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Введение

Актуальность работы

Настоящая экспериментальная работа выполняется в одном из наиболее ди-
намично развивающихся направлений современной науки — квантовых вычис-
лениях. Среди различных физических платформ значительное внимание уделя-
ется сверхпроводниковым кубитам, на основе которых может быть реализован
квантовый процессор, способный эффективно решать задачи экспоненциаль-
ной сложности, недоступные для классических вычислительных систем. Для
достижения практического квантового превосходства необходимо разработать
многокубитную архитектуру, в которой каждый кубит обладает высокой ко-
герентностью и обеспечивает возможность высокоточной реализации базовых
квантовых операций: инициализации, считывания, а также одно- и многокубит-
ных вентилей (называемых также гейтами). Ключевым требованием к такой ар-
хитектуре является её совместимость с квантовыми кодами коррекции ошибок,
необходимыми для повышения надежности и масштабируемости вычислений.

За последние несколько лет был получен ряд важных результатов в разра-
ботке квантовых вычислительных устройств на основе сверхпроводниковых ку-
битов [1–5]. Такие устройства чаще всего представляют собой схемы из кубитов-
трансмонов [6] с дисперсионным считыванием и емкостной связью между ку-
битами [7]. За счет шунтирующей емкости в таких кубитах подавлена чувстви-
тельность к низкочастотному зарядовому шуму. Трансмоны обладают меньшей
восприимчивостью к потоковому шуму по сравнению с потоковыми кубита-
ми [8]. В них отсутствуют массивы джозефсоновских контактов, используемые,
например, в кубитах-флаксониумах [9], что упрощает их изготовление. Времена
когерентности трансмонов достаточны для реализации универсального набора
квантовых вентилей, необходимых для выполнения алгоритмов квантовой об-
работки информации [10].
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Текущий уровень ошибок двухкубитных операций негативно влияет как
на практическое применение таких схем, так и на демонстрацию их преиму-
ществ [11]. Более того, для реализации помехозащищенных квантовых вычис-
лений необходимо использовать коды коррекции квантовых ошибок [12], на эф-
фективность которых точность двухкубитных гейтов оказывает существенное
влияние [4].

Для реализации двухкубитных гейтов существует множество разнообразных
подходов со своими достоинствами и недостатками. Простейший способ основы-
вается на резонансном обмене населенностью между кубитами, вызванном из-
менением частоты одного из кубитов [13,14]. Для трансмонов примерами такого
подхода могут быть гейты типа iSWAP [15–17] и CPHASE [16–18]. Длительность
двухкубитной операции определяется величиной константы взаимодействия ку-
битов и может быть достаточно короткой. Однако, такой подход имеет ряд недо-
статков. Система подвержена влиянию дефазировки кубитов при их частотной
отстройке от рабочих точек-экстремумов, что может быть нивелировано по-
дачей двух потоковых импульсов на кубит разной полярности относительно
нуля [19]. Такие системы имеют высокое остаточное ZZ-взаимодействие [20] в
рабочих точках кубитов. В процессе выполнения гейта возможно совпадение
частот с паразитными двухуровневыми системами [21], вызывающими сниже-
ние времени релаксации кубитов, а также флуктуации частот кубитов и времен
релаксации. Вместо перестройки частоты кубита в широком диапазоне в таких
схемах может применяться параметрически модулированный сигнал [22]. Од-
нако, для параметрических гейтов эффективная константа взаимодействия до-
статочно мала, поэтому длительности гейтов увеличиваются. Кроме того, сме-
щение кубита от его рабочей точки приводит к дополнительной дефазировке,
величина которой может быть уменьшена посредством подачи модулированного
сигнала вблизи рабочей точки [23].

