the voltage ∆ν necessary for complete filling of one
of the Landau levels, i.e., for the change of ν by one and the concentration
by ∆n = (2πr2

B)
−1. Since the magnetic field enters both expressions, it will be

cancelled. Then, assuming that the permittivity of an insulating layer of the
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capacitor equals unity, we obtain

ηid =
∆id

∆ν
=

�
2/me2

s
. (9.19)

The numerator of eqn (9.19) is the Bohr radius aB. For a hydrogen atom, it
equals 0.5 Å. The small effective mass of electrons in the 2D gas may increase the
aB value by a factor ranging from 10 to 20, but the spacing s in the capacitor
is always much larger. Therefore, the dependence ρxy(Vg) for an ideal 2D gas
would have narrow plateaus spaced by considerable distances.

A random potential in the 2D layer broadens the Landau levels into mini-
bands. In accordance with the above consideration, the miniband includes at
least one extended state located in the vicinity of the center of a broadened dis-
tribution and some localized states at the periphery of this distribution. Suppose
the Landau minibands do not overlap so that they are spaced by the intervals
of forbidden energies. With an increase in Vg, the Fermi level, first, moves over
the localized states of the lower Landau miniband and then, after passing the
region with zero density of states, over the localized states of the upper Landau
miniband (Fig. 9.11). Filling of the localized states would not change the value
of the Hall voltage so that the relative width of the plateau, η, becomes equal to

η = ηid + ηloc 	 ηid, (9.20)

where ηloc is the fraction of the localized states at the Landau miniband.

Note that the rates of the Fermi level shifts over the energy spectrum of the 2D gas,
dε/dVg, in the regions shown in Figs. 9.11b and 9.11c are different.
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«F
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N = 2 «2
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Fig. 9.11. The same as in Fig. 9.10 for a real 2D gas with a random potential
which has transformed the Landau levels into nonoverlapping Landau mini-
bands. The localized states at the band edges are hatched. The lower layer
N = 0 is not shown. (a) States at the Fermi level are extended; (b) states at
the Fermi level are localized; (c) density of states at the Fermi level equals
zero when the filling factor ν is an integer.
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Fig. 9.12. The same as in Fig. 9.11 but at a constant Vg value and a gradually
decreasing magnetic field B.

All that stated above about plateau formation on the ρxy(Vg) curves in 2D
devices with a gate is also valid for the ρxy(B) curves. An increase in Vg is equi-
valent to a decrease in the field B. Because of the lowering of the degeneracy γ,
the number of electrons at lower Landau levels decreases, and the filling factor
of the 2D system increases as well as the number of electrons at the upper level,
ε(N) = εF. Figure 9.12 illustrates the equivalence of the variation of Vg and B.
Since the gate charge does not alter with the variation of the magnetic field, the
Fermi level εF should be considered as fixed. If there is no gate at all, the level
εF is fixed by the environment of the 2D gas with which the gas is in thermo-
dynamic equilibrium. With a decrease in the field, the degeneracy γ of the levels
also decreases (eqns 9.8 and 9.9) and, to be able to fit in the same number of
electrons, the system of levels has to be displaced downward. Unless the localized
part of the Landau miniband is located in front of the Fermi level, the localized
states are filled up and the Hall resistivity ρxy remains constant (Fig. 9.12b).
When the density of states at the Fermi level attains the zero value (Fig. 9.12c),
the 2D system becomes insulating and transparent for an electric field, etc.

Thus, in managing to explain the relative broadening of the plateau by the
existence of localized states, we immediately proceed to the main difficulty
encountered in the interpretation of the QHE. Localized states do not contri-
bute to the Hall current jy. Moreover, the existence of these states indicates
a decrease in the number of delocalized states participating in the Hall effect.
Therefore, the main problem here is the cause of the precise values of the Hall
resistivity on the plateau. Assuming for definiteness that a random potential
U(r) includes only large-scale fluctuations, consider this problem in terms of
the concepts formulated by Iordansky (1982), Kazarinov and Luryi (1982), and
Luryi and Kazarinov (1983).

Figure 9.13a shows a percolation net of equipotential lines at the level U = U0.
Now, apply an electric field E ‖ Ox to a 2D layer. The field removes the
degeneracy at the saddle points. The energies at the points A1 and A2, which
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Fig. 9.13. (a) Net of equipotential lines at the percolation level U = U0 in a
2D electron gas with a large-scale random potential U(r); (b) the same in an
electric field (Iordansky 1982). The + and − signs indicate the local extrema of
the function U(r). The equipotential lines, U =const., in the hatched regions
go to infinity.

earlier were located on one potential line, now differ by eEζ, where ζ is the pro-
jection of the distance between these points onto the direction of the field E . As
is seen from Fig. 9.13b, the net is transformed into a system of zigzag strips with
the width λ being dependent on the local value of the random-potential gradient
|∇U |U0 as

λ(r) =
eEζ

|∇U |U0(r)
(9.21)

where r is the current coordinate along the strip. The equipotential lines inside
these strips go to infinity along the Oy direction, and between the strips, these
lines form closed contours. Since λ(r) → 0 as E → 0, the strip width equals the
larger of the λ and rB values.

Now return to Fig. 9.4 and consider a seemingly formal detail. The expression
for the Hall voltage,

V35 = J12ρxy (9.22)

does not include the geometric sizes a and b of the device and the voltage V35
depends only on the total current J12 flowing through the device, the field B, and
the concentration n, which enter ρxy. This signifies that the regular geometric
shape of the Hall bar used is not important when measuring ρxy. It is only neces-
sary that the 2D gas should “connect” the contacts used in the measurement.
The contributions that come to the transverse conductivity from the percolation
net inside a Landau miniband formed by a random potential and from the Landau
level under the ideal conditions of an ideal regular potential are the same. A large
number of holes in the plane occupied by the ideal 2D gas would not change the
ρxy value, if the boundedness of such a plane is preserved. This is the key point
that should be kept in mind for understanding the essence of the QHE.
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Each Landau miniband located below the Fermi level has a narrow layer
of delocalized states. In crossed fields, this layer makes the contribution
∆σxy = e2/2π� to the transverse conductivity. The total value of the transverse
conductivity σxy in the mode of QHE plateaus is obtained by multiplying ∆σxy

by the integer number i of such layers of delocalized states lying below the Fermi
level. In the QHE plateaus mode, the longitudinal conductivity is absent, so that

σxx = 0, σxy = i

(
e2

2π�

)
. (9.23)

Let the quantities B and Vg have values such that the upper Landau level is
filled only partly (noninteger value of ν in eqn 9.13). For large-scale fluctuations
of potential, the area S occupied by the 2D layer is divided into two regions. In
one of these regions, the upper Landau level is completely filled with electrons,
whereas in the other, the upper Landau level is absolutely empty. As long as
the fractional part of the factor ν is small and the region of the 2D layer filled
with electrons has only closed equipotential lines of finite size, i.e., only the
localized states, these electrons do not affect the transport properties. However,
with an increase in the concentration n (or a decrease in the field B), the Fermi
level would reach the layer of delocalized states on the percolation net and the
contacts of the Hall bar in Fig. 9.4a would be connected by the percolation net.
This net covers only a part of the total area and may consist of fine fibers and
contain large holes, whose shape is unimportant. Unless the states on this net
are filled only partly, the longitudinal conductivity σxx has a nonzero value and
the transverse conductivity σxy, an intermediate nonquantized value. As soon as
all the extended states of the percolating layer become filled up, the transverse
conductivity σxy attains the next plateau.

Equation (9.23) relating σxy to the number of layers with delocalized carriers
in the energy space below the Fermi level explicitly suggests that broadening of
each Landau level under the action of a perturbing potential U(r) results in the
formation of only one layer of delocalized states. Then the question arises whether
formation of several layers of extended states with energies ε

(1)
N < ε

(2)
N < · · · is

possible within one Landau miniband. Such layers may be formed but only under
specific conditions: (i) if U(r) is a periodic potential and (ii) if the magnetic flux
Φ through the elementary cell of the potential U(r) differs from the quantum
of the magnetic flux Φ0 by a rational factor, i.e., if Φ = (p/q)Φ0, where p and q
are integers. It follows from the second condition that this potential U(r) should
itself depend on the magnetic field.

Note that a priori we do not consider here a crystal potential against whose background
2D systems are always formed. The crystal potential initially renormalizes the electron
spectrum, it may make it multivalley, anisotropic, etc., and may change its effective
mass. In the hierarchy of potentials, the crystal potential is the most important. The
applied magnetic field acts on the electrons thus renormalized.

Despite all its seeming exotics, the “lattice variant” of the perturbing potential
U(r) is very important. It is here that the road from the integer to fractional
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quantum Hall effect begins. However, the fractional quantum Hall effect is beyond
the scope of this book.

9.4. Edge channels

The sense and the role of the edge channels are discussed in detail in the review
by Büttiker (1990).

Below, we consider the current distribution in samples in the QHE mode, i.e., at
those B or Vg values at which the Hall plateaus are formed with the resistivity
given by eqn (9.16) and Rxx � ρxy. Assume that a random potential is a large-
scale one and start our consideration with a Corbino disk (Fig. 9.4b) – the
simplest measuring device with the 2D region having no edges except electrodes.

On a Corbino disk, a system of zigzag strips whose width is given by eqn (9.21)
arises from the percolation net in the form of nonintersecting closed lines around
the internal electrode. The Hall current jy flows along these lines and avoids
the regions with the equipotential lines not encompassing the internal electrode
(Fig. 9.14). Under the above assumptions, no current flows between the coaxial
electrodes.

The current distribution in a Hall bar (Fig. 9.4a) is more complicated because
its contacts are located at the edges of the 2D region in such a way that, moving
along the edge, it is possible to pass from one contact to another. As was indic-
ated earlier, the edges of the 2D region have specific properties. Let the boundary
be sharp, so that the 2D region would be bounded by vertical walls. It is seen
from Fig. 9.3 that in this case, there exists a specific region – a strip with width
of the order of rB along the edges. Inside this strip, the Fermi level is reached by
all the Landau levels located below. This strip is a multichannel 1D transport
formation with the number of channels equal to the number of Landau levels
filled by more than 50% (such systems were described in Section 5.2). It follows
from the classical description of the electron motion in this strip that electrons
would collide with the edge at each “turn” of their motion and would be displaced
at each subsequent turn in the same direction along the channel axis (Fig. 9.1).

0

V

Fig. 9.14. Equipotential lines in a Corbino disk with a large-scale random
potential in the QHE mode (Kazarinov and Luryi 1982).
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The specific feature of the kinematics of this motion is that these electron col-
lisions with the edge give no rise to backscattering. Therefore, the strip along
the edge is not a simple 1D system but an ideal multichannel system of the type
described by eqn (5.13). In a magnetic field, a finite current would flow over all
the channels of this system.

Note that in principle, scattering from one channel to another is possible if ν > 2,
although this scattering should change the quantum number N or the direction of the
electron spin. However, this scattering would not lead to dissipation. The transition
from a channel to the bulk also may take place via large-angle scattering from the
impurities located at a distance of the order of rB from the edge. This scattering
process is important: it causes dissipation and washes the current out of the edge
channels.
Necessary refinement. The assumption of the existence of a sharp boundary of the
2D region is not confirmed in practice. Usually, there is no vertical potential wall
and the width of the region in which the lower Landau levels reach the Fermi level
considerably exceeds rB. As a result, instead of one multichannel strip with i channels,
we have i closely located one-channel strips parallel to the edge of the 2D region.
It is this picture that is usually invoked in the discussion of real experiments. This
problem is considered in detail in the original paper of Chklovskii et al. (1992). This
refinement does not matter when the Hall current distribution inside the 2D region is
discussed.

