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The structure of the course

- Lectures

- Homework assignments (3 sets)
- Presentations

- Oral exam

Final grade: assignments (1/4) + presentations (1/4) + oral exam (1/2)

Presentations should be based on recent research papers on a topic
related to the course material.
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Fermi liguid and quasiparticles
Quasiparticle concept (Landau 1956, 1957)

Fermi liquid - a system of interacting Fermi particles

electron-like QP Quasiparticle (QP) — excitation in a Fermi liquid, it
) resembles an excitation in an ideal Fermi gas,
but not equivalent

hole —like Q

Due to interaction with other electrons and ions,
Fermi sea quasiparticle effective mass m* differs from
the free electron mass m,

In superconductors effective charge e” also differs
from electronic charge e

Excitation energy a_‘f = p2 /2m — pé /2m =~ Ve ( P— pF)

Quasiparticles have finite lifetime due to interaction with other electrons,
phonons, etc.



Fermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

L.D. Landau, ”Fermi-Liquid Theory”
Zh. Exp. Teor. Fiz., v.30, p.1058 (1956)



Fermi statistics
Low temperatures

Not too strong interactions
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin - , charge

b) decay rate is small as compared with the excitation energy

2. Substantial renormalizations. For example, in a Fermi gas

onfou, y=c/T, x/Qu

are all equal to the one-particle density of states V.

These guantities are different in a Fermi Ii_quid
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Weak Localization /

Quantum 8orrections to
con

uctivity

Two types of electronic scattering

elastic scattering, probability 1/t Inelastic scattering, probability 1/t

Phase ¢ of the wave

funct!on T<<T - phase coherence
W oc exp(iet / 7) v

o=¢ct/h



Experiment
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Anomalous (negative) magneto-resistance

R(€)
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167,5

G. Bergmann, Phys.Rep. 107, 1 (1981)



Aharonov-Bohm effect
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FIG. 8. Longitudinal magnetoresistance AR [H) at T'=1.1 K
for a cylindrical lithium film evaporated onto a l-cm-long
quartz filament. Ry ;=2 k2, Ry /Ry,;=2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for L,=2.2 um, 7,/7,=0, filament diameter d=1.31 um,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope vields o =1.30+0.03 um (Altshuler

et al., 1982; Sharvin, 1984).

Resistance is a periodic function of
the magnetic flux with the period

®_=h/2e




Effects of Coulomb Interaction
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ee - Interaction (interference)

Ballistic regime I~ Vet

Diffusion regime r~1tt~vptr

Phase exp(ig)=exp[i( g /A)t], Ap=(Ag/A)t

L 7 Dephasing time Tee~h/A8}

Ae~T

Dephasing length

Diffusing electrons keep coherence during time 7, keeping
the typical distance L, .



Pelerls transition
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Impurity band

Conduction band

E. o —_— __ Donor level
D O @
> |
= l
Q) n
S I
= : Acceptor level

| Q
.*
Valence band | : —

: Distance

Electric fields of
charged Impurities
e’ /x(r-r,) shift the levels
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Hopping conductivity
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Variable range hopping: Mott low
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Lowering of temperature

Mechanisms of hopping conductivity
—

]*50_ _‘ U of carriers
________ CXp (_Eo/ T)

Increase 1n scale
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[T Thermal delocalization

7 Nearest-neighbor hopping

Bl
> exp [~ (—E,)/T)]

1T Variable-range hopping,
Mott law (7>0¢)

exp[~(T/T)"]

[T Variable-range hopping,
Efros-Shklovskii law
(T<0¢)

EXp [_ (T ES/ Dl/z]
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Metal-1insulator transitions

The defition: metal — o#0

_ —> hasasenseonlyatT =0
Insulator - o=0

Isolated point at the
phase diagram

n

()
\—

Insulator metal



Anderson localization

Quantum particle in random
quenched potential




Anderson transition
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Mott transition

3 length scales: Y
N 2
N Kh? Am’e’n’3
aB — *x 9 re — Khz
average e-e distance m ¢
Bohr radius screening length

1
are related  r = ;(aBn‘%y

E AE

Ie > dg — insulator

EA+U
Ie < dg — metal

Mott transition occurs if
— E,
re _ a'B

I
I
I
I
I
I
I
!

% O 25 Trans-ition
a-N7° =u. point
B < Hubbard model

1
n/s




Energy scales (Thouless, 1972)

< d l
Mean level spacing o, =1/vxL

l 5 L is the system size;
—— 1
d is the number of
- dimensions
Thoulessenergy E. = hD/L’ is the diffusion const

ET has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

dimensionless
g = E./ 5] Thouless g= Gh/e?

conductance



Scaling theory of localization

Phys.Rev.Lett. 42, 673 (1979)

,B(g) E.Abrahams, PW.Anderson, D.C.Licciardello, and T.W.Ramakrishnan,
1

Metal - insulator transition in 3D
All states are localized for d=1,2




Magnetic Impurities: the Kondo Effect

Collective effect:

Spin-flip scattering

— Increased resistivity
= reduction of

| ! | Formation of a

} I | t singlet spin state
l 1 | } kBTK ~ E,:e_]j"J
R , (total scattering rate)

ysf

N\

- T

TK Kondo I phonons

«— —

spin-flip
- T




Semi-classical electron transport (Drude-Sommerfeld)

ky with electric field:

all electrons aquire drift velocity
K
f>§ :\d ) hk*d —v, =
&J | :