Альтернативным подходом к выполнению двухкубитного гейта является ис-
пользование перестраиваемого по частоте соединительного элемента, как для
параметрически модулированного гейта [24,25], так и для резонансного [26,27].
Операция CPHASE может быть реализована с помощью адиабатического пото-
кового импульса, что увеличивает длительность гейта при том же взаимодей-
ствии, но позволяет избежать необходимости точного совпадения частот куби-
тов [28–32]. Кроме того, можно отстраивать одновременно как частоты куби-
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тов, так и элемент связи. Снижение дефазировки в данном случае возможно
при использовании переменного сигнала для изменения эффективной частоты
кубитов и достижения оптимальной длительности гейта [33]. Для перестраива-
емых элементов связи при этом важно устранять перекрестные наводки. Это
можно реализовать за счёт деструктивной интерференции между двумя раз-
личными вкладами в двухкубитное взаимодействие [34, 35]. При этом остаточ-
ное взаимодействие сильно зависит от соотношения между частотами кубитов
и соединительного элемента.

Цель работы

Целью диссертационной работы является проектирование, эксперименталь-
ное и теоретические исследование 8-кубитного процессора на трансмонах с пе-
рестраиваемым взаимодействием.

В процессе исследований были сформулированы и решались следующие за-
дачи:

1. Спроектировать сверхпроводниковый кубит-трансмон с узким диапазо-
ном перестройки частоты и уменьшенными диэлектрическими потерями.

2. Сравнить диэлектрические потери для кубита-трансмона с шунтирующей
емкостью круглой и крестообразной формы.

3. Теоретически исследовать двухкубитную систему с перестраиваемым трех-
модовым элементом связи на основе кубитов-трансмонов.

4. Спроектировать микросхему сверхпроводникового 8-кубитного процессо-
ра с перестраиваемыми элементами связи и индивидуальными микровол-
новыми копланарными резонаторами.

5. Реализовать двухкубитный гейт CZ на паре кубитов 8-кубитного процес-
сора и оценить достоверность операции методом перекрестно-энтропийного
тестирования.
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Основные положения, выносимые на защиту

1. Трехконтактный кубит-трансмон с круглой шунтирующей емкостью сни-
жает диэлектрические потери на границе металл—подложка и в объеме
кремниевой подложки в 2.7 и 2.6 раза соответственно по сравнению с Х-
моном. Повышенная устойчивость такого трансмона к потоковому шуму
обеспечивается за счет уменьшения диапазона перестройки частоты ку-
бита в более чем 3 раза до 300 МГц по сравнению со стандартным двух-
контактным трансмоном.

2. Перестраиваемый трехмодовый элемент связи между двумя трансмонами
обеспечивает диапазон ZZ-взаимодействия от десятков кГц до 60 МГц и
не требует высокой асимметрии джозефсоновских контактов в СКВИДе.

3. Универсальный 8-кубитный квантовый процессор на основе узкоперестра-
иваемых трансмонов в виде двумерного массива с управляемым взаимо-
действием через трехмодовый элемент связи позволяет выполнять двух-
кубитные CZ-операции с точностью до 98.9%.

Научная новизна исследований

1. Впервые рассчитан и продемонстрирован трехконтактный кубит-трансмон
с круглой формой шунтирующей емкости.

2. Впервые разработан и экспериментально продемонстрирован перестраи-
ваемый трехмодовый элемент связи между двумя кубитами-трансмонами.

3. Впервые разработан и экспериментально продемонстрирован восьмику-
битный квантовый процессор с перестраиваемыми трехмодовыми элемен-
тами связи между кубитами-трансмонами.

Практическая значимость работы

В настоящее время квантовые вычисления на сверхпроводниках выполня-
ются на многокубитных схемах, состоящих из связанных друг с другом транс-
монов. Для достижения высокой достоверности двухкубитных гейтов продол-
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жаются поиски оптимальных подходов в реализации таких систем. В рамках
диссертационной работы была предложена оптимизированная топология транс-
мона с тремя джозефсоновскими переходами. Показано, что трёхконтактный
трансмон позволяет получить более узкий диапазон перестройки частоты по
сравнению с двухконтактным трансмоном при сопоставимых размерах джо-
зефсоновских контактов в составе структуры, что снижает чувствительность
к потоковому шуму. Электромагнитное моделирование распределения электри-
ческого поля на технологических поверхностях показало, что круглая форма
шунтирующей ёмкости уменьшает диэлектрические потери на интерфейсах по
сравнению с распространённой крестообразной формой. Разработан трёхмодо-
вый соединительный элемент с пониженной чувствительностью к разбросам
критического тока, позволяющий управлять величиной ZZ-взаимодействия в
широком диапазоне для выполнения высокоточной операции CZ. Эксперимен-
тально продемонстрирована работа восьмикубитной схемы, на которой реализо-
вана двухкубитная операция с высокой достоверностью. Полученные результа-
ты подтверждают возможность создания универсального сверхпроводникового
квантового процессора на основе трансмонов с трёхмодовым элементом связи.