Now, let us remove contacts 3–6 from the Hall bar shown in Fig. 9.4a, so
that the bar becomes a rectangular two-contact sample shown in Fig. 9.15. As
earlier, we assume that ρxx = 0. This signifies that although the current flows
along the A′B and B′A edges, no dissipation would take place. Therefore, the
potential between the contacts along the edge is constant. By definition, the
A′A and B′B edges of the contacts adjacent to the metal are equipotential lines.
Therefore, the rectangular contour of the 2D region of a two-contact sample has
two equipotential segments, AB and BA, with the potential difference between
them equal to V12. At the points A and B, the potential has jumps, and all the
equipotential lines with the potentials 0 < V < V12 would also be concentrated
in the vicinity of the points A and B. The configurations of these lines in the

1 2

B

A

V12

0

J12

A�

B�

Fig. 9.15. Field distribution in an ideal rectangular two-contact sample in the
QHE mode at T = 0. The potential along the solid lines connecting the A and
B points is constant. Dashed lines indicate the potential gradient along which
the electric field is directed. The density of the equipotential lines (the value
of the electric field) is discussed in the text.
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absence of a random potential are shown in Fig. 9.15. Such a configuration of
the potential field seems incredible. However, we should like to make a small

lyrical digression concerning general physics. Letting a current J flow along a wire with
resistivity � which is fixed on a wall and forms there an intricate pattern, we formulate
a rather complicated problem for Nature – to find the solution to the Laplace equation
�φ = 0 with the boundary condition that an electric field E = −∇φ on the wire
surface would always be directed along this wire and be equal to E = J�. Nature solves
this problem “at the velocity of light” by placing additional static charges on the wire
surface. The field configuration in Fig. 9.15 is no more complicated. The needed charges
are placed along the edges of the rectangle.

In terms of the external circuit, the current J12 not shown in Fig. 9.15 plays
the role of the current jx in the notation of eqn (9.2). However, inside the bar,
it represents in fact the current jy, because it flows along the equipotential lines
of the electric field. According to eqn (9.16), the ratio V12/J12 is equal to

V12

J12
=

1
i

(
2π�

e2

)
, i = 1, 2, 3, . . . (9.24)

Let us divide the current J12 into i equal parts, J12 = iJi, in accordance with the
number of the Landau minibands below the Fermi level and rewrite eqn (9.24)
in the form

J12 =
∑

Ji = i

(
e2

2π�

)
V12. (9.25)

Equation (9.25) shows that Ji may be considered as currents flowing in parallel
over i one-dimensional ideal channels (5.13) between contacts 1 and 2. This
interpretation, first proposed by Büttiker (1990), reduces all the currents in the
QHE mode to edge currents. Each Landau miniband below the Fermi level with
one extended state and the rise to the Fermi level along the sample perimeter is
equivalent to one of these ideal channels.

Pay attention to the similarity of the model of edge channels and the static skin effect,
a classical phenomenon of the current concentration near the surface in pure metals at
low temperatures (Fig. 9.1).

Formally, another interpretation of the flow of the current J12 through the
sample is possible. The Hall current contains equal contributions from all i layers
of delocalized states inside Landau minibands. According to Figs 9.10–9.12 all
these i layers are below the Fermi level. This means that the Hall current in
the 2D electron system can flow along the states below the Fermi level. This is
possible because the Hall current is nondissipative.

Consider one of the i filled minibands lying below the Fermi level and represent
the energy εN of an electron with the corresponding quantum number N as a
function of the orbit-center position. As a result, we arrive at a surface ε(r) which
reminds us of a U-shaped wash-tub with the bottom corrugated by a random
potential (Fig. 9.16). In this model, the current flows along the equipotential lines
(chains of dots) of the wash-tub bottom. Naturally, the final result is the same
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Fig. 9.16. Potential energy of electrons from one of the filled Landau levels as a
function of their position in the 2D region. Dotted lines are the equipotential
lines along which the nondissipative currents flow.

as in the model of edge channels: the nondissipative current Ji = (e2/2π�)V12
between the points A and B.

We have discussed two models which give different predictions about the Hall-
current distribution in a 2D plane. According to Thouless (1993), an intermediate
variant takes place in practice. The Hall current indeed flows along the edges of
the 2D region but it decays logarithmically at distances r from the edge much
larger than the magnetic length rB, as log(r/rB). The decay is due to screening
by the 2D electron gas of the field of static electric charges disposed along the
perimeter of the 2D region for satisfaction of the boundary conditions of the
Laplas equation. Because of the screening, the equipotential lines in Fig. 9.15
are arranged densely along the sample edges and rarely in the middle. As the
screening by the 2D electron gas is poor, the line density falls off slowly with
distance r from the edge.

In essence, the current indeed flows in the bulk but the current density is
proportional to |E| ∝ |∇U | and therefore falls off with distance from the edge.
The deviations from the model of edge channels are due to the electron scattering
from the edge channels to the bulk. It follows from the aforesaid that both models
can be used to describe the distribution of the Hall currents. The edge channel
model by Bütteker is usually used for a high-mobility 2D gas in wide Hall bars
while the model of currents in the bulk below the Fermi level is applied to a 2D
gas with strong scattering and to narrow bars.

Now, return contacts 3–6 to the Hall bar, i.e., come back from the configur-
ation in Fig. 9.15 to the configuration in Fig. 9.4. If no current flows through
contacts 3–6, the situation remains practically the same, so that V1 = V3 = V4
and V2 = V5 = V6 and

V35 = V46 = V12 =
J12

i

(
2π�

e2

)
, V34 = V56 = 0.

It is worth obtaining direct proof that currents below the Fermi level indeed
exist. The special experiments on a Corbino disk (Dolgopolov et al. 1990,
1992) proved that charge transfer really takes place below the Fermi level.
Instead of applying a potential difference to circular electrodes 1 and 2 of a
Corbino disk (Fig. 9.4b) one may slowly vary a strong magnetic field B normal
to the disk plane. Now the roles of the circular and radial directions are
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exchanged: a circular electric field Ecirc ∝ ∂B/∂t arises in the disk and the Hall
current becomes radial. Since there is no edge connecting the circular electrodes,
the Hall current may flow only “through the bulk” and is forced to flow below the
Fermi level. This current may be measured by an electrometer switched between
contacts 1 and 2.

Note that the mechanism of the appearance of the Hall current j ∝ σxyEcirc is such
that electrons receive no energy from the electric field Ecirc. Here comes a new problem:
how to measure the current flowing in the external circuit. A conventional amperemeter
connected to circular contacts would unavoidably dissipate some energy because of its
internal resistance. On the other hand, the charge at the electrodes may be measured by
an electrometer only if the charge is not dissipated because of the internal conductivity
σxx. This signifies that a measuring circuit with an electrometer may only be used for
measurements on QHE plateaus, where σxx = 0.

The results of such experiments are illustrated by Fig. 9.17. It is seen that
the charge Q in the electrometer starts increasing as soon as the change in the
field brings the sample to the QHE plateau where σxx = 0. With the appearance
of the finite conductivity σxx at the opposite end of the plateau, the charge
is dissipated. The charge sign depends on the direction of the field change.
In the plot shown in Fig. 9.17, with an increase in the field Q > 0 and with
a decrease in this field Q < 0. The rate of charge increase, i.e., the slope of
the line, ∆Q/∆B, allows one to determine the σxy conductivity. However, the
accuracy of this determination is insufficient for studying the constancy in σxy

along the QHE plateau, but is quite sufficient to distinguish the integers i in
eqn (9.23).
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Fig. 9.17. Longitudinal conductivity σxx as a function of magnetic field (below)
and transfer of charge Q between the electrodes of a Corbino disk during
field variation in the QHE mode (above) (the directions of changes of the
field are indicated by arrows). A Corbino disk with sizes 2a1 = 225µm and
2a2 = 675µm was prepared based on a MOS structure on the top of a Si
surface. Temperature T = 25mK (Dolgopolov et al. 1990, 1992).
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9.5. Density of states of 2D electron gas in a magnetic field

The density of states schematically shown in Figs 9.11 and 9.12 is of fundamental
importance and, therefore, has been repeatedly studied experimentally. First,
consider the experimental measurements of the density of localized states.

The ρ(Vg) and ρ(B) curves form plateaus at such Vg or B values at which the
Fermi level is located in the region of forbidden or localized states at distances
ε1 and ε2 from the nearest levels of the extended states. In this case, the dis-
sipative conductivity arises only because of thermal carrier excitation to these
levels playing the part of a mobility edge. Hence, one may expect that the
changes of the longitudinal resistivity and longitudinal conductivity would obey
the activation law

σxx ∝ exp[−(ε∗/T )], ρxx ∝ exp[−(ε∗/T )]. (9.26)

Figure 9.18 shows the experimental data obtained for a GaAs–AlxGa1−xAs
heterostructure-based Hall bar. It is seen that the resistivity ρxx really varies
according to the activation law (9.26). The ε∗ value determined by the slope of
the straight lines in Fig. 9.18a is essentially dependent on the applied magnetic
field. The physical processes occurring in this case are well explained based on
Figs 9.11 and 9.12. The longitudinal resistivity is inversely proportional to the
carrier concentration at the level N = 2 or the hole concentration at the level
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Fig. 9.18. (a) Temperature dependence of the longitudinal resistance of the
GaAs–AlxGa1−xAs heterostructure in the temperature range 20–3K at dif-
ferent values of the magnetic field in the vicinity of the filling factor ν = 2.
Mobility 5.5 · 105 cm2/V·s (Stahl et al. 1985). (b) Density of localized states
in the gap between the Landau levels determined by Stahl et al. (1985) from
experiment. ε1 is the middle of the Landau miniband N = 1 and g0 is the
density of states without a magnetic field.
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N = 1. Therefore, ε∗ which enters eqn (9.26) is equal to

ε∗ = min (|εF − ε1|, |εF − ε2|), ε2 − ε1 ≈ �Ω. (9.27)

The latter relationship is accurate within the ratio of the width of the layer of
extended states to the cyclotron frequency, δε/�Ω.

The slope of the straight line ln ρxx vs 1/T is maximum if the Fermi level is
located exactly in the middle between the two mobility edges, which corresponds
to an integer value of the filling factor ν. In Fig. 9.18a, the maximum slope is
attained at ν = 2. The change of the slope ∆ε∗ with the variation of B or Vg
determines the shift of the Fermi level, ∆εF = ∆ε∗. The number of electrons,
∆n, at the localized levels in the energy interval ∆εF is determined either from
∆Vg according to eqn (9.15) or from ∆B according to eqn (9.13). Thus, we imme-
diately obtain the density of states in the energy gap between the Landau levels,
g(ε) = ∆n/∆ε. As is seen from Fig. 9.18b, this density has an unexpectedly high
value – about 10% of the density of states g0 in zero magnetic field.

However, note that the measured density of states also depends on the electrons located
in the reservoir. This is especially important if the reservoir levels are located so close
to a 2D gas that they are in thermodynamic equilibrium with it.

The existence of a finite density of states in the gap between the Landau
levels indicates that considerable lowering of the temperature in the QHE mode
should change the conductivity over the delocalized states given by eqn (9.26)
to the variable-range hopping conductivity over the states in the direct vicinity
of the Fermi level (see Chapter 4). Figures 9.19 and 9.20 (with the range of
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Fig. 9.19. Temperature dependence of the longitudinal resistivity of the
GaAs–AlxGa1−xAs heterostructure in the QHE mode in the temperature
range 5–1K. Electron concentration 2.4 · 1011 cm−2, mobility 0.8 · 105 cm2/V·s
(Tsui et al. 1982).
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Fig. 9.20. Temperature dependence of the longitudinal conductivity of the
GaAs–AlxGa1−xAs heterostructure in the Corbino geometry in the QHE mode
at B = 4.4T in the temperature range 0.2–0.02K. Electron concentration
3.2 · 1011 cm−2, mobility 0.38 · 105 cm2/V·s (Ebert et al. 1983). The original
σxx(B) curves for this sample at different temperatures were shown in Fig. 9.9.

temperatures lower than the range of temperatures in Fig. 9.18) show that the
change of the type of longitudinal conductivity really takes place. The exponent
T−1/3 in the activation law indicates a constant density of states in the vicinity
of the Fermi level (see eqn 4.23), whereas the exponent T−1/2 usually indicates
the existence of a Coulomb gap (see eqn 4.29). Two different exponents obtained
in two different experiments may indicate the change of the hopping conductivity
mode during the downward shift along the temperature scale. Indeed, the interval
used in Fig. 9.19 is located in the region of lower temperatures than in Fig. 9.20
(cf. Figs 4.3 and 4.4 in Chapter 4). On the other hand, it may also be possible
that this fact simply reflects different properties of the two samples.