#2k 2 energy diagram:
states occupied with

F'1 k>0 ad B <E<F

i \uiiints el A = }
states unoccupied with

k <0 ad F <E<E,

1



Einstein relation for electric conductivity o -

conductance as a diffusion problem

—
N =
*‘ metal i‘ /
Density of electrons Chemical Electric field
No current [ _} sotential

!

eDd—n ok

A2
dx
[ Conductivity [ Density of states

Diffusion coefficient D = vl /3
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Weak Localization /

Quantum corrections to
conauctivity

Two types of electronic scattering

Elastic scattering, probability 1/z  Inelastic scattering, probability 1/t

Phase ¢ of the wave function T << To - phase coherence

W oc exp(iet/h)
o=ct/h => op= O¢ t/h



Semiclassical description of electric conductivity

At low temperatures conductivity saturates and has the value

kel >1 — loffe-Regel rule k. = (3n%n) 3

2 ™N
s=A% n3(k.I)

n U P, ~ (100--1000) uQ-cm
n_% ~3A

~/

Semiclassical approach should break down for small values of |



First experiments in 1981-1982:

Anomalous behaviour of resistivity of disordered metallic films —

no saturationatlow T

' : ' 5,7215
353F - ____. N
e Evg - 15,7210
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S) S >
= 35,21 =F 3 - S
ot 15,7200
, O
i &
Au Rud | | 15,7195
35 1L
1 10
T'(K)
Au — S. Dorozhkin, et al., Cu — van der Dreis et al., PRL 46, 565 (1981)

JETP Lett. 36, 15 (1982)



Classical diffusion

Random walk

.. | Density fluctuations o(r,t) at a
~.| given point in space I and time .

op 2 _n Diffusion
ot bV?p=0 Equation

D - Diffusion constant

Mean squared Probability to come back
distance from (to the element of the
the original volume dV centered at
point at time t the original point)
V
(r(t)")=Dt P(r(t)=0)dv =

(Dt)"”



Diffusion description fails at short scales
Why?

Einstein: there is no diffusion at too short
scales - there is memory, i.e.,
the process is not marcovian.

r(t) =+ Dt Does velocity diverge att — 0?

No because at times shorter

dr D than mean free time
E = 2_'[ process is not marcovian and
there is no diffusion

Quantum coherence:
there is memory at large distances



Diffusion description fails at large scales.
Why ?

There is phase memory at large distances
in quantum case

Quantum corrections at large conductance -
weak localization



WEAK LOCALIZATION

p=4 pdr

Phase accumulated
when traveling
along the loop

o

¢1_ ¢2

The particle
can go around
the loop in
two directions



Weak Localization /

without interference
A [2+|AL = 2AZ

Al=IA=A

T<<T, - phase coherence

with interference

[A+A S =
AHAR+2IAA = 4A2 7

N

A are the quantum mechanical amplitudes

to return to the point I by clockwise/
counter-clockwise propagation
with equal phases ¢ = @,

Conductance is defined by the probability
of transmission from r. to rr (left to right)

Probability to return to the point r increases
=> Conductance is reduced



WEAK LOCALIZATION

= = The particle
QP = § pdr > can go around
the loop in
Phase accumulated fwo directions
when traveling
along the loop

2

Constructive interference — probability to return
to the origin gets enhanced —= diffusion constant

gets reduced. o
Tendency towards localization



Breakdown of classical diffusion

1 r’ -
)= (47Dt)"2 eXp(_“Dt)’ r _izzl:x | |

1 . = - 1 2 |2
Diffusion coefficient D = d|V ~ V2 = %

Distribution width after N steps

N =1t = Dt=

L

| p(rD)= (47:Dt)_lexp (—r2/4Dt)

d 2
2

4nDt, p(r;1)

r/(4Dt,)"

without interference  |A,[2+|A,[2= 2A2

with interference |A+A,|? =

= |APH AR +2|1AA,| = 4A?



How to estimate the correction to the conductivity ?

First, we introduce the concept of dimensionality:
Consider a film with thickness b

and compare the phase-breaking length L , with b

PR

Typical size of a loop
b>L, =>dimensionality d = 3 providing the quantum
correctionis L,

In 3D correction to the conductivity is proportional to the probability P
to come back to the volume element dV :

P = dV/(Dt)3/2

»
=

b<L, =>dimensionality d = 2

Since semiclassical trajectory can be viewed as “wire” with diameter of the order of
the de Broglie wavelength 1, one can estimate dV ~ viA *dt

To 2 2
Ford=3 AGz—j‘VF}L Cgit z—VFz\“ (’C_l/z—’c(;l/z)zjz' i—;
G g (D’[)A D2 kel L, |




Summary of main results

Ao J' szt V7»2
s oy Db*

12 12N
(1 T, )~

L¢ — phase-breaking length:
~ . /D1, z|x/W=|(’C(P/’C)%

Ty

d=2 AG J‘V }uzdt VF}\.2 In ’CV

5 (Db Db = /T
Ao F v At Ve d
d=1 — =~ —
o 1Dy oo’