Личный вклад автора

Основные результаты, изложенные в данной диссертации, получены лично
диссертантом или при его непосредственном участии. Автор самостоятельно вы-
полнял теоретические и электродинамические расчеты, необходимые для проек-
тирования кубита-трансмона и двухкубитной системы с перестраиваемым трех-
модовым соединительным элементом. Автор выполнил моделирование, описы-
вающее динамику системы при реализации двухкубитного гейта [36,37]. Автор
принимал активное участие в проектировании и измерении сверхпроводнико-
вого 8-кубитного процессора, интерпретации полученных результатов и подго-
товке публикаций [38,39]. Автор внес вклад в работу [40], так как описанный в
публикации эксперимент был выполнен на 8-кубитном процессоре.
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1 Теоретические сведения и обзор литературы

В данной главе дано краткое описание базовых понятий, необходимых для
исследования сверхпроводниковых квантовых процессоров.

1.1 Мировые тенденции

Сверхпроводниковые квантовые вычисления реализуются на многокубит-
ных схемах, где кубиты соединяются либо напрямую — через емкостную или
индуктивную связь, либо через промежуточный элемент, перестраиваемый или
фиксированный по частоте [51,67]. В качестве кубитов используются как транс-
моны различных модификаций, так и другие типы сверхпроводниковых куби-
тов, что приводит к большому разнообразию схем. Несмотря на достигнутую
в ряде экспериментов высокую точность двухкубитных операций, при масшта-
бировании возрастает сложность управления системой, а также повышаются
требования к стабильности параметров элементов и воспроизводимости техно-
логии изготовления [4, 42].

Текущий уровень ошибок двухкубитных операций остаётся существенным
ограничением для практического применения квантовых процессоров [11]. Для
полноценного выполнения квантовых алгоритмов, предполагающих превосхо-
дящую мощность по отношению к классическим компьютерам, предстоит прой-
ти долгий и тернистый путь из множества ступеней, описанных в работе [41].
После создания физического процессора с большим количеством кубитов необ-
ходимо научиться выявлять и исправлять квантовые ошибки с помощью кодов
коррекции и продолжать наращивать число физических кубитов, так как ко-
нечная цель — это процессор с логическими кубитами. На сегодняшний день
был продемонстрирован один логический кубит на 105 физических кубитах,
превосходящий по времени жизни лучший физический кубит, на котором он
закодирован [42]. Количество физических кубитов в одном логическом в дан-
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ной работе и сам факт, что результаты получены в корпорации Google, нагляд-
но демонстрируют уверенный прогресс и масштабность деятельности в этом
направлении.

1.2 Сверхпроводниковый кубит

Физический мир многообразен, поэтому для создания базовых элементов
бинарной логики (битов) можно выбрать систему, в которой есть два разли-
чимых устойчивых состояния с возможностью управления и измерения. Для
квантовых битов это могут быть неэквидистантные уровни энергий [43] в ато-
мах, ионах, полупроводниковых квантовых точках, сверхпроводниковых куби-
тах и др. Методы управления в таких системах отличаются, но одно остается
постоянным – это подчинение законам квантовой механики. О кубите как о
квантовомеханической системе, а также о многих других вещах, касающихся
квантовых вычислений, можно подробно прочитать в книге [44] или в ее пере-
веденной на русский язык версии [45].

Как уже было сказано, кубит – это квантовая двухуровневая система. Если
она изолирована от окружения, то такая система описывается волновой функ-
цией в базисе двух состояний

|𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩ (1.2.1)

с нормировкой |𝛼|2 + |𝛽|2 = 1. Это также означает, что вероятность измерения
системы в основном состоянии равна 𝛼2, а в первом возбужденном состоянии
— 𝛽2.