The problem of the density of states in the vicinity of the levels with
extended states is more interesting and, to some extent, is also more important.
Figure 9.13a shows the percolation net for a large-scale random potential U(r).
Formally, a random potential eliminates degeneracy and, thus, makes the level
corresponding to the percolation net nondegenerate. However, we have already
indicated various factors favorable for delocalization of electrons with energy
close to the percolation threshold. These factors are: magnetic breakdown, ran-
dom short-period fluctuations, finite sample size, finite temperatures, etc. To
evaluate the relative number of extended states in one Landau miniband, we
assume that the characteristic cell size of the percolation net is Λ. This size is
determined by the nature of the potential. Thus, if the random potential U(r)
is formed due to impurities located in the depth of an insulator at a certain
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distance from the 2D layer, then Λ ∝ N −1/2, where N is the 2D concentration
of these impurities. The total length of the “fibers” of this net per unit area of
the 2D layer is of the order of 2/Λ. Assuming that the fiber width is not less
than 2rB, we may state that the fibers of the infinite net would occupy at least
a fraction 4rB/Λ of the total area of the 2D layer. It follows from eqn (9.8) that
the fraction of the delocalized states in the Landau minibands, η ext, is also of
the same order of magnitude,

η ext ∼ rB/Λ. (9.28)

In Figs 9.11 and 9.12, the unhatched area in the center of the density-of-states
curve which describes a Landau miniband equals η ext whereas the total area
under the curve is unity.

9.6. Chains of phase transitions

Examining the Rxx(B) and ρxy curves in Figs 9.7 and 9.8 as well as the σxy

curves in Fig. 9.9, we immediately come to the conclusion that the states at the
QHE plateau are separate phase states with specific transport properties

σxx → 0, σxy = i(e2/2π�), i = 0, 1, 2, 3, . . . (9.29)

The phases with i > 0 in eqn (9.29) cannot be considered as insulators because
of the properties ρxx = 0 and σxy = i(e2/2π�) �= 0. At the same time, the prop-
erty σxx = 0 does not allow one to consider these states as metallic ones.
Therefore, they are called quantum Hall liquids with different quantum Hall
numbers (Kivelson et al. 1992). Which of the quantum Hall numbers is imple-
mented in practice depends on the filling factor given by eqn (9.13). In order
to understand how the smooth variation of ν results in the transition from the
quantum number i to the quantum number i± 1, consider Fig. 9.11 or Fig. 9.12.
In these figures, the parameter governing the filling factor ν is the voltage Vg
or the field B. Let the evolution of the filling factor ν be such that the Fermi
level approaches the unhatched region. If the integral density of the extended
states η ext is comparatively low, then, with the change of ν, the Fermi level rap-
idly passes the corresponding region and the change of the governing parameters
results in a phase transition from one quantum-Hall-liquid state to another. This
transition is accompanied by a jump in the transverse conductivity by the value
|∆σxy|= e2/2π�. In this case, the metallic properties are possessed only by the
boundary state, whereas on both sides of the transition, σxx = ρxx = 0. If the
density of states in the vicinity of this level is high, then the layer of extended
states pins the Fermi level. Then the phase transition is split into two trans-
itions; a metallic state with the Fermi level inside the layer of extended states is
formed between two states of the Hall liquid with the i values differing by unity.
Which of the two variants is realized in practice depends on a number of factors
determining the concrete realization of a random potential.

All this may be illustrated by the experimental curves. In the case of an inter-
mediate metallic phase, the slope of the step of ρxy and the width of the peak
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Fig. 9.21. Magnetoresistance ρxx and Hall resistivity ρxy of the GaAs–
AlxGa1−xAs heterostructure at temperature 50mK. Electron concentration
4 · 1011 cm−2, mobility 0.86 · 105 cm2/V·s (Paalanen et al. 1982). Peak 1↓ of
the ρxx curve is comparatively low and peak 1↑ is not formed at all. The ver-
tical dashed lines indicate a half-integer filling factor ν at which the simplest
model would undergo phase transitions with the jumps in the Hall resistivity
ρxy (the vertical dash lines are plotted after the paper by Cheng in the book
edited by Prange and Girvin (1990) where these experimental data are also
reproduced).

Rxx should tend to finite values with lowering of the temperature. The curves in
Fig. 9.7 illustrate such behavior: with lowering of the temperature, the Rxx peaks
increase (Ebert et al. 1983). The ρxy curves in Fig. 9.21 (Paalanen et al. 1982)
behave somewhat differently: the peaks between the plateaus with low i values
decrease and, at low temperatures, completely disappear. This was observed des-
pite the fact that the sample parameters in both experiments were rather close.

If a slope ∂ρxy/∂ν of the step rise between two plateaus tends to a finite
value with lowering of the temperature, it may be used to estimate the fraction
of delocalized states in the Landau miniband, eqn (9.28). In the sample whose
curves are shown in Fig. 9.7, the fraction for the lower minibands amounts to 3%.

The region corresponding to the quantum number i = 0, should possess some
specific properties: according to eqn (9.23), all the components of the σ̂ tensor
are zeroes: σxx = σxy = 0, and diagonal components of the resistivity tensor ρ̂
are infinite: ρxx = ∞. Therefore, this region is named a Hall insulator.

The energy diagrams in Fig. 9.11 and Fig. 9.12 with nonoverlapping symmet-
rical Landau minibands lead to the assumption that the transitions should take
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place at half-integer filling factors

ν = ν(0)
c = (i+ 1)/2, i = 0, 1, 2, . . . . (9.30)

In Fig. 9.21 illustrating the experiments at a fixed n concentration, eqn (9.30)
determines the fields Bi in which one may expect phase transitions and the
corresponding steps in the ρxy curve. As is seen from Fig. 9.21, relationship
(9.30) is fulfilled only approximately.

The discrepancy between the νc and ν
(0)
c values may be caused by several

factors.
First, it may be the asymmetry in the density and the arrangement of the

positively and negatively charged sources of a random potential, which, in turn,
may give rise to the displacement of the layer of extended states from the center
of the Landau miniband. Second, the shift of the νc values may be caused by
the level broadening exceeding the spacings between the levels. If the tail of the
localized states of the miniband A extends outside the maximum of the density
of states of the miniband B and vice versa, then the number of states in the
energy layer between two maxima corresponds to the change of the filling factor
∆ν < 1. This would result in the convergence of the two transitions from the
initial positions (i − 1)/2 and (i+1)/2 on the ν scale. This seems to explain the
approaching of the transitions 2↑ and 2↓ in Fig. 9.21.

In weak magnetic fields, one more cause may give rise to the shift of the phase
boundaries toward higher ν values – the so-called level floating-up or levitation.
Level floating-up was predicted by Khmelnitskii (1984, 1992) based on the asser-
tion that the description of the QHE with delocalized states inside each Landau
miniband in the limit B → 0 should be consistent with the scaling hypothesis
which states that all the 2D electron states in zero magnetic field should be
localized (see Chapter 6). With a decrease in the magnetic field, an ever increas-
ing number of Landau levels descend below the Fermi level, N ≈ εF/�Ω. This
should also be accompanied by the accumulation of the same number of extended
states below the Fermi level. On one hand, the extended states cannot gradually
be transformed into localized ones; on the other, no such states would exist in
the zero field.

To solve this seeming paradox, let us analyze the transport properties of a 2D
electron gas in the region Ωτ < 1.

On the terminology. The fields Ωτ < 1 are usually called weak fields. However, in this
chapter, we consider the fields �Ω(N0 + 1/2) � εF where N0 = 4–5 (Fig. 9.2), i.e., the
fields in which a magnetic length rB given by eqn (9.9) only slightly exceeds the aver-
age distance n−1/2 between 2D electrons, B ∼ (c�/e)n. Therefore, in this case, the
inequality Ωτ < 1 signifies, in fact, a strong field at very strong disorder, �/τ ∼ εF.

Consider the classical equation (9.5) for the components of the conductivity
tensor in a magnetic field and the relationship

σxy = (Ωτ)σxx (9.31)

that follows from there.
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Equation (9.31) should work locally on a small scale of the order of the mag-
netic length rB given by eqn (9.9). On the scales of the order of a sample size,
the formulas for the QHE are valid and yield for the transverse conductivity the
values (9.23) at the plateaus and the values

σxy =
(

i+
1
2

)(
e2

2π�

)
. (9.32)

in between, where the (i+1)st delocalized state attains the Fermi level. In order
to sew these two scales together, substitute the quantum expression (9.32) for σxy

into eqn (9.31) and retain the classical expression (9.5) for σxx. Now, solving the
equation thus obtained for the electron concentration n that enters the classical
expression for σxx, we obtain

n =
(

i+
1
2

)
1

2πr2
B

1 + (Ωτ)2

(Ωτ)2
. (9.33)

Since the Fermi energy in a 2D gas depends linearly on the concentration n,
we obtain from eqn (9.33) an expression for the energy E⊥ of the N -th extended
state (Fig. 9.22) in the form

E⊥(N) =
(

N +
1
2

)
�Ω

1 + (Ωτ)2

(Ωτ)2
= ε⊥(N)

(
1 +

1
(Ωτ)2

)
. (9.34)

For convenience, we used in eqn (9.34) the same notation as in eqn (9.7) at the
beginning of this chapter (i.e., ε⊥ and N instead of i).

In the derivation of eqns (9.33) and (9.34), we used a somewhat dubious
approach comparing the conductivities determined on different scales. Now, we
make another rather arbitrary generalizing assumption that eqn (9.34) is also
valid at Ωτ < 1. Since the fraction in eqn (9.34) at high Ωτ values is of the
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Fig. 9.22. Level floating-up. Solid curves represent the energies of the extended
states as functions of Ωτ in accordance with eqn (9.34); dashed straight lines
starting from the origin show the should be positions of the half-filled Landau
levels in accordance with eqn (9.30).
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order of unity and rapidly increases at low Ωτ , the energy E⊥(N) increases with
a decrease in Ωτ . This phenomenon is called floating-up of extended levels. With
a decrease in the magnetic field, the energy of the extended levels increases and
the extended levels, one after another, start crossing the Fermi level.

Note that an increase of E⊥(N) given by eqn (9.34) in weak fields, i.e., floating-up, takes
place in the region Ωτ < 1, where the Landau classification of the levels is somewhat
inadequate. Therefore, eqn (9.34) cannot be considered as the dependence of the energy
of a particular extended level on B. However, the existence of the extended levels
and their energy do not depend on the basis used for their description. Therefore,
one may hope that the scaling procedure used in the transition from eqn (9.31) to
eqn (9.33) adequately determines the behavior and the sign of the quantum correction
caused by scattering. Thus, the problem reduces to the experimental verification of such
behavior.
Note also that eqn (9.34) is written for the energies of extended states and not for the
centers of gravity of the Landau minibands.

The speculations underlying the conclusion about level floating-up are not
quite rigorous. In fact, this is rather an extension of the scaling hypothesis
(Chapter 6) to two-dimensional systems in magnetic fields. For a more rigor-
ous consideration, one has to use much more sophisticated mathematical tools
(see, e.g., Pruisken 1990). Therefore, as earlier in Chapter 6, we concentrate
our attention on the experimental consequences and verification of the above
conclusions.

The experiments confirmed, at least partly, the concept of level floating-up.
Floating-up is best illustrated by the measurements of the positions of the max-
ima of the dissipative component of resistivity ρxx by varying the field B or the
concentration n ∝ Vg. The maxima are observed at the same B and n values at
which the extended states are located at the Fermi level. In the simplest model,
these are the straight lines in the (B,n) plane described by eqn (9.30), so that
the concentration should decrease linearly with the field. However, it is seen from
Fig. 9.23 (Glozman et al. 1995) that at low i values, this is not always so. Indeed,
with a decrease in the field, the maximum of the function σxx(n), first, really
moves toward lower concentrations, but then shifts back. One may also estab-
lish the limits of a possible field decrease: in the fields Ωτ < 1, the maximum is
broadened and the measurement accuracy decreases. Nevertheless, an increase
in the energy of the lowest extended state may be reliably observed in weak
fields (Fig. 9.24b).

Equation (9.34) and Fig. 9.22 show that the extended delocalized states should
preserve their individuality up to the crossing of the Fermi level. Up to now, this
theoretical prediction has not been either proved or disproved. It follows from
numerous studies that the energies of the extended states cannot be lower than
a certain level and that the energy of the lowest of these states increases with a
decrease in the field. However, it is still uncertain how these states behave with
respect to one another.
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9.7. Two-parametric scaling

For different approaches to the concepts underlying two-parametric scaling we
recommend the review by Huckestein (1995) and the short article written by the
same author (Huckestein 2000).

