Analysis of periodicity in arrays of triple steps on vicinal surfaces: Period-dependent suppression of Fourier peaks

A. Yu. Aladyshkin^{1,2,3}*, A. N. Chaika⁴, V. N. Semenov⁴, A. M. Ionov⁴, S. I. Bozhko⁴

¹ Moscow Institute of Physics and Technology, Dolgoprudny, Russia

² Institute for Physics of Microstructures RAS, Nizhny Novgorod, Russia

³ Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

⁴ Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia

*email: aladyshkin.au@mipt.ru

Key words: High-index-Miller surfaces, 7×7 reconstruction, Fourier analysis, triple steps

We have investigated the peculiarities of atomic structures on vicinal surfaces Si(h h m), oriented at an angle close to 9.5° relative to the terraces (1 1 1). As a result, we have to consider the following surfaces: Si(8 8 11) (miscut angle of 8.93° , period of triple steps of $L_3=18b=5.99$ nm, where b=0.335 nm is the distance between atomic rows for the surface $Si(1 1 1)1\times1$ in the [1 1 2] direction), Si(5 5 7) (9.44°, $L_3=17b=5.65$ nm) and Si(7 7 10) (10.0°, $L_3=16b=5.32$ nm). The expected difference in periods for these surfaces is rather small (about 6%) and can be easily masked by distortions in the scanning plane caused by thermal drift and/or creep of piezo scanner. We propose a novel method for determining the periodicity of a system of triple steps.

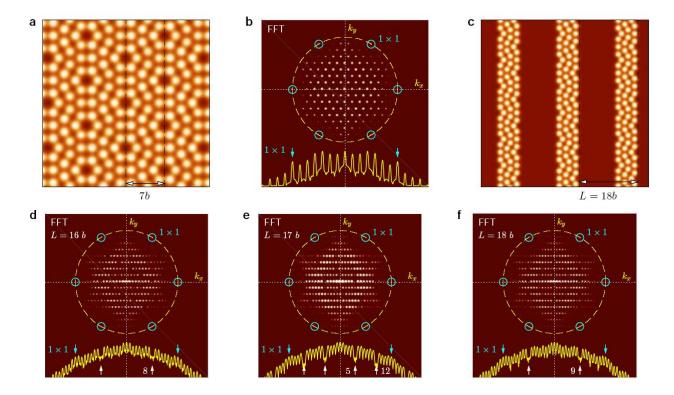


Fig. 1. **a, b** – Model surface Si(1 1 1)7×7 and corresponding Fourier transform $z(k_x, k_y)$, yellow curve in the bottom part of panel b depicts the dependence $\ln |z(k_x, k_y=0)|$. **c** – A fragment of the model structure representing periodically repeating strips of the Si(1 1 1)7×7 reconstructions with period L. **d-f** – Fourier transform $z(k_x, k_y)$ for the periodical patterns with periods 16b (d), 17b (e) and 18b (f). The radius of the circle marking the expected positions of the first-order Fourier peaks for the Si(1 1 1) 7×7 lattice, is equal to 18.89 nm⁻¹.

We note that there are areas with 7×7 reconstruction on (1 1 1) terraces for vicinal surfaces Si(8 8 11), Si(5 5 7), and Si(7 7 10) (Fig. 1c). We have shown that the Fourier transforms of topography images for such structures could contain split Fourier peaks (Fig. 1, panels d-f). Depending on the period of the superstructure, one or two peaks on the dependence of $|z(k_x,k_y)|$, composed for k_y =0, become suppressed. This enables us to uniquely determine the structure period and establish Miller indices for the considered vicinal surfaces. For vicinal surface Si(h h m), studied experimentally, proper alignment can be done using the difference-of-Gaussian approach [1]. Fourier analysis of differential topographic images obtained by scanning tunneling microscopy unequivocally indicates suppression of the ninth Fourier peak (at k_x = 9,45 nm⁻¹ and k_y =0, Fig. 1f). It apparently corresponds to the formation of Si(8 8 11) surface [2].

Bibliography

- [1] A. Yu. Aladyshkin et al., Ultramicroscopy, v. 267, 114053 (2024).
- [2] A. Yu. Aladyshkin et al., submitted (2025).