Благодаря нормировке коэффициенты перед базисными векторами можно
переписать таким образом, что

|𝜓⟩ = 𝑒𝑖𝛾
(︂
cos

𝜃

2
|0⟩+ 𝑒𝑖𝜑sin

𝜃

2
|1⟩
)︂
. (1.2.2)

Так как общая фаза системы 𝛾 не имеет значения с точки зрения измерения,
то приведенная выше запись описывает вектор на сфере с единичным радиу-
сом в сферической системе координат. Угол 𝜑 – это азимутальный угол между
проекцией вектора на плоскость XY и осью X. Угол 𝜃 – зенитный угол между
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вектором и осью Z. Такое описание называется сферой Блоха (рис. 1.1), причем
базисные состояния расположены на противоположных полюсах оси Z. Истори-
чески сложилось так, что вектор основного состояния расположен на верхнем
полюсе, а возбужденного – на нижнем.

Θ

ϕ

Рис. 1.1: Сфера Блоха, построенная при помощи библиотеки QuTiP.

Эволюция замкнутой системы описывается унитарным оператором, связы-
вающим волновую функцию в два момента времени:

|𝜓⟩t2 = 𝑈 |𝜓⟩t1, (1.2.3)

причем необязательно 𝑡2 > 𝑡1, так как оператор эволюции унитарен, а значит,
обратим.

Любой однокубитный унитарный оператор можно представить в базисе мат-
риц Паули, которые вместе с единичной матрицей составляют базис в простран-
стве эрмитовых матриц 2× 2:

𝜎̂𝑥 =

(︃
0 1

1 0

)︃
, 𝜎̂𝑦 =

(︃
0 −𝑖
𝑖 0

)︃
, 𝜎̂𝑧 =

(︃
1 0

0 −1

)︃
,

причем собственные вектора этих матриц соединяют центр сферы и один из
полюсов соответствующей оси.

Если известен вид гамильтониана системы, то можно найти зависимость
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волновой функции от времени из уравнения Шредингера:

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂|𝜓⟩. (1.2.4)

Решением уравнения Шредингера для волновой функции в общем виде яв-
ляется выражение:

𝜓(𝑡) = 𝜓t0𝑒
−𝑖𝐻(𝑡−𝑡0)/ℏ. (1.2.5)

Например, гамильтониан кубита, взаимодействующего с электрическим по-
лем, можно записать в виде:

𝐻̂ =
ℏ𝜔01

2
𝜎̂𝑧 + ℏ𝑓𝜎̂𝑥 cos (𝜔𝑡+ 𝜙)𝜓, (1.2.6)

где 𝜔01 – частота перехода между состояниями, 𝑓 – амплитуда поля. Подставляя
данный гамильтониан в выражение для временной зависимости волновой функ-
ции, можно получить зависимости для амплитуд вероятностей двух базисных
состояний кубита, описывающие осцилляции Раби [46].

Если система составная, то есть имеет 𝑛 кубитов, то ее волновая функция
записывается через тензорное произведение векторов состояний отдельных под-
систем:

𝜓 = 𝜓1 ⊗ 𝜓2 ⊗ · · · ⊗ 𝜓𝑛. (1.2.7)

Запись волновой функции многокубитной системы в таком виде называется
факторизованным состоянием, и она не всегда возможна. Например, в случае
запутанного состояния.

Все вышесказанное относилось к случаю чистого состояния. Но существуют
также смешанные состояния, которым соответствует набор из возможных чи-
стых состояний системы. В таком случае описание волновой функцией уже не
применимо, а используется понятие матрицы плотности:

𝜌 =
∑︁
𝑖

𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| (1.2.8)

с вероятностью 𝑝𝑖 для 𝑖-го чистого состояния. Заметим, что матрица плотности
для чистого состояния 𝜌 = |𝜓⟩⟨𝜓|.