The scaling hypothesis in the application to a disorder-controlled metal–insulator
transition was discussed in Chapter 6. Now, the problem reduces to the genera-
lization of the approach used in Chapter 6 and its application to 2D systems in
strong magnetic fields. In fact, we have already started this process by formu-
lating and verifying the assumption that levels may float up. Now, we take the
next step and introduce another scaling diagram instead of the diagram with
β(y) functions used in Fig. 6.1.

When selecting a function that represents the state of a 2D system, there is
no need to choose between conductivity and conductance like in the case of a
metal–insulator transition, because, in this case, they coincide. However, because
of an applied magnetic field, the conductivity has two components, σxx and σxy,
and the logarithmic derivatives βij of both with respect to the system length L
can be presented as functions of the conductivity (cf. eqn 6.3 in Chapter 6):

d lnσxx

d lnL
= f1(σxx, σxy),

d lnσxy

d lnL
= f2(σxx, σxy), (9.35)

(it is assumed that the temperature T = 0, as it was when eqn (6.3) in
Chapter 6 was written). In a metal–insulator transition, the system behavior
was determined by only one parameter – the conductance y, whereas in the case
under consideration, we have two parameters, σxx and σxy; whence the term
two-parametric scaling.

Eliminating the variable L from both expressions of eqn (9.35), we arrive at
the relationship between σxx and σxy, which may be represented in graphical
form as curves in the (σxy, σxx) plane (Khmelnitskii 1982). This plane is called
the phase plane and the curves, the phase trajectories.

On the terminology. A similar representation is widely used in mechanics, where the
system motion is described as the trajectory of a mapping point in the (q, q̇) plane,
where q is the generalized coordinate. This explains the terms “phase plane” and “phase
trajectory,” where the word “phase” signifies the motion characteristic and not the state
of a substance. Since the problem under consideration is from solid state physics and
focuses upon the states of substances, then, in order to avoid any misunderstanding,
the terms “flow diagram” and “flow trajectories” are often apllied to the set of curves
describing two-parametric scaling. These terms are also borrowed from mechanics. As
will be seen hereinafter, the flow diagram also includes the lines which determine the
positions of interphase boundaries in the (σxy, σxx) plane and, thus, also represents
the phase diagram determining possible transitions between the states of a 2D electron
system.

The phase trajectory of a mechanical system starting from the point (q0, q̇0)
set by the initial conditions determines the system evolution in time, which
figures as an implicit parameter. In the QHE flow diagram, the role of time
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is played by the system size L, and the initial condition is understood as the
values of components of the conductivity tensor, eqn (9.5), which are valid in
the classical limit within the length L of the order of a magnetic length rB
given by eqn (9.9). The motion along the flow trajectory signifies a gradual
transition to larger lengths L. This should result, first, in the allowance for
quantum corrections. A further increase in L should lead to more pronounced
corrections and the initiation of the localization processes, which, finally bring
the system to the QHE state.

Based on the above reasoning, we may make a draft of the diagram with
scaling flow trajectories (Fig. 9.25a). This would be a variant of the scaling
hypothesis suitable for 2D systems in a strong magnetic field. As L → ∞, the
QHE is observed and conductivity takes the values given by eqn (9.23), so that
all the trajectories should converge into the points(

e2

2π�
i, 0
)

, i = 0, 1, 2, . . . (9.36)

located on the σxy-axis. In Fig. 9.25, these are the points Ai, the stationary
singular points of the flow diagram. All the trajectories in the vicinity of such
a point are directed toward this point. Each of the points Ai corresponds to its
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Fig. 9.25. (a) Scaling phase plane, also called a flow diagram. The coordinates
are the components σxy and σxx of the conductivity tensor in dimensionless
e2/2π� units. Solid lines are separatrices, dash lines are the flow trajector-
ies, Ai are stationary singular points, Ci are nonstationary singular points.
(b) Positions of the initial points of the flow trajectories determined by n,
τ and B values relative to the separatrices in the flow diagram. The dashed
line inclined at 45◦ to the axes separates the regions with Ωτ > 1 (below) and
Ωτ < 1 (above). The two dashed semicircles, eqn (9.37), are the geometric loci
of the points satisfying eqn (9.5) at fixed σ0 and varying Ωτ values. About the
dotted curves see the text.
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own phase of the quantum Hall liquid with the quantum number i > 0 (here the
word “phase” has the sense of the state of a substance) or to a Hall insulator at
i = 0. The phase plane is divided into the regions inside which all the trajectories
converge into one of the points Ai. The lines separating these regions are called
separatrices.

Let a certain point (σ0
xy, σ0

xx) be an initial point. The quantum correc-
tions to the longitudinal conductivity were discussed in detail in Chapter 2.
Since we discuss here strong magnetic fields, the weak localization may be
considered to be destroyed, so that only the interelectron interactions are
taken into account. These interactions lead to the logarithmic correction
(2.37) to σxx and in the same approximation they give ∆σxy = 0. There-
fore, the initial segments of the flow trajectories are represented by vertical
straight lines. Hence, the separatrices are also represented by vertical straight
lines.

In each i < σxy/(e2/2π�) < i+ 1 interval between the stationary points with
coordinates given by eqn (9.36), there exists a nonstationary singular point C
at a certain σxx = σ∗

xx > 0 in the vicinity of which the flow of trajectories starts
branching. Since the quantum phases with different numbers i have similar prop-
erties, it is also necessary to require the periodicity of the diagram along the
σxy-axis with period e2/2π�. Then the system of separatrices acquires the form
of a net represented by solid lines in Fig. 9.25. The vertical separatrices in the
flow diagram at the same time divide the regions with different quantum states
and, therefore, represent the interphase boundaries of the phase diagram so that
the flow diagram is simultaneously a diagram of phase states. The extreme left
interphase boundary passing through the point C1 separates the state of an insu-
lator i = 0 from the state of the quantum Hall liquid i = 1. According to this
diagram, the insulator i = 0 has no boundaries with other states of the Hall
liquid, those with i > 1. This signifies that only the 0→ 1 transitions are pos-
sible, whereas the 0→ 2, 0→ 3, etc., transitions are forbidden. This is one of
the main predictions based on the scaling hypothesis which has to be checked
experimentally.

Practically any point in the (σxy, σxx) plane may serve as the initial (σ0
xy, σ0

xx)
point of the flow trajectory, i.e., may be regarded as the classical conductivity of
the 2D system on small scales. The only exceptions are the points in a narrow
strip along the abscissa, where the phase trajectories that describe the fractional
quantum Hall effect are located. (This region is beyond our interest; we refer the
readers who are interested in this region to the fundamental study by Kivelson
et al. 1992).

The arrangement of the initial points becomes clear from Fig. 9.25b. The
coordinates of these points depend on three parameters: concentration n, elastic-
scattering time τ , and magnetic field B. The product of the first two parameters
determines the material conductivity in zero field, σ0, whereas the two latter
parameters enter the dimensionless product Ωτ . If one fixes both n and τ , thus
putting σ0 = ne2τ/m = const., then according to eqn (9.5), with the variation
of the magnetic field in the range 0 � B � ∞, the mapping point describes, in
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the plane, a semicircle given by the equation

(σ0
xy)

2 + (σ0
xx − σ0/2)2 = σ2

0/4. (9.37)

The upper part of the semicircle given by eqn (9.37) corresponds to fields Ωτ < 1,
the lower part, to fields Ωτ > 1. The upper part may be considered as the geomet-
ric locus of the initial points of the phase trajectories. It is not so simple about
the lower part. When calculating the classical conductivity σ0

xx with the help of
the kinetic equation in the Ωτ 	 1 limit, it is important to take into account the
quantization of the electron spectrum ignored in relationships (9.4) and (9.5). As
the density of states at the Fermi level goes to zero at the integer filling factors
i = 1, 2, 3 . . ., such quantization makes the conductivity σ0

xx equal to zero as well,
whereas at the half-integer values, ν = (i + 1)/2, the “ classical conductivity of
electrons with the quantized spectrum” attains a maximum. Therefore, one can-
not use the lower segment of the semicircle for determining the initial points of
the trajectories. The curves that may be used instead of the lower segment of
the semicircle are shown by dots in Fig. 9.25b.

Thus, the draft of the diagram is completed and we may proceed to its
experimental verification.

Note that since the n, τ and B values determine the initial point of the flow trajectory,
their variation results not in motion along the trajectory but in transitions between
different trajectories. Therefore, the dependence of the resistivity-tensor components
on B or Vg (the most widespread type of measurements) is inefficient for studying
the diagram structure. For example, it is clearly seen from Fig. 9.21 that the phase
transition denoted as 1↓ is shifted with respect to the half-integer filling factor ν = 3.5.
However, one may readily see that even this scarce information will be lost in projecting
the experimental points from Fig. 9.21 onto the phase diagram.

To move along the trajectory, one has to change the length L of the system
still remaining at the temperature T = 0. This procedure cannot be performed
in practice. However in a real experiment (at a finite temperature), the quantum
coherence is lost within the diffusion length, Lϕ, determined by eqn (2.7) in
Chapter 2. If Lϕ < L, the scaling relationships are determined by the diffusion
length. This allows one to move along the phase trajectories by varying the
temperature. This requires that the diffusion length should considerably exceed
the elastic mean free path l, so that at any temperature, the following inequalities
would be fulfilled:

l � Lϕ(T ) < L. (9.38)

Recall: When discussing the effect of the weak localization on the scaling curves in
Section 6.1 (see there Table 6.1), we used the opposite substitution: assuming that
T = 0, we replaced Lϕ by L in the formulas of weak localization.

Now, proceed with the experiment on heavily silicon-doped GaAs films
(Murzin et al. 2002) for which the inequality Ωτ < 1 is valid in all the attainable
magnetic fields. The 25–40 nm thick GaAs films with the Si (donor impurity)
concentration about 1.5·1017 cm−3 were grown by molecular beam epitaxy. This
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Fig. 9.26. Scaling flow diagram of heavily doped GaAs films (Murzin et al.
2002). For symbols see the text (the series of equivalent symbols are obtained
by temperature variation in the range from 4.2K to 40mK). Dashed flow
trajectories and the semicircular separatrix (σxy − 1/2)2+σ2

xx =1/4 are drawn
based on scaling theory (Huckestein 1995, 2000; Pruisken 1990).

method of sample preparation ensures a rather uniform impurity distribution
and electron concentration along the 2D layer. From the ρxx and ρxy values
measured at a certain fixed temperature, the σxx and σxy values were calcu-
lated. Then, each of these values was divided into two under the assumption
that the electronic system consists of two noninteracting subsystems with differ-
ently oriented spins, which give the same contributions to the total conductivity.
Then the points obtained were plotted onto the flow plane. The series of equi-
valent symbols in Fig. 9.26 represent the measurements made on the same film
in a fixed field at different temperatures. Different symbols indicate the points
measured in different fields (from 0.9 to 6.0T), and, finally, differently filled
symbols (filled, filled from below, filled on the right, and empty) correspond to
measurements made on four different films. The experiments confirm the com-
mon structure and the form of flow trajectories in the vicinity of the interphase
boundary 0 ↔ 1, including the region Ωτ < 1.

In a certain sense, it is more important to check the basic predictions of
the two-parametric scaling hypothesis in the region Ωτ < 1. Unfortunately, the
achievements here are rather modest. Let us move from right to left along
this region of the diagram, e.g., along the upper segment of the semicircle
σ0 = const. by decreasing the magnetic field (Fig. 9.25b). If the phase boundaries
σxy = (i+ 1)/2, i = . . . 2, 1, 0 are crossed because of a decrease in the field, the
Hall conductivity should decrease by e2/2π�. Let us specify this prediction on
a hypothetical sample for which Ωτ ≈ 1 at the filling factor ν ≈ 4. On decreas-
ing from an infinite field B = ∞, the resistivity ρxy(B) would decrease stepwise
from high values to ρxy ≈ 6.5 kΩ as in the case of a sample of higher quality in
Fig. 9.21. However, a further decrease in the magnetic field would lead in the
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hypothetical sample to an increase of ρxy in discrete steps instead of a stepwise
decrease of ρxy in the sample with a weak random potential in Fig. 9.21. Up
to now, nobody has managed to experimentally observe such a reverse stepped
structure of the ρxy(B) function in weak fields. In terms of the level floating-up,
this signifies that nobody has managed to observe how the individual extended
levels float up one after another and cross the Fermi level (cf. Fig. 9.22 at the
end of the previous section).