— phase-breaking time

2

(L -1)

k2|



Let us introduce Conductance Oy = ob®

2
Ao, ~ _% In L% expressions for Ac do not containn and o

eZ
Aoy~ (1-L,)

Exactresultin 2Dt —gsgv7—=In {1+ — ) solid State Physics, 44, 1-228 (1991

gs =2 Is spin degeneracy, gv is valley degeneracy (relevant for semiconductors)

e? ( Td)> C. W. J. Beenakker and H. van Houte

This review is uploaded to Canvas (see the Modul Additional reading)



Diffusion
coefficient

Density of
states
The origin of weak localization:

correction to the diffusion coefficient due to interference, while density of
states remains unchanged

(inter-electron interactions are not taken into account)




Weak Localization

Effect of Magnetic Field



Wave packets and uncertainty principle

oy <

The real part (red) and envelope (black) of

an example wave. Wave packet after integration
over momentum k

Heisenberg uncertainty relation:

Ap-AX>hl2



Group velocity

Effective mass

5\l v -1
m =h° 65 = h| —2
ok ok




Weak Localization

without interference /

[AH|A*= 2A°

[Ag|=IA=A

T << T, phase coherence

with interference

[AgtA* = [AH A +2|A A, = 4A2



Magnetoreszsmnce

No magnetic field With magnetic field B

Q, =9, Q- Q= 2T CD/CDO

A+A| =|Al +|A] +2AA|cosp=2A%(L+cos )
Al=|A




Breaking weak localization by magnetic field

low field regime Qz << 1, @ =eB/m isthe Larmor frequency

going around trajectory of area S

. € | 7BS
i _ _nh/ —
LP—>\I’exp(|}%_[Adl)_‘{’exp(ir ] D, = 4_h/2e

0

Phase difference ¢ = 2t (BS/ @,)

all diffusive trajectories have different areas S

— weak localization is destroyed.

r=0 Average area S and flux BS depend on time

BS ~ Br_ ~ BDt



How to estimate the “breaking magnetic field”

Phase difference ¢ =2n (BS/®,)

We use BS ~Br ~BDt and replacet by T,

Since Dz, = L ,°

one can formulate the condition of weak localization breaking

¢=2rn (BL, /@) =1

() h
Breaking field B =—2=—(Dz.)*
g | e( »)

@ 2
4

Magnetic length and magnetic time

_(n )% BP0 gy
IB_(AeB o =p~gp



Breaking weak localization by magnetic field

R(Q)
In strong magnetic field 169.0%

Mg
o  7Tg
j—)j 168,5+
T T 46,421(
in 2 dimensions 168,01 ¢ /\

e’ L
Ao(B)—Ac(0) ~—In-£ 28,
h |B 167,5—

| | | | |

8 -6 -4-2 0 2 4 6

| <<l <L, B(T)
G.Bergmann, Phys.Rep. 107, 1 (1981)
Magnetic length Two characteristic fields:

B,~ @,/L,2

. =(d,/B)"?
s = (D, /B) B~ &,/ I



Aharonov-Bohm interference effects

Resistance, R
‘ J(/l/ Electron wave

e ivivi

Magnetic field. B

. v o W
F L I Phase accumulated when
'~ traveling along the loop
Q= §( p—€A)dr
The particle can

o around the Resistance is a periodic function of the magnetic

<;).op |1r.l two flux with the period
irections _
@, = hle



Aharonov-Bohm effect in the WL regime

S

] 1
N
: : ; ! 0.01
' = -
' y.
I :
A g
] ]
_red=sEray 3 & -002
A ";’ 1 ] \t
SRS

z
O 03

1

With magnetic ﬁeld H 5620 36 46 56 80 70

H (Oe)

FIG. 8. Longitudinal magnetoresistance AR [H) at T'=1.1 K
for a cylindrical lithium film evaporated onto a l-cm-long
quartz filament. Ry ;=2 k2, Ry /Ry;=2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for L,=2.2 um, 7,/7,=0, filament diameter d=1.31 um,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope yields d =1.30+0.03 um (Altshuler
et al., 1982; Sharvin, 1984).

P~ @=21n D/D,

Resistance is a periodic function of
the magnetic flux with the period

D =h/2e




> Magnetoresistance B \
—

No magnetic field With magnetic field B
Q- Q=21 D/D,

1.17 K ]

5 210 mK'_

ARIR

£ 45 mK ]

-0.04-0.02 0.00 0.02 0.04
B (T)



IB

L, =Dz, 1, =7/2eB

é'lk_' 2
: A—Rz—ziR I
1 R e‘L Y

ARIR

1 L isthelength of the wire
] A iIs the wire cross-section

-0.04 -0.02 0.00 0.02 0.04
B (T)

Dephasing rate can be measured



Temperature dependence of 7
(from magnetoresistance)
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Echternach, Gershenson, Bozler, Bogdanov & Nilsson,
PRB 48, 11516 (1993)



Magnetoresistance of cylindrical films
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Weak antilocalization: spin-orbit coupling time

ISO | I
Teo Ty

I 7). (2) 1) (2) .
(T ) 7oy el — o D)\ 1 singlet state
T, 50
\I’ c—— ' p— -
T %(A)Y(}) 1 oWy 3 triplet states
1/ p
S\ /
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Heterostructures:
spin-orbit interaction ~ E€ oc E[uV]

dependence on external field : via V.