У оператора плотности есть ряд свойств, аналогичных нормировке волновой
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функции. Во-первых, это неотрицательно определенный оператор, так как он
описывает распределение вероятностей возможных наборов состояний системы.
Во-вторых, его след равен 1:

Tr(𝜌) =
∑︁
𝑖

𝑝𝑖Tr(|𝜓𝑖⟩⟨𝜓𝑖|) = 1. (1.2.9)

Наконец, 𝜌2 ≤ 1, причем если состояние системы чистое, то выполняется ра-
венство.

Аналогично описанию эволюции чистого состояния в терминах волновой
функции, эволюция матрицы плотности связана с унитарным преобразованием
𝑈 следующим образом:

𝜌
𝑈−→ 𝑈𝜌𝑈 †. (1.2.10)

Причем матрицу плотности также можно представить через матрицы Паули
и вектор 𝑟⃗:

𝜌 =
𝐼 + 𝑟⃗ · 𝜎⃗

2
(1.2.11)

Временная динамика матрицы плотности без каналов шума описывается
уравнением Луивилля-фон Неймана:

𝜕𝜌

𝜕𝑡
=

1

𝑖ℏ
[𝐻̂, 𝜌]. (1.2.12)

Также это уравнение описывает динамику замкнутой системы, даже если в
ней есть окружение и взаимодействие с ним. Однако, в таком уравнении раз-
мерность вычисляемых матриц выше по сравнению с описанием через вектора
состояния.

В случае наличия диссипации из системы в окружающее пространство, ис-
пользуется уравнение Линдблада (также называемое мастер-уравнением), на-
поминающее уравнение Луивилля, но с добавлением операторов Линдблада 𝐿𝛼

и констант затухания 𝛾𝛼, описывающих каналы связи с окружающей средой:

𝜕𝜌

𝜕𝑡
=

1

𝑖ℏ
[𝐻̂, 𝜌] +

∑︁
𝛼

𝛾𝛼
(︀
𝐿𝛼𝜌𝐿

†
𝛼 −

1

2
{𝐿†

𝛼𝐿𝛼, 𝜌}
)︀
, (1.2.13)

где фигурными скобками обозначен антикоммутатор.

Аналогично уравнениям Блоха для ядерной намагниченности, у кубитов
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есть два времени, характеризующих происходящее с состоянием – это релак-
сация и дефазировка. Релаксация – это продольное оси Z затухание состояния
кубита, вызванное потерей энергии вовне. Дефазировка включает в себя релак-
сацию и чистую дефазировку согласно соотношению:

𝛾2 =
𝛾1
2
+ 𝛾𝜑, (1.2.14)

где 𝛾2, 𝛾1, 𝛾𝜑 – скорости дефазировки, релаксации и чистой дефазировки соот-
ветственно. Чистая дефазировка – это поперечная релаксация, вызванная по-
терей когерентности из-за фазовых шумов.

Природа шумов крайне разнообразна (рис. 1.2) [47], так как в случае сверх-
проводниковых кубитов, являющимися наноструктурами в планарной архитек-
туре, помимо электрических и магнитных наводок извне, существуют также
паразитные взаимодействия с двухуровневыми системами (Two-Level Systems),
находящимися в чипе. Это явление является отдельной темой исследования [48],
но в случае создания квантового процессора на сверхпроводниках необходимо
улучшать технологию изготовления структур с контролем чистоты пленок и
проектировать систему таким образом, чтобы минимизировать взаимодействия
с TLS, о чем будет рассказано в следующей главе диссертации.

Электрические 
моды окружения

Парамагнитные/ядерные
спины

Фотоны

Фотоны
Зарядовые
флуктуации

Захваченные вихри

Шум магнитного поля

Туннелирование
квазичастиц

Флуктуации
зарядовой/джозефсоновской
энергии

(а) (б)

Рис. 1.2: (а) Механизмы декогеренции сверхпроводниковых кубитов. (б) Увеличенное изоб-
ражение джозефсоновского перехода. Рисунок адаптирован из [47].

Возвращаясь к физическому описанию релаксации и дефазировки, можно
обратиться к ряду русскоязычных диссертаций и дипломов, рассматривающих
уравнение Линдблада с каждым каналом и соответствующими операторами
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[49,50].