The experiments performed on pure samples for which the pure limit Ωτ > 1
is attained in strong fields did not clarify the two-parametric scaling. Some
experimental results agree with the scaling diagram, whereas some other exper-
imental results contradict it. There are claims that the transitions exist from
the state with i=0 directly to the states with i=2, i=3, etc., which con-
tradict the diagram of two-parametric scaling. These statements are made
under the assumption that it is possible to establish the fact of a phase trans-
ition and identify the phases based on the sign of the derivatives ∂ρxx/∂T
at low temperatures. However, this assumption itself should be verified and
proved.

The problem of the 0 → (i > 1) transitions is closely related to the question
of whether only the lowest of the extended levels may float up (which is seen
in Figs 9.23 and 9.24) or whether the following extended levels also float up
separately. This is well illustrated by the diagram in Fig. 9.27 (Hilke et al. 2002).
The open dots are plotted based on the positions of the steps in ρxy and indicate
the transitions between different quantum liquids. Filled dots are plotted based
on the analysis of the ∂ρxx/∂T derivatives. Examining Figs 9.23 and 9.24, one
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Fig. 9.27. Transitions between different quantum Hall phases of a two-
dimensional electron gas in heterostructure Ge–SiGe against the background
of the fan of the half-filled Landau levels in accordance with eqn (9.30). Open
dots are obtained from the positions of the steps of the ρxy function; filled
dots, from analysis of the intersections of the ρxx(B) isotherms at different
temperatures (Hilke et al. 2002).
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can clearly see that, in fact, the filled dots point to floating up of the lowest of
the extended levels. If the branches of the empty dots rest on the branch with
filled dots so that the levels merge together, then the boundary appears between
an insulator and the states with i > 1. This makes possible the corresponding
0→ (i > 1) transitions. If these branches bend up as the levels do in Fig. 9.22,
the 0→ (i > 1) transitions are impossible.

However, since, in any case, the insulator state is adjacent to the ordinate axis,
the QHE phase diagram in the limit B → 0 is consistent with the statement of the
scaling hypothesis of the localization of a 2D electron gas in zero magnetic field.

References

Abrikosov, A.A. (1988). Fundamentals of the Theory of Metals. North-Holland.
Butcher, B., March, N.H., and Tosi, M.P. (eds) (1993). Physics of Low-dimensional

Structures. Plenum Press.
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A

ELEMENTS OF PERCOLATION THEORY

Elementary mathematical treatments of percolation theory are given in the books
by Stauffer and Aharony (1994) and Feder (1988). In applications to the problems
of solid state physics, percolation theory is considered by Shklovskii and Efros
(1984). Some of the physical applications are also discussed in the review by
Isichenko (1992).

Similar to other branches of mathematics, percolation theory is used in various
fields of human activity. Below, we briefly consider the main concepts of percola-
tion theory and the consequences that follow from it mainly for the transport
problems in inhomogeneous media we are interested in. We consider a medium
as a discrete lattice and formulate two simple types of problems. Let us color
some randomly chosen lattice sites and use the fraction x of color sites as the
main independent parameter. Each site is connected with the nearest neighbours.
A connected set of one kind of sites (e.g., all color or all uncolor) is called a cluster.
Two color sites belong to the same cluster if it is possible to connect these sites by
a continuous chain of color neighbors. Then, the problem of sites may include the
determination of an average number of sites in a cluster, the size distribution of
clusters, the formation of an infinite cluster, and the determination of the fraction
of color sites in it. It is also possible to randomly color the bonds between the
neighbor sites and to assume that a cluster contains the sites connected by chains
of color bonds. Then again, we have to determine an average number of sites in a
cluster, size distribution of such clusters, etc. but now for the problem of bonds.

In some problems, it is natural to rename color sites or bonds into open ones
assuming that a flow (e.g. the electrical current) can pass only through open
elements. If all the sites (bonds) are closed, x = 0, the lattice is a model of an
insulator. If all the sites (bonds) are open, x=1, and a current may flow over the
open sites and conducting bonds, the lattice is a model of a metal. At a certain
critical value x=xc, a percolation transition takes place – a geometrical analogue
of a metal–insulator transition. It is most important to consider the percolation
theory in the vicinity of this transition, whereas far from such a transition, it is
sufficient to consider the approximation of an effective medium.

A.1. Approximation of effective medium

This problem is considered in detail in review article by Kirkpatrick (1973).

Consider an isotropic orthogonal lattice of dimension d with a period a, where
all the sites are connected with their nearest neighbors by independent bonds
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k

J

skl

l

Fig. A.1. The conductivity σkl of the kl-bond for a current J flowing through
two neighboring sites k and l of a square lattice is shunted by the conductivity
of bonds σshunt in the remaining part of the lattice.

having conductivities σkl. As an example, Fig. A.1 shows a square lattice with
d = 2. Knowing the dispersion in σkl values, one has to calculate an average σm

value which determines the conductivity of the net

σ = σma2−d. (A.1)

Assume first that all the σkl are equal, σkl = σm. Now attach electrodes to
two neighboring sites k and l of the lattice and let the current J flow through
the circuit. Let us make a two-step calculation of the current flowing through the
bond σkl. First, remove the electrode l to infinity. Then the current J flowing in
through the electrode k is uniformly distributed over the z bonds coming to the
site k, so that the current through each bond is J/z. (The parameter z for the
square net in Fig. A.1 is z = 4; for a three-dimensional cubic lattice, it is z = 6.)
Now, let us remove the electrode k to infinity, and let the current J flow out
through the electrode l returned back from infinity to its initial place. Current J
flows to the site l again through z bonds. The current through the bond σkl is
exactly the same as in the first case, J/z, and flows in the same direction. The
superposition of these two configurations yields the current distribution we are
interested in: the current J through the electrodes at the sites k and l and no
current at the infinity. In this case, the current that flows through the kl bond is

ikl =
2J
z

. (A.2)

Then, it follows from Ohm’s law that

2J
zσm

=
J

σm + σshunt
, (A.3)

where the denominator in the right-hand side includes the sum of the conduct-
ivity of the kl-bond, σkl = σm, and the conductivity σshunt of the remaining net
shunting this bond. The latter can be determined from eqn (A.3),

σshunt = σm(z/2− 1). (A.4)

Equations (A.2)–(A.4) determine the current distribution between the bond con-
necting the sites k and l and its environment. The conductivity σ is determined
by the quantity σm which enters eqn (A.1).
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Now, assume that all σkl are different. Then, it follows from Ohm’s law that
the following equations are valid for any pair of neighboring sites k and l:

ikl

σkl
=

J − ikl

σshunt
, ikl = J

σkl

σkl + σshunt
. (A.5)

These equations should be averaged over all possible pairs of sites. The aver-
aging scheme is called the effective-medium approximation. This approximation
is based on two assumptions:

(i) Equation (A.4) for σshunt is also valid in the system with random σkl, because
shunting is provided by a large number of bonds over which averaging is
performed; whence the name of this approximation – the effective-medium
approximation; sometimes, it is also called the mean-field approximation.
The quantity σm defined in eqn (A.4) determines, as earlier, the conductivity
in accordance with eqn (A.1).

(ii) Supplying successively the electrodes to a large number of site pairs, we
obtain that the average current 〈ikl〉 is determined by eqn (A.2) derived for
a homogeneous medium

〈ikl〉 =
2J
z

. (A.6)

Averaging eqn (A.5) based on the above two assumptions, we obtain the final
expression

2
z
=
〈

σkl

σkl + σm(z/2− 1)

〉
. (A.7)

To solve any problem, we have to substitute the distribution function for σkl into
eqn (A.7). If σkl = 1 with probability x and σkl = 0 with probability 1 − x, we
obtain the solution in the form of a straight line with the slope dependent on
the number of nearest neighbors z,

2
z
= x

1
1 + σm(z/2− 1)

, σm =
x − 2/z

1− 2/z
. (A.8)

Figure A.2 shows the dependence obtained for square (d=2, z=4, dash lines)
and cubic (d=3, z=6, solid lines) lattices. The zero value of the function σm(x)
signifies the occurrence of a percolation transition. In the vicinity of this trans-
ition, the effective-medium approximation becomes invalid because in this case
both assumptions underlying this approximation are unjustified. Therefore, the
true critical value xc or the so-called percolation threshold lies not at the inter-
section point of σm(x) and the abscissa, but to the left of it. This becomes clear
from the next section.

Note: Figure A.2 also shows the functions σm(x) for the case where σkl changes its
value (with probability 1−x) from unity to 1/2 and not to zero. It is seen that they are
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Fig. A.2. Conductivity of square and cubic lattices in the efficient-medium
approximation in the case where the (1−x) bonds are broken (two lower
curves) or possess conductivity twice lower than the conductivity of the
remaining bonds (two upper curves).

no longer straight lines. At such σkl values, no percolation transition can take place,
and the effective-medium approximation is applicable in the whole range of x variation.

A.2. Percolation thresholds

In the vicinity of a percolation transition, the effective-medium approximation
becomes invalid, and the exact results may hardly be obtained by analytical
methods. The analytical solutions are obtained for a one-dimensional lattice
(d=1) and an infinite Bethe lattice (d=∞). The solutions for d=2 were
obtained only for some simple lattices. In other cases, the problems are usu-
ally solved numerically by computer simulation. For most widespread 2D and
3D lattices, the percolation-threshold values x

(s)
c for the site problem and similar

x
(b)
c values for the bond problem are listed in Table A.1.
The xc values listed in Table A.1 obey some empirical rules. In the bond

problem, the product Ib of the number of bonds z (connecting each site with all
the nearest neighbors) by the critical value x

(b)
c depends only on the dimension d

and is Ib = zx
(b)
c ≈ d/(d − 1). In the site problem, the corresponding invariant

Is = fx
(s)
c has the coefficient f instead of z. This coefficient is equal to the fraction

of the volume occupied by contacting spheres of equal radii located at all the
lattice sites (for 2D lattices, spheres are reduced to circles, and a volume to an
area). As is seen from Table A.1, for 2D lattices, this coefficient is maximal for a
triangular lattice; for 3D lattices, it is maximal for a face-centered lattice. This
explains the term “close-packed lattice.”

The values of the empirical invariants Is and Ib show that the fundamental
parameter in percolation problems is not the lattice symmetry or the number of
nearest neighbors but the space dimension. Let color (open) sites be occupied
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Table A.1.

Site problem Bond problem

x
(s)
c f Is = fx

(s)
c Lattice type x

(b)
c z Ib = zx

(b)
c

d = 2 0.59 0.79 0.47 Square lattice 0.5∗ 4 2.0
0.5∗ 0.91 0.46 Triangular lattice 0.35∗ 6 2.1
0.7 0.61 0.43 Honeycomb lattice 0.65∗ 3 2.0

d = 3 0.31 0.52 0.16 Primitive cubic lattice 0.25 6 1.50
0.25 0.68 0.17 Body-centered lattice 0.18 8 1.44
0.20 0.74 0.15 Face-centered lattice 0.12 12 1.44
0.43 0.34 0.15 Diamond structure 0.39 4 1.56

An asterisk indicates that the marked xc value was calculated analytically.

by conducting spheres with diameters that ensure the contact of the spheres
occupying the neighboring sites. Then percolation takes place due to the forma-
tion of infinite chains of contacting spheres. The invariant values show that a
percolation transition may take place in d=2 space, i.e. in a plane, if about 45%
of the plane is conductive and it may also take place in d=3 space, if 16% of
the space is conductive.

The site problem may be modified somewhat if for the cluster affiliation it is
enough for a site to be among the second, third, etc., nearest neighbors of the
site which belongs to the cluster. Thus, the number of neighbors the given site
is connected with increases, the conditions for the attachment of the given site
to a cluster are facilitated and, as a result, the critical x value is reduced. In
Fig. A.3, this is illustrated on the square lattice. The open sites are indicated by
crosses. Considering three coordination layers of sites inside the circle of nearest
neighbors (Fig. A.3a), we see that four open sites from the total ten form the
cluster. If one increases the region of strong interaction to four layers (Fig. A.3b),
then seven open sites of the total ten enter one cluster. Similar data for three
different three-dimensional lattices are given in Table A.2, which lists the values
of the critical concentrations in cluster formation under the assumption that
joining is allowed for sites from one, two, or three layers of the nearest neighbors.