=> Dependence on gate potential

nGaAs/nP ¢ 200 | GaAs/AlGaAs

Ac, Bemununax e /h
Ac (MQ)"

-10r

—0,4 ~0,2 0 0,2 0,4

B (mT)
S.A. Studenikin et al., J.B. Miller et al.,

JETP L:ett. 77, 362 (2003) PRL 90, 076807 (2003)



Quantum corrections to

conductance due to e-e

interaction (the density
of states effect)
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Dephasing due to ee — Interaction

ballistic I~ Vel
diffusive r~ltt~v.tr

phase  exp(ip) =exp[i( & A)t], A= (Ag/h)t

A

—

dephasing time T, ~ h/Ag }

Ae~T

dephasing length

Electrons diffuse and keep their coherence during time 7,

typical distance during this timeis L., .



Thouless energy

Using the expression for the nD
: L ~. D7~
dephasing length

and replacing Lee by the system size L

we define the corresponding >
energy scale, the Thouless energy ET =hD/L
ET has a meaning of the inverse diffusion time of the traveling

through the system.
It determines the “phase coherent” energy interval around Fermi

energy for a given system size L



Exchange interaction

Consider two electrons in states 1,2 with orbital wave functions g, (r) and @, (r)

1
Total wave function P _‘72—2'- (9, (1) @, (r2) £Py (F2) P, (ry)]

sign ‘+’ for total spin S =0, sign -’ for spin S =1
since the sum of the orbital (L) and spin (S) guantum numbers should be even

Average values of interaction energy U (r,—r,) are A4-J

A=(( U190, @) 1@ P aviar,
7= U9, () @) (0) @, () @, (r0) 4V AV,

— shifts of the energy levels AE,=J, AE;=—1/J
J - exchange energy



Exchange interaction and the density of states

Mean level spacing o =1/gLd

'S

g Is the density of states

—

Exchange interaction leads to the shift
of the energy levels  Afp —J,  AE,=—1J

— Effective “level repulsion” => Reduction of the density of states

This effect is realized only in the Tee — h/AS
“phase coherent” energy range determined by Aes ~T



The result of level repulsion -
correction to the density of states:
Altshuler - Aronov (AL) effect

g(e)

g(0,¢), T < |ler —€| < A/,

gF . ler — €| > R/,
9(0,e=T), |ep—¢|<T.
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Quantum correction to the conductivity
due to e-e interaction

e-e interaction influencrs transport via correction to the density of states.
The correction is proportional to the probability of e-e collision

within time

nT
prdt d=123 => Altshuller — Aronov effect:
! (Dt) 2p*




Influence of diffusion on the frequency of ee-collisions

ballistic regime 1 \, / T/

—_— N *\ 5

diffusive regime

Size of interaction region Lee>>1/k,: , momentum transfer is small :
q= /L, << Kg

q° 1
) Aj i Ad L‘:e , density of states ~gF/_1 y
[ T%T_%1 d :1
~T/ 1—d ‘/ _< nglr—l’ d

T
\ T 2620 2

I
N

e

, d=3

This time constant z, controls the weak localization processes



dirty limit

T

h/e,n

clean limit
/




Electronic Phase
Transitions
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Impurity band

Conduction band

E. o —_— __ Donor level
D O @
> |
= l
Q) n
S I
= : Acceptor level

| Q
.*
Valence band | : —

: Distance

Electric fields of
charged Impurities
e’ /x(r-r,) shift the levels




Density of states in the impurity band

T Direct overlap of wave functions is negligible
conduction band is not formed => insulator at T=0
| (only thermally activated hopping is possible)

E;
_.—N,
—————— /o Bohr radius
Khz
€ = —— = = —~ N _
v d /8D a.B m*ez
2
S e
lonization energy E; = >
gk
< _ 5
LSS low doping:
compensation K =N, /N, Na; <<1, = ¢, <<E
2

e
band width g, =— N3"°
K



T Density of states in the impurity band

Weak compensation Strong compensation



Coulomb gap

Ot

g(e) |
S f 7/( £=05 Energy of occupied states decreased
0.3 o _
N Energy of empty states increased
/
0.2 %
g
0.1 j
{
J
0 .
il

0.15¢

A.L. Efros, N.V. Lien, B.l. Shklovskii 0.10}
J. Phys. C 12,1023 (1979)

g2y,

0.05r
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Another example of electronic phase transition:

Pelerls transition

_I 1 —_ a0

Period doubling a — 2a

' € I g(e)

—1-t/a —1/2a 0 n/2a m/a Ex €



Hopping conductivity

XMK

\J



Main characteristics of an impurity band

Bohr radius

dg = —=

m e’

eZ
band width &0 =— Ng"”

low dopi_ng reg_ime: ag << Ij;
where r;; Is the distance
between neighboring sites

Compensation factor K =N_/N, NaZ <<1, = &, <<E

Hydrogen atom: attractive Coulomb potgntia} U = —(62 /r)
the Bohr radius ag = h?*/me?

Yn(r) — C(n)r" ' exp(—r/nag) asr — o0, (n=1,2,3,...)