Однако, помимо уравнения Линдблада, существуют другие подходы, описы-
вающие каналы затухания в квантовой системе. Например, квантовые преобра-
зования [45], суть которых заключается в некотором воздействии на матрицу
плотности:

𝜌′ = ℰ(𝜌), (1.2.15)

представимом через операторную сумму:

ℰ(𝜌) =
∑︁
𝑘

𝐸𝑘𝜌𝐸
†
𝑘. (1.2.16)

Здесь 𝐸𝑘 – это операторы, называемые операторами Крауса, описывающие 𝑘-
й канал шума. Данные операторы удовлетворяют соотношению полноты при
условии сохранения следа квантового преобразования:∑︁

𝑘

𝐸†
𝑘𝐸𝑘 = 𝐼. (1.2.17)

При помощи операторов Крауса можно описать шумы разного вида. Напри-
мер, деполяризующий канал, который с некоторой вероятностью из чистого
состояния делает смешанное. Также рассматриваются затухание амплитуды,
описывающее релаксацию, и затухание фазы, соответствующее чистой дефази-
ровке.

Если система составная, то ее матрица плотности записывается через тен-
зорное произведение матриц плотности подсистем. В случае, если необходимо
исследовать одну из подсистем, берется частичный след по всем подсистемам,
кроме целевой. Например, для составной системы из подсистем 𝐴 и 𝐵:

𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵). (1.2.18)

В настоящее время существует множество разновидностей реализации куби-
тов на разных физических платформах. В том числе и для сверхпроводников,
где в зависимости от количества и типа соединения джозефсоновских контак-
тов существуют системы с потенциалами различной формы. Подробнее об этом
можно почитать в обзорах [51] и предшествующих диссертациях научной груп-
пы [49, 52]. Существует также полезный обзор, где наглядно изображена эво-
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люция времен релаксации и когерентности разных типов сверхпроводниковых
кубитов [53].

(а) (б)

Рис. 1.3: (а) Снимок джозефсоновского контакта в сканирующем электронном микроскопе
(СЭМ), вид сверху. (б) LCR-модель джозефсоновского перехода.

Тем не менее, ключевым элементом любого сверхпроводникового кубита яв-
ляется джозефсоновский контакт [54], где слабая связь реализована в виде тон-
кой пленки оксида между двумя слоями металла (рис. 1.2(б), рис. 1.3). При до-
стижении низких температур металл переходит в сверхпроводящее состояние,
и в такой структуре начинает работать стационарный эффект Джозефсона [54]:

𝐼 = 𝐼𝑐sin𝜙, (1.2.19)

описывающий протекание тока через слабую связь, зависящего от разности фаз
между слоями сверхпроводника и от критического тока контакта 𝐼𝑐. Критиче-
ский ток – это предельная величина, при превышении которой контакт перехо-
дит в нормальное состояние. Эта величина описывается формулой Амбегаокара-
Баратова [55]:

𝐼𝑐 =
𝜋Δ(𝑇 )

2𝑒𝑅𝑛
, (1.2.20)

связывающая критический ток, ширину щели сверхпроводника Δ и нормаль-
ное сопротивление 𝑅𝑛 при некоторой температуре. Зная ширину щели и изме-
ряя сопротивление, можно определить примерную величину критического тока
контакта и сравнить с проектным значением. Такие измерения весьма полезны
на этапе до основных измерений, так как по порядку величины сопротивления
можно определить, получился ли контакт, а при достаточно набранной стати-
стике можно определить ожидаемое значение критического тока и вычислить
частотные характеристики кубита.
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Ключевым свойством джозефсоновского контакта является зависимость его
энергии от фазы, которая и объясняет, почему он необходим при создании ку-
бита:

𝐸𝐽(𝜙) =

∫︁
𝐼𝐽𝑉𝐽𝑑𝑡 =

∫︁ 𝜙

0

𝐼𝑐sin𝜑
Φ0

2𝜋

𝜕𝜑

𝜕𝑡
𝑑𝑡 =

ℏ𝐼𝑐
2𝑒

(1− cos𝜙). (1.2.21)

Отсюда видно, что энергия не квадратична по фазе, и, соответственно, такая
система является нелинейной, что делает ее энергетические уровни неэквиди-
стантными. Следует отметить, что далее в следующих главах диссертации под
джозефсоновской энергией будет пониматься постоянный множитель 𝐸𝐽 = ℏ𝐼𝑐

2𝑒 .