The last line of Table A.2 indicates the critical values of the product zx,

zx ≈ 4π
3

( r

a

)3
x =

4π
3

r3N. (A.9)

Here r is the radius of the sphere that envelopes all the layers of sites to which
the cite in the origin is connected, a3 is the unit-cell volume, i.e., the volume
per site, and N = x/a3 is the number of color sites per unit volume, i.e., the
concentration independent of the lattice parameters. The approximate equation
(A.9) is fulfilled the more rigorously, the larger the layer number, ν, and the
radius r. Therefore, for sufficiently large r, the zx

(sν)
c values in the last line

of the table should be independent of the chosen lattice. Computer simulation
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Fig. A.3. Square lattice in which crosses indicate open sites and the circles
single out the sites interacting with the site in the center. On the left:
circles include three coordination layers of the site in the center (triangles,
squares, and pentagons). On the right: the same with four coordination layers
(triangles, squares, pentagons, and hexagons).

Table A.2.

Primitive cubic Body-centered Face-centered

Number of 1 2 3 1 2 3 1 2 3
layers ν

Number of 6 18 26 8 14 26 12 18 42
neighbors z

x
(sν)
c 0.31 0.14 0.10 0.25 0.175 0.095 0.195 0.14 0.06

zx
(sν)
c 1.84 2.45 2.52 1.94 2.45 2.47 1.84 2.45 2.52

confirms this statement and also shows that, as ν → ∞, zx
(sν)
c tends to its limit,

B
(3)
c = 2.7.
The universal nature of the zx

(sν)
c limit for different lattices is not accidental.

At large r, one may displace the open sites from their positions by distances
s � a � r without any serious consequences. These displacements signify the
transition to a new problem, percolation in a system of random sites, equivalent
to the site problem in a lattice but at a rather high ν. For percolation at random
sites, we have

4π
3

r3Nc = B(3)
c = 2.7; πr2Nc = B(2)

c = 4.4. (A.10)
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The expression in the left-hand side of the second expression in eqn (A.10) is
written for a 2D lattice with circle area instead of sphere volume; the numerical
value B

(c)
2 = 4.4 is obtained by computer simulation.

In eqn (A.10), r is the maximum distance at which sites remain connected
(interaction radius). Then, relationships (A.10) determine the critical concen-
tration Nc. However, the problem may be formulated differently. At the given
concentration N , eqn (A.10) determines the percolation radius rc, i.e., the
minimum interaction radius that ensures percolation.

A particular class of percolation problems is formed by continuum problems.
Let us set a random continuous function Umin � U(r) � Umax with the average
value U(r) = 0 and statistical properties, which are invariant with respect to the
transformation U → −U in the space of dimension d. We call any bound domain
in which the inequality U(r) � u is fulfilled a color cluster and any domain in
which the inverse inequality, U(r) > u, is valid, an uncolor cluster. The clusters
thus defined are analogous to the clusters in the lattice problems. Now, denote
the total volume of all the color clusters normalized to the unit volume by S1(u)
and similarly normalized total volume of uncolor clusters, by S2(u) , so that
S1 + S2 = 1. Now, displace the level u from Umin in the upward direction. At
sufficiently small u, u � Umin, the number of color clusters is rather small and
the clusters themselves are also small, but there is one infinite uncolor cluster.
With an increase in u, the average size of color clusters increases. The formation
of an infinite color cluster at u = uc1 and S1(u) = Sc1 indicates the occurrence of
a percolation transition. At the opposite end of the interval of possible potential-
energy values at u � Umax, there exists an infinite color cluster. With a decrease
in u in this domain, the number of uncolor clusters and their average value
increase unless at certain values, u = uc2 and S2(u) = Sc2, an infinite uncolor
cluster is formed. The statistical symmetry of a random potential U(r) yields
Sc1 = Sc2. The concrete Sc1 and Sc2 values depend on the space dimension d.
We are interested first of all in the cases with d = 3 and d = 2 considered in brief
below.

In the three-dimensional case, d = 3, computer simulation yields the values
Sc1 = Sc2 = 0.17. In the range uc1 < u < uc2, there are both color and uncolor
infinite clusters. The continuum three-dimensional percolation model may be
used to describe the localization of a classical electron: if U(r) is the poten-
tial energy of an electron, then the color clusters Umin � U(r) � u are domains
accessible for an electron with energy ε = u. The percolation transition at u = uc1
signifies that an electron with the energy u > uc1 moving by the laws of classical
mechanics may go to infinity.

For a clearer presentation, when passing to a two-dimensional space, d = 2, we
invoke geographical terminology and assume that U(r) is the height of a certain
local point with the coordinate r of the district. The local maxima and minima
of the U(r) function, U+ and U−, are the heights of the hills and the depths
of the hollows, respectively. Now assume that the water level in this district
changes. As long as the level is low, the color clusters are lakes in the vicinity of
the points U− and the coastlines of these lakes are the equipotential lines of the
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potential U(r) passing around the points U−. At a low water level, the territory
may be crossed by dry land. With a gradual rise of water, its level attains a local
saddle point of the function U(r), and the lakes would merge together. Further
increase of the water level forces the third lake to merge with the first two, and
so on. In the reverse limiting situation – a very high water level – only some
small islands (uncolor clusters) are seen around the U+ vertices above the water
surface, and the territory may be crossed only by water. Now, the equipotential
lines became island perimeters. Therefore, there exists a certain intermediate
water level at which the coastline passes through the whole territory although,
at some places, where the water level reaches the height of the saddle point, the
width of the connecting water neck is confined into a point.

An infinite cluster is statistically isotropic. If such a cluster exists, then the
territory may be crossed along this cluster in any direction. On the other hand,
if at a certain water level, the territory may be crossed over dry land, then
certainly it cannot be crossed by water along the perpendicular direction. This
signifies that for d = 2, two infinite clusters cannot coexist. Now, consider also
the statistical symmetry with respect to the U → −U transformation. We obtain

Sc1 = Sc2 = 0.5. (A.11)

If there is no statistical symmetry, the percolation threshold may be displaced,
so that eqn (A.11) becomes invalid. However simultaneous existence of two infin-
ite clusters is still forbidden, so that, instead of eqn (A.11), we have only the
condition Sc1 + Sc2 = 1.

It is interesting to compare the Sc values obtained for both dimensions with
the invariant Is in the site problem for regular lattices which has the same phys-
ical meaning (see Table A.1). In both cases, the Sc values are somewhat higher.
However, for d=3, the difference between these values is at the error level,
whereas for d=2 it exceeds the possible error. The lattice gives rise to some
correlations and elements of regularity in the structure of a random function.
This results in some new features in the structure of color clusters and displaces
the point of the formation of an infinite cluster.

A.3. Region close to the percolation transition

To study the region around a percolation transition, we introduce several import-
ant functions of concentration x of open sites (for definiteness, we consider here
the site problem). Let ns be a number of s-site clusters per lattice site, so that
at x < xc (i.e., in the absence of an infinite cluster), we have∑

s

sns = x, x < xc. (A.12)

If x > xc, a certain part P (x) of open sites is included in an infinite cluster:

P (x) =
{

x −
∑

s sns, x � xc
0, x < xc.

(A.13)

The function P (x) is called the strength of the infinite cluster.
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Now, define the correlation function q(r) as the probability that a site located
at distance r from an open site of a finite cluster is also open and belongs to
the same cluster. The obvious properties of the function q(r) are q(0) = 1 and
q(a) = x (a is the lattice parameter). Since, by definition, the cluster is finite,
then q(r) → 0 at r → ∞. The average number S(x) of sites in a finite cluster
(to which the initial open site also belongs) is

∑
r q(r), and the summation is

performed over all the lattice sites.
The quantity S(x) may also be represented directly in terms of the size dis-

tribution of clusters. The probability that an arbitrary site belongs to a cluster
with site number s is sns, and the probability that this site belongs to a certain
finite clusters is

∑
s sns. Therefore, the ratio ws = sns/

∑
s sns is the probability

for a cluster, to which an arbitrarily selected open site belongs, to contain s sites.
Making such a choice many times, we arrive at the average value

S(x) =
∑

r

q(r) =
∑

s

sws =
∑

s s2ns∑
s sns

. (A.14)

The function S(x) is called the average cluster size. (Note that we consider here
not a linear size, like a diameter, but an average number of sites in a finite
cluster.)

The linear size, in turn, is defined by the ratio

ξ2 =
∑

r r2q(r)∑
r q(r)

=
∑

r r2q(r)
S(x)

. (A.15)

The function ξ(x) is called the correlation length. In fact, it is the average linear
size of an average cluster “typical” for the given x. It is important that the
function ξ(x) is defined on both sides of the percolation threshold. At x > xc,
the finite clusters are located in the “holes” of an infinite cluster. Therefore,
the correlation length in this region is usually interpreted as an average hole
size in an infinite cluster. The function S(x) is also defined on both sides of the
percolation threshold.

The function P (x) goes to zero at the percolation threshold, where the func-
tions S(x) and ξ(x) go to infinity. The main postulate underlying the theoretical
description of a percolation transition reads that with the approach to the
threshold all these functions vary as powers of the distance to the threshold,

P (x) ∝ (x − xc)β , x > xc,

S(x) ∝ |x − xc|−γ

ξ(x) ∝ |x − xc|−ν

}
The exponents γ and ν have the same values
on both sides of the threshold. (A.16)

The above functional dependence has been repeatedly checked experiment-
ally. Computer simulations not only confirm the power dependence, but also
demonstrate the universal nature of the exponents β, γ and ν dependent only
on the space dimension d and not dependent either on the lattice symmetry
or the problem type. This is the characteristic property of the theory of phase
transitions where analogous exponents are called critical indices. Critical indices
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Table A.3.

d = 2 d = 3

Power of an infinite cluster, P β 5/36 0.417
Localization length ξ ν 4/3 0.875
Average number of sites in a cluster, S γ 43/18 1.795

are also universal and depend on the dimension alone. Thus, it has been reliably
established that, in terms of the rigorous mathematical description, a percolation
transition is analogous to a second-order phase transition.

In this case,

– the fraction x of open sites (bonds) plays the role of temperature;
– the power P (x) of an infinite cluster is analogous to the order parameter;
– the function ξ(x) is the localization length in the transitions of both types;
– the average cluster size S(x) should be compared with a thermodynamic
function, e.g., with susceptibility in a magnetic transition.

The critical indices in the vicinity of the percolation transition in two-
dimensional systems, d = 2, are obtained analytically, and, at d = 3, numerically
(Table A.3).

A.4. Example: Electrical conductivity of a strongly
inhomogeneous medium

Concluding this appendix, consider the application of percolation theory to the
problem of electron transport. We consider a model example, but it clearly reveals
the essence of the approach used. Consider a primitive cubic lattice with period a
in three-dimensional space (d = 3).

Let the resistances of the bonds in the lattice be within an exponentially large
range of values

R = R0 expu, 0 � u � u0 , u0 	 1, (A.17)

and let u be a random quantity that may take any value from the allowed interval
with probability F (u). We select a certain rather low u′ value from this interval
and preserve all the bonds with the resistances varying from R0 to R0 expu′,
whereas all the bonds with higher resistances are temporarily cut. The fraction
of preserved open bonds is

x =
∫ u′

0
F (u) du,

∫ u0

0
F (u)du = 1. (A.18)

Let x < xc. This signifies that the set of resistances used cannot ensure a finite
lattice conductivity. To attain the threshold x = xc, this set should be com-
plemented with a certain number of bonds with higher resistances. (We recall
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that, in accordance with Table A.1, xc =0.25 in the bond problem for a primitive
cubic lattice). Of course, we add the lowest possible resistances from the remain-
ing ones by gradually increasing u′ in eqn (A.18). After reaching the threshold,
the corresponding u′ value is denoted by uc. For definiteness, let all the u values
from the allowed range be equally probable, so that the distribution function is
F (u)= const:

F (u) =
{

0, u > u0
1/u0, u � u0.

(A.19)

Then, the critical value of the parameter u is

uc = xcu0. (A.20)

The resistances R0 expuc included in the consideration at the concluding
stage, connect large finite clusters into an infinite one. They are switched-on in
series with all the other resistances and, at the same time, their resistances are
higher than all the other resistances. Therefore, the lattice resistivity is controlled
by these resistances and is proportional to expuc.