In the ground state (n=1) localization length equals a g



Hopping probability

1

~ F((D,J,f., J)ijelqrw' ‘

T”

f. = (exp g‘_lfﬂ +1)™

8
= (eX
=Ep—-1)" :
g”:gj_gl C



Abrahams-Miller net
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10°

Experiment

T (K)

300 10 54 3 2 15 1.25
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H.Fritzsche, M.Guevas, PR 119, 1238 (1960)

Neutron-irradiated Ge

As a result of nuclear reaction

one of Ge isotopes -> Ga
another Ge isotope - > As

Ga —acceptors, As — donors
K=0.4 1is fixed

while N is a function of irradiation time



Basic ideas of percolation theory

- The nodes are introduced which are characterized by concentration n
and the radius p of interaction between neighboring nodes

- Percolation is the problem of global connectivity across the whole
sample via connected nodes

- In the case of electrons the interaction radius # is controlled by ag



Percolation theory: Random nodes

The percolation threshold depends on a number of
nodes within the interaction radius r

The number of nodes in a sphere with radius r
4
%
3

where n is the concentration of nodes

Numerical results for critical concentration n

3D 4z r’n.= B® =27

2D mn. = B® =4.4

C




Nearest neighbour hopping

Abrahams-Miller net

Rij = Rye"
)
— 2. €.
aB

_&jj / T-dependent factor is the same

€ for all transitions

Dependence on concentration: I';; in the

Abrahams-Miller relation is replaced by r



Experiment

Percolation threshold 47 n=B,=27 = r. =0.865n"*¢

H.Fritzsche, M.Guevas,

Phys. Rev. 119, 1238 (1960) R.Ray, H.Fan, n-GaAs 1.7 1.88 1.9

Ga —acceptors, As - donors Phys. Rev. 121, 768 (1961)

n-InP 1.9
p-Ge 1.9 1.75 2.0

Ge:Ga Si:B

VY 4-
10°F 5 0Si 18
g .
10°L =10°;
2 0
1 01 1 1 10 . !
O3 6 9 12 15 2

N, (10 cm) N, (10 °cm)



Variable range hopping: Mott law

ele, T <<u=gg 6 @ o
H+2
2 & —
. n H ® &
bt u_g ___________
& , .

Number of states  N(g) = g ¢,
Average distance  Iy; (€) = [N(g)]™"?, average energy spacing is &

parameter U;; of Miller —~Abrahams net
U — 2 L€ 2
" aNE T gt

e
_|_ .
T
U;; dependson g and reaches its minimum when de u;(¢)=0

3
T 1 _
=> Cmin = (j — (T BTMott)A’ TMott - (aggu) '

min 1/3
aBgu/



Mott law
Average hopping length 1 = ri_j (€rin)

~(g,6,)  —a (@/

Resistance b
p=poep T | (=3

For d=2

-1 2 €
L. = N e A, ui. = : 1 -+ :
i =N ' ograger T

n B

%
T 1 _
Cmin = [g%] = (T ZTMott)A’ Tiott = (gpaé) :

1

p=poon (M) (@=2
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Variable range hopping: Shklovskii-Efros
Coulomb gap

9(e) - ( j|e| 9(0) = 0

Number of states in € - interval near Fermi level

N@)(?j

Same procedure as in the Mott case

1 e’ 2 e 28° ¢
p=IN@E] =", u= Lot
KE aB[N (g)] Kdge
20T ) ? Y 2e’
€ = =(TTg) %, Teo=—
Kag Kag

resistance

1

o=pon(Ter )" (@=32




Lowering of temperature

Mechanisms of hopping conductivity
—

]*50_ _‘ U of carriers
________ CXp (_Eo/ T)

Increase 1n scale

0€
--4

+

g

\_

o€

[T Thermal delocalization

7 Nearest-neighbor hopping

Bl
> exp [~ (—E,)/T)]

1T Variable-range hopping,
Mott law (7>0¢)

exp[~(T/T)"]

[T Variable-range hopping,
Efros-Shklovskii law
(T<0¢)

EXp [_ (T ES/ Dl/z]



Variable range hopping: experiment

temperature dependence, fitting by standard functions
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R. Mansfield, S. Abboudy, F. Foozoni, Philos.Mag. B 57, 777 (1988)



experiments
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More experiments: Si:B
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PHYSICAL REVIEW B VOLUME 52, NUMBER 8 15 AUGUST 1995-11

Electric-field activated variable-range hopping transport in PrBa,Cu;0-_;

G. K. van Ancum, M. A. J. Verhoeven, D. H. A. Blank, and H. Rogalla
Department of Applied Physics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands
(Received 25 January 1995)

We demonstrate the transport of charge carriers in PrBa,Cu;0,_; (PBCO) to be dependent both on
the applied electric field and on the temperature. In our measurements we use inert noble-metal contacts
on laser ablated and sputtered PBCO films. By applying the transmission line model we are able to
separate the contact resistance from the PBCO resistance. The average hopping distance can be found
by extending Mott’s formula to field activation, and is found to be much greater than the dimensions of
the PBCO unit cell. From the measurements in strong electric field a minimum hopping distance in the
direction of the applied field of about 14 nm is determined, which we discuss in terms of localized states
and intrinsic mixed valence of the Pr atoms in the PBCO film.
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FIG. 3. The PBCO resistivity pppco for laser ablated and
sputtered films in zero electric field.