Индуктивность джозефсоновского контакта определяется как обратная про-
изводная критического тока по магнитному потоку [7]:

𝐿𝐽(Φ) =

(︂
𝜕𝐼

𝜕Φ

)︂−1

=
2𝑒

ℏ𝐼𝑐cos𝜙
(1.2.22)

С точки зрения электрических цепей, джозефсоновский контакт представим
через LCR-модель, то есть в виде параллельного соединения индуктивности,
емкости и нормального сопротивления. В криогенных условиях сопротивлени-
ем пренебрегают, и остается LC-контур с нелинейной индуктивностью. Нали-
чие емкости обусловлено тем, что в разрезе джозефсоновский контакт является
плоскопараллельным конденсатором с оксидом в роли диэлектрика между ме-
таллическими пластинами.

Как было упомянуто ранее, в настоящее время кубит-трансмон [6] (transmission-
line shunted plasma oscillation qubit) используется в многокубитных системах
чаще всего. Его преимуществами являются простота в изготовлении и физиче-
ском описании. Гамильтониан трансмона (синий участок электрической схемы
на рис. 1.4(а)) состоит из зарядовой и джозефсоновской энергий:

𝐻̂ = 𝐸𝐶(𝑛̂− 𝑛𝑔)
2 + 𝐸𝐽 (1− cos𝜙) (1.2.23)

где 𝑛𝑔 = −𝐶𝑔𝑉𝑔

2𝑒 – число куперовских пар, наведенных через емкость 𝐶𝑔 с при-
ложенным напряжением 𝑉𝑔.

Вообще говоря, уровни энергий трансмона зависят от 𝑛𝑔. Но благодаря шун-
тирующей емкости (𝐶𝑠ℎ), которая увеличивает отношение джозефсоновской
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(а)

(б) (в)

,

Рис. 1.4: (а) Электрическая схема гармонического осциллятора (красный) и трансмона (си-
ний), связанных друг с другом и со считывающей линией. Схема адаптирована из [6] и
нарисована при помощи библиотеки Schemdraw Python. (б)–(в) Сопоставление потенциалов
и спектров гармонического осциллятора (б) и трансмона (в). Потенциалы обозначены крас-
ным и синим цветом соответственно. Концепция рисунка адаптирована из [51].

энергии к зарядовой, у трансмона, в отличие от зарядового кубита [56], эта
зависимость подавлена. Уровни энергий трансмона с номером 𝑚 описываются
выражением:

𝐸𝑚 ≃ −𝐸𝐽 +
√︀

8𝐸𝐶𝐸𝐽(𝑚+
1

2
)− 𝐸𝐶

12
(6𝑚2 + 6𝑚+ 3), (1.2.24)

с энергией основного перехода

𝐸01 =
√︀

8𝐸𝐶𝐸𝐽 − 𝐸𝐶 . (1.2.25)

Уровни энергии трансмона напоминают уровни энергии осциллятора, но с неко-
торой нелинейной поправкой. Так как в трансмоне потенциальная энергия не
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квадратичная, то уровни энергии не эквидистантны, но нелинейность слаба от-
носительно частот переходов. На рис. 1.4(б)–(в) показаны потенциалы и уровни
энергий гармонического осциллятора и трансмона соответственно, вычислен-
ные при помощи библиотеки Scqubits Python [57]. Можно заметить, что уровни
энергий трансмона относительно осциллятора постепенно отклоняются в мень-
шую сторону по частоте.