Since a current should flow along the bonds that belong to an infinite cluster,
the threshold should be increased up to u′′ = uc+∆u, so that the strength P (x) of
an infinite cluster should take a non-zero value. Then it follows from eqns (A.19)
and (A.20) that x − xc = ∆u/u0 and the correlation length is ξ = a(u0/∆u)ν .

To estimate the ∆u value and, in particular, to prove that ∆u � u0, consider
the distribution of the current flowing along an infinite cluster. The larger part
of an infinite cluster in the vicinity of a threshold is occupied by former finite
clusters attached to the main part by one open bond. This is well seen in Fig.
A.4 showing the experimental implementation of an infinite cluster in the vicinity
of a percolation threshold obtained by computer simulation of the site problem
on a 160× 160 lattice for x=0.6. The cluster is assumed to be infinite since it
connects the opposite (left and right) edges of the lattice.

Each gray part of the cluster is connected to the main part via one open site.
The points of attachment are conditionally indicated by black circles through
which no current can flow. To ensure the current flow, the part should be attached
to the basic circuit at least at two points. The parts which do not meet these
requirements are called dead ends. In addition to the dead ends shown in Fig. A.4,
there are also many small dead ends. The part of an infinite cluster remaining
after the exclusion of the dead ends is a current-carrying part. The sites included
in this part are shown by black dots in Fig. A.4.

The white parts in the square in Fig. A.4 have the same average density
of open sites as in the regions covered by an infinite cluster. Numerous finite
clusters in these parts are not shown. The obvious asymmetry of the shown
infinite cluster is explained by the fact that the correlation length ξ is larger
than the square side because of the system proximity to the threshold, ξ > 160.
The current-carrying part of an infinite cluster for a very large lattice may be
represented as a net of current-carrying channels situated the correlation length
ξ apart (Fig. A.5). In this current-carrying net, both the unit-cell size, ξ, and the
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Entrance

Exit

160 × 160

x = 0.60

Fig. A.4. Experimental implementation of an infinite cluster in the vicinity of
the percolation threshold obtained by computer simulation of the site problem
on a 160× 160 lattice presented in the book by Feder (1988). Only open sites
that belong to an infinite cluster are shown. Dark dots are the sites that belong
to the current-carrying core through which the current may flow from right to
left. Light dots are connected with the current-carrying skeleton via only one
open site; they are included in dead ends. The largest dead ends are shown
by the gray color and the places of their attachment to the current-carrying
skeleton are indicated by black circles.

resistance between two sites, Rξ ≈ euc+∆u, depend on the boundary value u′′.
The resistivity of the lattice represented as the resistance of the current-carrying
net is (see, in particular, eqn A.1)

ρ = Rξξ = R0e
(uc+∆u)a

( u0

∆u

)ν

= R0auν
0euc

e∆u

(∆u)ν
. (A.21)

The fraction in the right-hand part of this expression has a minimum at

∆u = ν = 0.875 ≈ 1 � u0, (A.22)

which signifies that including into the net of the resistances with the u values from
a very narrow interval uc < u < uc+1 decreases the lattice resistance because of an
increase in the strength P of an infinite cluster and a decrease in the correlation
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j

Fig. A.5. Structure of the core of a current-carrying percolation cluster.

length ξ. The further including of resistances is inefficient because they consider-
ably exceed R0 expuc and cannot shunt the critical current-carrying net already
formed. Within the accuracy of a numerical factor, the lattice resistance is

ρ = R0auν
0e

uc . (A.23)
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B

TUNNELING CHARACTERISTICS

Two books about tunneling phenomena, Burstein and Lundquist (1969) and
Solymar (1972), published many years ago are still very useful. The latest
achievements in this field can be found in the review by Aleiner et al. (2002).

Let two conducting materials (M1 and M2 in Fig. B.1) be in contact with
one another via an insulating layer I so thin that it admits electron tunneling.
The whole device is called a tunnel junction and the two conducting materials
are called electrodes. In equilibrium, the Fermi levels in the electrodes coinside.
An electron with energy ε with respect to the Fermi level εF = 0, which was
in M1, on the left of the barrier prior to tunneling, after tunneling has the same
energy but is located in M2, on the right of this barrier. The equilibrium is
dynamic in the sense that there are electron flows in the opposite directions, but
the total flow through the barrier I equals zero.

Compare the tunneling considered in this appendix and the hopping conductivity con-
sidered in Chapter 4. In both cases, an electron passes under the barrier through
a classically inaccessible region. However, the hopping conductivity proceeds due to
quantum transitions between localized states, whereas the tunnel current through a
junction arises due to quantum transitions between the delocalized states on different
sides of the barrier.

In most instances, the resistance of the electrodes is much lower than the
resistance of the junction. Therefore the potential difference V applied to the

eV
g

g 1
=

co
ns

t

� = 0

�F

�F

g (� − eV )

M1 M2I

Fig. B.1. Energy scheme of current flow through a tunnel junction M1–I–M2.
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electrodes is concentrated within the tunneling gap. The tunnel junction becomes
out of balance, and the tunneling current J ,

J(V ) ∝
∫ ∞

−∞
g(ε − eV )g1(ε)

[
f

(
ε − eV

T

)
− f

( ε

T

)]
dε, (B.1)

starts flowing through the junction (Fig. B.1). The integrand in eqn (B.1)
describes the resultant flow of electrons with energy ε from the left to the right
caused by the relative shift of the Fermi distribution f(x) = (expx + 1)−1 on
both sides of the barrier by eV . The densities of states g and g1 enter the integ-
rand as cofactors, because they determine the number of electrons participating
in tunneling and the number of states to which tunneling is possible. We omit
the proportionality coefficient which should take into account the area of the
tunneling contact and the barrier transparency.

Expression (B.1) is considerably simplified if one of the electrodes is a conven-
tional metal with g1(ε) = const. and the temperature is so low that the Fermi
distribution may be considered as a step. Then

J(V ) ∝ g1

∫ eV

0
g(ε) dε. (B.2)

The addition of an AC voltage Vω sinωt to the DC voltage V results in
the appearance of an alternating current with frequency ω and amplitude Jω

proportional to the derivative dJ/dV ,

J(V + Vω sinωt) = J(V ) +
dJ

dV
Vω sinωt. (B.3)

The above experimental trick, called the modulation method, is rather popular.
It follows from eqns (B.2) and (B.3) that

Jω ∝ dJ

dV
∝ g(eV ). (B.4)

This allows one to use tunneling measurements for the direct determination
of g(ε).

Expression (B.4) and the procedure for obtaining the function g(ε) from the
experimental data are somewhat complicated by the finite temperature T �= 0,

Jω ∝ dJ

dV
∝ −

∫ ∞

−∞
g(ε) dε

∂

∂(eV )
f

(
ε − eV

T

)
, (B.5)

but the study of the density of states in the vicinity of the Fermi level with the
aid of the current–voltage characteristics of the tunnel junction is possible at
finite temperature too.

Note: Tunneling experiments are much more complicated than the scheme considered
above. One has to create a reliable and reproducible 10–15 Å-thick tunneling break
between the electrodes. This experimental problem was solved only in the 1960s.
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Fig. B.2. Differential conductivity as a function of bias at the tunnel junction
Pb–SiO2–Si : B. Circles represent the results of the recalculation of the curve
in the field H = 2kG, which eliminates the effect of the thermal broadening of
the distribution function (Massey and Lee 1995). Note the shift of the circles
with respect to the solid line.

Tunneling experiments on superconductors allowed one to directly measure super-
conducting gaps and resulted in the discovery of the Josephson effect. Thus, these
experiments considerably influenced the development of low-temperature physics.

Being applied to normal metals, the tunneling method allowed one to reveal
the minimum in the density of states at the Fermi level in the spectrum of dirty
metals and the Coulomb gap in the spectrum of localized states and also to
follow the transformation of the former into the latter.

The revealing of the Coulomb gap in Si : B is illustrated by Fig. B.2. The
Pb–SiO2–Si : B structure with one electrode superconducting and the other a
classical p-type semiconductor was used. The intricate shape of the curve g(V )
in zero magnetic field is explained by the use of superconducting lead as the
electrode, whereas Si : B plays the part of a metallic counterelectrode. The corres-
ponding curve depicts the superconducting gap in Pb with the density-of-states
maxima on both sides of the curve. As was to be expected, the curve is sym-
metric with respect to the Fermi level εF = 0. In this case, the measurement of
the superconducting gap is, in fact, a calibration experiment. It is an additional
demonstration of the method validity. In a field of 2 kG, the superconductivity
of lead is completely destroyed, and the density of states in lead becomes energy
independent. Now, the lead electrode becomes a counterelectrode, and the min-
imum on the curve dJ/dV (V ) is due to the existence of a parabolic Coulomb
gap in Si : B. The 2 kG field is too weak to influence the Coulomb gap. As is seen
from the curve, the gap width is about 1meV≈ 10K (i.e., 5K on both sides of
the Fermi level).

The curves in Fig. B.2 were obtained at 1.15K. To obtain these curves at lower
temperatures is rather difficult, because of an exponential increase in the bulk
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resistance of Si : B. A decrease in the potential takes place in a considerable part
of the electrode and not within the tunneling gap. However, instead of lowering
the temperature in the experiment, it is possible to account for it with the aid
of mathematics. A simple transformation of eqn (B.5) allows one to extract the
function g(ε) (empty circles) from the experimental Jω(V ) curve (solid lines in
Fig. B.2). It is seen that as long as the temperature is not too high, it only
slightly smoothens the function g(ε).

The main impurities in Si : B are acceptors and one may directly apply the
model of an impurity band at low doping, within which the Coulomb gap was
obtained (see eqn 3.22 in Chapter 3). However, the Coulomb gap is also observed
in materials of different types, e.g., in binary amorphous films with one metal
and one nonmetal components and ultrathin films. We shall illustrate this with
several examples.

FigureB.3 shows the tunneling characteristics of the Ge1−xAux–Al2O3–Al
structure. Here, Al is a counterelectrode, and Ge1−xAux is the material to
be studied. The set of characteristics demonstrate the evolution of the spec-
trum with a decrease in the Au concentration x. The minimum of the curve
observed at high x values corresponds to the minimum at the Fermi level in
the spectrum. It is due to the interaction of diffusing electrons. This effect,
which exists in dirty metals due to disorder, was considered in the last section
in Chapter 2. However, the model considered there was obtained within the
framework of perturbation theory under the assumption that the corrections
to the function g(ε) were small. The curves in Fig. B.3 not only confirm the
existence of the minimum in the spectrum, but also demonstrate the evolu-
tion of the minimum with the approach to the metal–insulator transition.
At the lowest Au concentration, x=0.08, the g(ε) function goes to zero at
ε=0, and, in the vicinity of this point, is described by a parabola. This is
a Coulomb gap.
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Fig. B.3. Tunneling characteristics of the Ge1−xAux–Al2O3–Al structure
(McMillan and Mochel 1981).
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Note: The model of the impurity band in a partly compensated semiconductor (within
which a Coulomb gap was obtained in Chapter 3) cannot be directly applied to
Ge1−xAux at low x, because this material does not contain well-defined “donors” and
“acceptors,” impurity band, random electric field, etc. Therefore, the Coulomb gap
revealed in Ge1−xAux indicates that a Coulomb gap can arise in different classes of
random potentials.

Thus, the series of curves in Fig. B.3 demonstrate three important results –
the presence of the minimum at the Fermi level in the spectrum of a dirty metal,
which arises due to interelectron interactions (Chapter 2); the existence of a
Coulomb gap in the spectrum of a strongly disordered insulator (Chapter 3);
and the transformation of the former into the latter, which accompanies the
metal–insulator transition driven by the change of the concentration of the metal
chemical elements in an alloy (Chapter 5).

A similar spectrum structure and evolution were also observed in amorphous
Si1−xNbx alloys (Fig. B.4). In the experiments performed on these amorphous
alloys, one more interesting feature was observed – the critical vales of concen-
tration determined from the variations of conductivity, xc, and the tunneling,
x

(t)
c , are somewhat different. The curve with concentration xc is indicated by an

arrow in Fig. B.4. For this state, the function σ(T ) → 0 with T → 0. However, at
this concentration, a finite density of states g(εF) �= 0 is observed at the Fermi
level. The density of states g(εF) becomes zero at lower concentration x = x

(t)
c .