Magnetoresistance of PrBa,Cu;0,_; thin films

G. K. van Ancum, M. A. J. Verhoeven, D. H. A. Blank, and H. Rogalla
Department of Applied Physics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands

(Received 26 June 1995)

Transport of charge carriers in PrBa,Cu;0;_ 5 (PBCO) is often described by variable-range hopping (VRH).
Until now the VRH mechanism was confirmed merely on the basis of a temperature dependence of the
resistivity following Mott’s law. In this article we show a positive magnetoresistance in PBCO thin films,
depending exponentially on the applied magnetic field. This provides substantial additional evidence for a
variable-range hopping transport mechanism. Both a strong-field and a weak-field magnetoresistance can be
identified. At temperatures above 30 K we observe weak-field magnetoresistance, at 4.2 K we detect a transi-
tion from weak-field to strong-field magnetoresistance at a magnetic field of approximately 4.5 T. In the
weak-field regime the radius of the localized wave function is only affected marginally by the applied magnetic
field. In the strong-field regime the radius of the localized wave function decreases with increasing magnetic
field. From the measurements in the strong-field regime we obtain an estimate for the two-dimensional density
of localized states in the PBCO thin film of approximately 210" 1/eVm?.
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FIG. 2. Magnetoresistance at 100, 60, and 30 K (sample No. 1).
The drawn lines represent weak-field dependence.
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FIG. 1. Schematic drawing of the measurement setup.



Metal-Insulator transitions
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- disorder: Anderson transition
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Localization of single-particle wave-functions:

V2

A Ya(z)

2m

extended

U(r) —ep

—
- =~~~

localized

(O (T) = gawa('r)




direct overlap of wave
functions can be neglected,
conduction band is not
formed => insulator at T=0

Impurity band: we assumed Nag <<1 =

— (only thermally activated
E. ‘ H —_— — hopping is possible)
D o— @&
— I Donor level
e .
20 | .
2 : Question:
a8 l .
. o Acceptor level What happens if we
! : Increase the parameter
I -
Valence band . Distance N ag

Impurity band is formed
due to electric fields of
_e /K(,,_ charged Impurities



Quantum particle in random potential
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Absence of Diffusion in Certain Random Lattices

P, W, ANDERSON
Bell Tdephone Laboratories, Mwray Hill, New Jersey
{(Received October 10, 1957)

This paper presents a simple mocdlel for such processes as spin diffuslon or conduction in the “impurity
band." These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness 15 introduced by requiring the energy to vary andomly from site to site. It is shown that at Jow
enough densities no diffusion at all can take place, and the criteria for transport to oocur are given,




Anderson transition

] €

ON { N/W for [e] <W/2 = M UL U 1 SO A -1

& |0 for |g| > W2 1 . Ao

Transfer integral

J:ijFlwzd3rmexp£—r12j:Eoexp _
ag a,n’3

Y

\

_ratio J/W - the main parameter of the problem

>

v<w) v (w)
< >
W Wcrit W Wcrit

Insulator ( J j metal
crit

aN/a €

width W characterises disorder



Anderson transition: different representations

Vw

aN/a €




Anderson transition

1 2 1 2 If Ey=Ep=E,,

then level shift is

2J i

E, E, =
It Eq= Eq, 17 TE, Byl | o N pp— ____‘L AE ~J oce AB
then level shift is E, E :
_2r
AE cce 7% o J? (resonant nodes)

The parameter J/W is the fraction of resonant nodes

-1
cW J
J=E;exp| - 1}/ aBn%cm = —(In an , C,= (Wj
dgn 3 0 crit

Delocalized states first appear at the energy band center

usual ‘band insulator’: the density of states at the Fermi level is zero
Anderson insulator: the density of states at the Fermi level is nonzero



Mott transition

3 length scales:

* 9 _%
% Kh* Amen’?
n dg =+ e = K
average e-e distance me
Bohr radius screening length
1\
are related  r = ;(aBn 5)
E AE
S I
I'. » dg — insulator .
. < dg — metal
Mott transition occurs if |
— EO |
re o a'B i
l Pk

% O 25 Trans-ition
a-nN/° =u. point
B c Hubbard model



Phase diagram «disorder —concentration» at T =0

max

n Mott

0 W, w
W (disorder)

2 sources of localization: disorder and e-e interaction



Mott vs Anderson
MOTT TRANSITION

Width AE 1s
proportional to

J=E,exp(-1/an") o

*

*
>

.
L 3

. QB” 173

. = ~(In .
.* Ca U/E) I

N

‘ a.n,."=0.25 \ Mott relation
.
L, B
‘. .. ‘/3; /(\ncaW/E())
2] . aBn

.

Transfer integral ’
J=E, exp(-1/an")
enters parameter W/.J

ANDERSON TRANSITION

P.P. Edwards, M. J. Sienko,
Phys.Rev. B 17, 2575 (1978)



Minimum metallic conductivity ?

Conductivity

G Mott

0

2 2
e~ 1 e~ 1
s=A% nk 1) > AS n’s
h h
/
/
_____ /
: / Transition
1/
1/
I
Insulator Metal

-s— Disorder



Metal-insulator: a second order phase transition

25 T T 40 T T T ' |
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M. A. Paalanen, T.F. Rosenbaum, G.A. Thomas, R.N.Bhatt
Phys.Rev.Lett.48, 1284 (1982)



Scaling theory of localization

E.Abrahams, PW.Anderson, D.C.Licciardello, and T.W.Ramakrishnan,
Phys.Rev.Lett. 42, 673 (1979)



Minimum metallic conductivity ?

