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The photoelectric effect, discovered by H. Hertz in 1887 and later, in 1906, explained by A.
Einstein, forms the basis of a variety of spectroscopic techniques known as photoelectron spec-
troscopy (PES). Among them are ultraviolet photoelectron spectroscopy (UPS), X-ray photoelec-
tron spectroscopy (XPS), angle-resolved photoelectron spectroscopy (ARPES), as well as spin-
and time-resolved photoelectron spectroscopies [1]. Nowadays, PES is one of the most exten-
sively used and continuously developing methods, allowing researchers to comprehensively study
the electronic structure of molecules, solids, surfaces, and interfaces, and to gain insight into the
dynamic and magnetic properties of the studied systems. Furthermore, PES has wide practical
implications in fields such as surface chemistry and materials science, and it has significantly
contributed to the understanding of fundamental principles in solid-state physics [1,2].

An introduction to photoelectron spectroscopy, with particular emphasis on angle-resolved
photoelectron spectroscopy (ARPES), will be provided. Several examples from our own studies
[3-15] will then be presented, illustrating how ARPES can be applied to investigate strongly cor-
related electrons and magnetic phenomena in rare-earth intermetallic materials. For a long time,
such materials have attracted considerable interest because of their exotic properties at low tem-
peratures, which include complex magnetic phases, valence fluctuations, heavy-fermion behav-
ior, Kondo physics, and many others. All of these phenomena arise from the interplay between
nearly localized 4f electrons and itinerant states.

In that regard, the class of RE compounds RET:Si, (T is transition metal atoms) of the
ThCr,Si, type structure attracts considerable attention. Besides their unique bulk properties evolv-
ing from a delicate interplay of 4f and spd electrons, these materials serve as toy models for
studying exotic physics within the non-centrosymmetric Si-T-Si-RE four layer of the Si-terminated
surface. There, the spin-orbit coupling (SOC) can be tuned by choice of suitable transition metal
atoms. It gradually increases by exchanging Co (3d) for Rh (4d) and further for Ir (5d). The SOC-
based phenomena will be rather weak for Co 3d electrons, while they will be greatly enhanced for
Ir 5d orbitals.

As a competing ingredient, exchange magnetic interaction may be exploited by inserting
elementary 4f magnets like Gd as the RE component. Because the orbital moment of the Gd 4f
shell vanishes (L = 0), the pure and large spin moment of Gd will be a strong and robust source
of magnetic phenomena. A rotation of the 4f moments to a certain angle relative to the surface
normal may be achieved by coupling to crystal-electric-field (CEF). To make use of notable CEF
effects, a non-vanishing orbital moment L is needed, like for instance in Ho or Dy. Then, this
option allows to implement an exchange magnetic field with different strength and orientation at
the surface, which competes with the Rashba SOC field and creates additional possibilities to
manipulate the properties of the 2D electrons within the considered Si-T-Si-RE system. As the
next ingredient, the Kondo effect can be introduced by inserting elements with unstable 4f shell
as Yb or Ce. This gives the opportunity to explore the interplay of the 2D electrons with 4f mo-
ments within a 2D Kondo lattice in the presence of spin-orbit coupling and a non-centrosymmetric
environment.

It will be shown that, in general, such a Si-T-Si—RE system may serve as a beautiful playground
for studying the fundamental properties of 2D electrons. These systems can be regarded as a



veritable platform, with spin—orbit coupling, Kondo effect, crystal-electric field, and exchange mag-
netic interactions as the building blocks. Combining them provides the opportunity to design sys-
tems for different scenarios and to explore the physics of 2D electrons in the presence of these
competing interactions.
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