From the definition of a metal given at the beginning of Chapter 5 it follows
that the true critical concentration is xc. The Fermi level of an insulator may
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Fig. B.4. Tunneling characteristics of the Si1−xNbx–Al2O3–Al structure
(Hertel et al. 1983).
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have a finite density of states if these states are localized. Therefore, in fact, the
conductivity and tunneling measurements do not contradict each other.

At the same time, the discrepancy between xc and x
(t)
c can be interpreted in

a different way. Let us give some comments on measurements of the tunneling
current. In the consideration which allowed us to write eqn (B.1) for the tun-
neling current, it was implicitly assumed that electrons in both electrodes were
noninteracting quasiparticles. Hence, the total electron energies on the left and
on the right of the barrier were equal to E =

∑
εi (the sum of quasiparticles

energies) and the tunneling process changed the total energies E on both sides
of the barrier by the energy of a tunnelled quasiparticle. The total energy E in
the system of interacting particles depends on their number, E = E(n). Then,
part of the energy of the electromagnetic field is spent in the change of the total
energy of the electron system with the variable number of particles. To avoid
any misunderstanding, the density of states gi in eqn (B.1) (which is measured
experimentally) is called the tunneling density of states.

Note: Various types of interelectron interactions act differently on the tunneling density
of states. As an example, consider the Coulomb interaction of a tunneling electron with
all the other electrons. After tunneling, both electrodes acquire spatial charge inhomo-
geneities, which have to be resolved. The longer the time it takes to resolve them, the
more pronounced the inhomogeneity hinders tunneling, manifesting itself as a decrease
in the effective density of states. The resorption time τres depends, in particular, on
the character of electron motion – ballistic or diffusion. In diffusion motion, this time
depends on the electron energy measured from the Fermi level (Chapter 2). Therefore,
this effect may result not only in the renormalization of the tunneling density of states
but also in the change of energy dependence of the function g(ε).

A similar observation was made in the doped semiconductor Si : B. The
detailed measurements illustrated in Fig. B.5 show that here as well g(εF) goes
to zero already in the insulator region where n ≈ 0.9nc (the critical concen-
tration nc is determined from the dependence of conductivity σ(0) on n). The
discrepancy in the determination of the critical concentration is about 10%.

However, the minimum of g(ε) at the Fermi level for the state with n = nc
(where nc was determined as the critical concentration from the conductivity
measurements) turned out in Fig. B.5 to be broader than for the states with
other, both lower and higher, electron concentrations. Therefore, the tunneling
measurements also single out the “transport value” n = nc defined above as the
true value.

Specific objects of tunneling experiments are ultrathin films. The control
parameter in such experiments may be the film thickness, and the quantitat-
ive characteristic, the resistivity at a certain fixed temperature. The thicknesses
of Be films, whose tunneling characteristics are presented in Fig. B.6, range
within 15–20 Å. The indicated values of resistivity were measured at 50mK.
Tunneling structures were created by dosed oxidation of films in air and the sub-
sequent deposition of an Ag layer onto the oxidized film. The thinnest Be film
had a spectrum with a Coulomb gap, with the density of states in the vicinity
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Fig. B.5. Differential conductivity of the tunnel junction with a Si : B electrode
(Massey and Lee 1996). For a clearer representation, the curves are displaced
along the ordinate axis, but the origin of each curve is indicated on the ordinate
axis. The correction which eliminates the effect of the thermal broadening of
the distribution function is included.
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Fig. B.6. Tunneling conductivities of junctions to Be films with different thick-
ness are measured at the temperature T =50mK. Since the resistivity at
T =50mK is too high, the measurements for the film with the highest
resistance were performed at T = 700mK (Butko et al. 2000).

of εF varying linearly with the energy, in full accordance with the prediction of
eqn (3.23) in Chapter 3. The energy spectra of thicker films showed a narrow
minimum in the vicinity of εF. Thus, the ultrathin films, where the thickness
determines the effective disorder and the Anderson transition, also have a min-
imum on the metal side of the transition and the Coulomb gap on the insulator
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side of this transition. The specific feature of the curves in Fig. B.6 is that they
represent the spectra of certain two-dimensional system.

Figure B.1 and eqns (B.1)–(B.5) describe the simplest scheme of tunneling
experiments in which the finite dimensions of electrodes and the area of the
tunnel junction are not taken into consideration. All the specific features of the
current–voltage characteristics in this scheme are associated with the density of
state of a bulky material. Now, let us assume that one of the electrodes is a
small metal grain, say, a sphere of radius a. If an electron tunnels in this grain,
the latter becomes charged with an electric field around it. The field energy of a
single metal sphere with charge e is

U =
e2

2C
, C = κa, (B.6)

where C is the capacitance of a remote sphere and κ is the dielectric constant of
the surrounding insulator. At low temperature, T � U , the tunneling is possible
only if the voltage between the sphere and the bulky electrode exceeds U/e,
V = e/C = e/κa > U/e. This voltage threshold is called a Coulomb blockade
(cf. eqns (8.6)–(8.8) in Chapter 8).

To observe the tunneling effect, both electrodes should be supplied with con-
tacts. To avoid the enlargement of a small electrode by such a contact, two
tunnel junctions should be switched in series with a small metal “island” loc-
ated between these junctions. A Coulomb blockade is a phenomenon widely
studied and used in various nanodevices, where the role of the intermediate
electrode is usually played by a single grain. Here, another limiting case will
be presented – Coulomb blockade in a system with a very large number of
grains. Figure B.7 demonstrates the schematic of the experiment and results
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Fig. B.7. Tunneling characteristics of the Al–Sn grains–Al structure at different
temperatures. The structure is shown in the inset (Giaever and Zeller 1968).
Hatched area is aluminum oxide (insulator).
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obtained. A slightly oxidized surface of an aluminum film was coated with tin,
which formed individual islands with the average size being dependent on the
amount of deposited tin. Then the sample was subjected to further oxidation.
As a result, a thick aluminum oxide layer was formed between the tin islands,
whereas the tin particles were coated with a thin tin oxide layer. Finally, an
aluminum layer was deposited to create the upper electrode (inset in Fig. B.7).

The curves shown in Fig. B.7 were obtained in a magnetic field sufficiently
intense to destroy superconductivity. As all the electrodes are good metals, the
current–voltage characteristics of the structure would be horizontal lines. The
drop in conductivity observed at low voltages and becoming more pronounced
with lowering of the temperature is a consequence of the smallness in the struc-
ture of the intermediate electrode – set of tin grains – in other words, the
consequence of a Coulomb blockade.

In the experiments illustrated by Fig. B.7, the grains form a two-dimensional
layer. A set of grains may also form a three-dimensional conglomerate or a
so-called granular metal, which is considered in Chapter 8. In a granular metal,
measurements of the effective density of states performed with the use of tunnel-
ing are also possible. They are presented in Chapter 8. There, a granular metal
is used as one of the two main electrodes, in full accordance with the scheme in
Fig. B.1, and the Coulomb interaction enters the problem differently (see Fig. 8.7
and eqns 8.14 and 8.15).

Considering the further development of the tunneling method and its pos-
sibilities, one has to recognize that eqn (B.1) is valid only under the assumption
that, in tunneling, the wave vector is not preserved. The change of the component
normal to the contact surface is quite natural and is caused by the inhomogeneity
of the space along the corresponding direction. The tangential component varies
because of the rough junction interface. In principle, tunneling which preserves
the tangential component of the wave vector (coherent tunneling) would be pos-
sible if one manages to prepare a junction with an atomically smooth interface.

Coherent tunneling was in fact observed in special experiments (Eisenstein
et al. 1991) whose schematic and results are shown in Fig. B.8. Tunneling pro-
ceeded through a thin barrier between two two-dimensional quantum wells. The
wells consisting of two 140 Å thick GaAs layers with a 70 Å thick AlAs barrier
in between were prepared by molecular beam epitaxy. Both sides of this struc-
ture were coated with Al0.3Ga0.7As layers. The total thickness of this five-layer
sandwich was about 50µm. Indium contacts 1 and 2 were burned into both ends
of the plate to provide the electrical contact with both wells filled with a two-
dimensional electron gas. The metal gates were deposited onto the upper and
lower surfaces (see inset in Fig. B.8). The gates a1 and a2 were used to divide the
two-dimensional gas in both wells into two parts and, thus, to change the paral-
lel connection of the indium contacts by two two-dimensional wells to in-series
connection with a tunneling gap in between. The gates t1 and t2 allow one to
vary the carrier concentration in both lower and upper wells.

Preparing such a structure, one has to solve two complicated experimental
problems, which, in turn, requires a rigorous control of the molecular beam
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Fig. B.8. Conductivity G12 between contacts 1 and 2 proportional to the tunnel
current J as a function of the voltage at the gate t2 with fixed voltage at
the gate t1. The inset shows that the “lower electron gas” is separated from
contact 2 by the voltage at the gate a1, whereas the “upper electron gas” is
separated from contact 1 by the voltage at the gate a2 (Eisenstein et al. 1991).
The temperature T = 1.5K, the longitudinal voltage v = 0.1mV.

epitaxy. First, it is necessary to obtain an atomically smooth interface between
the GaAs and AlAs layers over quite a large area. Second, the electron densities
in both wells should be made approximately equal.

Including contacts 1 and 2 into an external circuit with a negligibly low longi-
tudinal voltage v adjusts the Fermi levels on both sides of the barrier and ensures
the fulfillment of the conservation of energy. In a two-dimensional gas, the wave
vector is located in the plane and is equal to

kF = (2πn)1/2. (B.7)

Therefore, coherent tunneling in a nonzero magnetic field is possible only if the
electron concentrations in both wells are the same.

The curve in Fig. B.8 was obtained at the longitudinal voltage v = 0.1mV
and at a certain fixed voltage at the lower gate Vt1. This curve demonstrates the
dependence of the tunnel current J = vG1,2 on the voltage Vt2 at the upper gate,
i.e., on the electron concentration n2 in the upper well. The maximum of the
tunnel current arises at equal electron concentrations in both wells, n1 = n2. As
was to be expected, with the change of Vt1, the maximum is shifted. The relative
value of the maximum determines the ratio between coherent and incoherent
tunneling.
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The two steps on the left-hand side of the J(Vt2) curve have a natural explana-
tion. The first step is formed when the electron concentration under the gate t2
in the upper well decreases to such an extent that, under the gate, we have an
insulator. Then the area of the tunnel junction decreases by about a factor of 2.
The second step is formed at a voltage Vt2 such that the electric field due to the
gate t2 divides the electron gas in the lower well and, thus, disrupts the electric
circuit between contacts 1 and 2.
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Ag, film 6.8
Al, film 2.10
Al, granular 8.3
Al-Pd-Mn, quasicrystal 7.10
Al-Pd-Re, quasicrystal 7.11, 7.12
Alkali-Pb melt 7.2–7.5
Alkali-Sn melt 7.4, 7.5
Au, film 2.3, 6.8
Au, granular 8.2, 8.5, 8.6

Be, thin film 3.10, 4.7, B.4
Bi, amorphous, thin film 6.11

Cs-Au 7.6, 7.7
Cu, film 2.3, 2.11, 6.8

GaAs 4.5, 6.9, 9.26
GaAs–GaAlAs, heterostructure 2.14,

5.3, 6.7, 9.7–9.9, 9.18–9.21, 9.23,
9.24, B.8

p-Ge 3.6, 4.1
Ge-Au B.3
Ge:Ga 4.2
Ge:P, Ge:Sb 3.5
Ge–SiGe, heterostructure 9.27

In, granular 8.1
InGaAs–InP, heterostructure 2.13

InO, amorphous 2.4
InP 4.4

Li, film 2.10

Mg, film 2.9, 2.10, 2.12

Nb3Sb, Nb3Sn 1.4
Ni, granular 8.5–8.7

Pb 8.4

Sb-Cd, granular 8.8, 8.9
Sb-Ga, granular 8.8, 8.10
Si:As 4.6, 6.4, 6.5
Si:B 3.9, 4.2, 4.8–4.10, B.2, B.4
Si-Nb B.5
Si:P 5.18
Si, MOS-structure 2.5, 5.6, 5.7, 6.10, 9.5,

9.6, 9.17

TiAl 1.5

WO2 1.7

Y 1.6
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