Conductivity

G Mott

0
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Metal-insulator: a second order phase transition
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M. A. Paalanen, T.F. Rosenbaum, G.A. Thomas, R.N.Bhatt
Phys.Rev.Lett.48, 1284 (1982)



Energy scales (Thouless, 1972)

d
o =1/gL
b>13 L is the system size;
= — 0
Q) -
: -
S d is the number of
- dimensions
Thouless ener: gy ET =hD/ L2 D is the diffusion const

ET has a meaning of the inverse diffusion time of the traveling
through the system

dimensionless

V=E;/o6 Thouless

conductance



Dephasing due to ee — Interaction

ballistic I~ Vel
diffusive r~ltt~v.tr

phase  exp(ip) =exp[i( & A)t], A= (Ag/h)t

A

—

dephasing time T, ~ h/Ag }

Ae~T

dephasing length

Electrons diffuse and keep their coherence during time 7,

typical e-e distance during this timeis L, .



Thouless energy

(a) We use the expression for the
dephasing length

(b) Replace Lee by the system size L
and replace temperature T by energy E

(c) We define the corresponding :
energy scale, the Thouless energy ET =hD/ L
ET has a meaning of the inverse diffusion time of the traveling

through the system.
It determines the “phase coherent” energy interval around Fermi

energy for a given system size L



Einstein relation for electric conductivity o

Conductivity O =@ gD

: 0 I e Y

for a cubic sample of
the size L, measured in 1/0hm

2 . .
y(L) = D/ l; __Thouless energy '?';’trgzress“smless
1/gL mean level spacing  ~onductance



Scaling theory of Localization
Abrahams, Anderson, Licciardello and Ramakrishnan (1979)

— Dimensionless Thouless
y - ET/ 5 conductance

L=2L=4L=8L...

without quantum corrections:

In general: universal scaling

[———e— o

E. E. E. E,
5 & &

5§

Yy —Y—=Y—Y



Scaling hypothesis

@arameter: conduct@

conductivity o [Q 1cm 2]
Conductance Y [Q1]
Dimentionless conductance vy

Y=o L%

T

L — size of cube




Derivation of scaling equation
L is a sample size

Let’s perform the scaling L->ql, q=1+a, a< 1

Scaling hypothesis:
The conductance y(L) is the control parameter

which determines the variation of y(L) as a function of L

y(qD) =flq, y(@)]

y(Ltal=f11+a, y(L)]

Zeroorderin a: y(L)=f|1, y(L)]
Firstorderina :r @L(dy/dL) = a (df/dqg) atq = 1
Where B(y)=(df/dq)/y atq=1




¢

etal - insulator transition in 3D
All states are localized for d=1,2



Two limits:

. Metal © = const

Iny = const + (d-2) In L

Iny
= d-2
A= inl ™

Il. Insulator o — O

e_%B

E.Abrahams, PW.Anderson, D.C.Licciardello, and T.W.Ramakrishnan,
Phys.Rev.Lett. 42, 673 (1979)



Physical background of the scaling hypothesis:

matching 29 hypercubes volume L9 each to one hypercube volume (2L)¢

N | =
2L — = dy-1
- = ="'%00
Perturbation theory
J d J d
W ~p7y.0-|—c..()y.o C. ~ ~J(gdL)~ndL
| | 17 ij Ei B Ej W\
with changing size L changes of wave This ratio
functions depend on overlap integral J, enters
similar to conductance Anderson
localization

criterium



d = 3 (experiment)
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I.Shlimak, M.Kaveh,R.Ussyshkin, et al.,
Phys.Rev.Lett. 77,1103 (1996)
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I.Shlimak, M.Kaveh,R.Ussyshkin, et al.,
Phys.Rev.B 55,1303 (1997)



d = 2 (experiment)
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F.W. van Keuls et al.,

S.-Y.Hsu and J.M.Valles, Jr.,
Phys.Rev. B 56,13263 (1997)

Phys.Rev.Lett. 74,2331 (1995)



d = 2 (experiment)

Strong
localization 10° ¢

O-doped :
GaAs ] Weak

_ 0 3 localization
width 500 A :

Tol
01 1 10 100
T (K)

Yu.Havin,M.Gershenson, and A.Bogdanov,
Phys.Rev. B 58,8009 (1998)



d = 2 (experiment)
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S.V.Kravchenko, W.E.Mason, G.E.Bowker, et al.,
Phys.Rev. B 51,7038 (1995)



|

|
d In y y I du_ _ I
=y =s(u—-u,)
dinL > Ac | dx :
u—u, =Ue™ |
The solution L 4

LS
nY == |mnY
nﬁc (zjn Yo

atpoint e B=1 and Iny./y.=1/s =>

2
ny, =iy, +1, =const e=p y§:A~Y§:Ae;?z = (0=

quantity & can be expressed via A

% conductivity G
j , i.e can become small

&~ /I(sln Ya
Ye




Two length scales: & and L,

critical region

Drude regime

2 2
o F(4-1)

-
~
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quantum
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d=3 o(T) in the critical region

e 1

i i — o=0 — Dn
Metallic regionat 7' = 0 03 T n L - \ /
e’ 1
Near transition pointat 7= 0 o= __
ng
2
Interpolation formula G:e 1+1
h{é& L
’ G_e2£1+1j 2
0ol - =" (Tg)"
& —> 0 h
_o=¢g:D




d=3 (x,T) diagram
AR | critical |
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2D

2 ™
O = Oy, ° InLT
N
ne’l e° L
Nkl op=10 = (k) | kl=h T L =g=leg(k)
F J

L= Py

_ D/~ " exp[—
T.=Dn o~ epl-2(k]

Even not too large values Kl ~ 10

provide extremely low T,




2D regime: crossover in T-dependence
Instead of phase transition at T=0

Strong
localization

~

Goexp [~ (T,/T)']

Weak

localization

Crossover

Increase of
disorder

|

1 1
r,=¢7IT, L,=,/Dr, =/Der/T

De .7
L =6 = o= = s on(-2K)

a1y
T =~ —
LT(L)

Thouless energy,

might be not small




Kondo effect
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There IS resistance minimum 1IN some cases
when impurity Is magnetic

Theoretical explanation:
Jun Kondo (1964)




Magnetic impurities: the origin of
Jo.S the Kondo effect

If J <0, resistivity increases at low T-:

R A

I .................... . \ /

Kondo [ phonons !

Spin-flip scattering

p(T) =po(T)+p1(1—2Jv|n kEF

B

j T, - Kondo temperature

V - density of states
J - exchange coupling: J> 0 - ferromagnetic, J < 0 — antiferromagnetic



Nature of spin-spin coupling:
Exchange interaction
Consider two electrons in states with orbital wave functions @ (r) and @ (r)
Total wave function Q= 171—5)—- (@ (1) Py () P (r2) P (1y)]
sign ‘+’ for total spin S = 0, sign ‘-’ for spin S = 1 (since Orbital+Spin = Even)
Average values of interaction energy U (r,—rt,) are A4-J

A= S S U | @, (ry) I?] @ () [* dV,dVy,
7= U9, () @) (0) @, () @, (r0) 4V AV,

— the shifts of energy levels  AE,=J, AE;=—/J
J - “exchange energy” (J>0 - ferromagnetic, J<0 - antiferromagnetic)

energy levels are eigenvalues of the exchange operator l 1(1+45,5,)
> . 1~°2
O3 , - operators of electron spin 2



Interaction of electron spin & with impurity spin § :

the exchange operator has the form —J&S

Correction to resistivity: scattering rate is calculated in the
second order of perturbation theory.
For derivation see the textbook of Abrikosov, Chapter 4.6



Initial state of an electron is (p,o), final state is (p’ o°)
Second order perturbation theory:
scattering occurs via intermediate state (p,,07)

(1) o->o;,than o, -> o’ . The state (p,ay) should be empty,
= > factor [1- f (p,)], where f (p,)] is the Fermi function

( _{_ )! 2 (os)o'o, (osL)o,o (1— l (P l)) d’p |
n e(p)—e(pi) (2nh )®

Os

2) o, -> o’ , than o-> 0,
The state (p,a7) should be occupied = > factor f (p,)

—_— i : (as)o.o' (os)o'olf (pl) dSp 1
(%) ‘?‘S e(p)—e(p) (k)




The origin of resistance increaseat T - >0
R A

\ e

Kondo I phonons ]

EF
p(T) = po(T) +p1(l— 2Jvin ﬁj

B

If J <0 resistance increases for T -> 0

Physical reason : for J < 0 tendency to antiparallel spin orientations, S,= S.
Total spin of electron and impurity is S - ¥
Initial spin state is (-1/2, S), final state is (1/2, S -1)

If J > 0, total spin of electron and impurity is S + %
If electron scatters from spin state %2 to - ¥2, impurity spin should
become S + 1 — not possible, therefore scattering is suppressed for J > 0



Resistivity saturation at below Kondo temperature

p(T) =po(T)+p1(1—2Jv|n kE—.Frj

B

1
Kondo temperature kT, ~ E.e "V

Below Kondo temperature impurity spin is screened by other electrons
=> resistance saturation

V1
collective effect l I | !
!
:

!
!



Kondo effect in a qguantum dot

il From C.Kittel

+ T } ‘Introduction to
7 i i Solid State Physics’
Chapter 18
Initial state Vst iate ‘Nanostructures’

(a) (b)

Analogy to the Mott insulator
]

Energy

1 e (g, +U)
koTy = (TU)"” exp[ Z2 20020

i,

Final state Density of states
(c) (d)
Figure 24 The Kondo effect in a quantum dot. For an unpaired spin on the dot, a virtual process
(b} can occur that converts the spin up (a) to the spin down (c) state and transfers an electron from
one side of the dot to the other. The ground state of the system is a coherent superposition on the
initial and final states shown, creating a spin singlet between the spin on the dot and the spins in
the leads. This is called the Kondo effect, and produces a narrow peak of width ~k; Ty in the den-
sity of states at £; in addition to the original broadened level of width T, as shown in (d).




initial state virtual state final state b density of states

energy
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L. Kouwenhoven et al., Phys. World 14, 33
(2001).