Существует множество модификаций кубитов-трансмонов со своими особен-
ностями. Во-первых, это трансмоны с одиночным джозефсоновским контактом.
Частоту его переходов нельзя изменить, что ограничивает возможности экспе-
римента, но делает такой кубит невосприимчивым к потоковым шумам. Во-
вторых, это двухконтактный перестраиваемый трансмон, у которого два джо-
зефсоновских контакта образуют СКВИД (сверхпроводящий квантовый интер-
ферометр), в котором меняется магнитный поток, и, как следствие, джозеф-
соновская энергия системы. Однако, диапазон перестройки таких трансмонов
широкий, в чем чаще всего нет необходимости. К тому же, весь этот частотный
диапазон не пригоден для квантовых вычислений вследствие зависимости коге-
рентности кубита от точки внешнего магнитного потока и частотного расстоя-
ния до считывающего резонатора, влияющего на скорость релаксации [58]. По-
этому предлагаются всевозможные модификации трансмона, например, с тремя
джозефсоновскими контактами [59], позволяющими сузить диапазон перестрой-
ки, тем самым сделав его менее чувствительным к шумам.

1.3 Считывание кубита

Методы измерения кубитов за четверть века претерпели существенные из-
менения. Первый зарядовый кубит [56] внешне похож на электронный транзи-
стор с тремя ножками, через которые подводили ток к ящику куперовских пар
на один электрод и измеряли его после взаимодействия с кубитом на другом
электроде. Первый потоковый кубит [60], состоящий из трех джозефсовских
контактов без шунтирующей емкости, был опоясан СКВИДом, позволяющим
измерять поведение тока в системе. Помимо этого, кубиты измерялись в трех-
мерной архитектуре, посредством помещения чипа с кубитом в трехмерный
волновод [61]. Затем группы начали использовать копланарные волноводы це-
лой или половинчатой длины волны, емкостно связанные с кубитом посередине
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и по краям с портами для считывания [8,62]. Копланарным резонатором назы-
вается двумерная структура, представляющая из себя полоску металла, отде-
ленную диэлектрической щелью от металлической земли, причем земля лежит
в той же плоскости, что и центральный проводник. Существуют также работы
по считыванию нескольких кубитов одним резонатором [63, 64], однако такое
считывание требует различения большего количества кубитных состояний, что
чревато потерей точности считывания, и не позволяет считывать кубиты неза-
висимо друг от друга.

В настоящее время общепринятым способом считывания является использо-
вание четвертьволнового копланарного индивидуального резонатора, емкостно
связанного с кубитом и с непрерывной считывающей линией [65]. Этот способ
отличается от упомянутого ранее тем, что к такой считывающей линии можно
подвести несколько считывающих резонаторов, которые не мешают считыва-
нию друг друга.

С точки зрения радиоэлектроники копланарный резонатор является переда-
ющей линией конечной длины, описываемой телеграфными уравнениями в мо-
дели распределенных элементов. Так как длина линии конечная, то образуются
стоячие волны с характеристиками, зависящими от граничных условий переда-
ющей линии. Если условия симметричные, то линия называется полуволновой,
а если несимметричные – то четвертьволновой (рис. 1.5) [66, 67]. Выражения
для частот мод 𝜆/2 и 𝜆/4 линий выражаются через длину линии как

𝑓𝜆/2 =
𝑛𝜐

2𝑙
,

𝑓𝜆/4 =
(2𝑛− 1)𝜐

4𝑙
,

(1.3.1)

где 𝑛 – номер моды, 𝑙 – длина линии. 𝜐 = 𝑐/
√
𝜖eff – это скорость света в линии,

определенная через эффективную диэлектрическую проницаемость линии, или
через погонные емкость и индуктивность копланара 𝜐 = 1/

√
𝐿′𝐶 ′. Индуктив-

ность 𝐿′ и емкость 𝐶 ′ единицы длины копланарной линии аналитически опре-
деляются из эллиптических интегралов для сечения копланара с известными
ширинами центральной металлической жилы и зазорами диэлектрика по бокам
от центральной жилы [66], или могут быть вычислены численно при помощи
конформных отображений [49,68].

Из уравнений для частот можно увидеть, что на 𝜆/2 линии укладываются
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(а) (б) (в)

Рис. 1.5: Распределение поля в длинной линии с разными граничными условиями: (а) зако-
роченная на концах, (б) замкнутая на одном конце, (в) разомкнутом на двух концах. Поряд-
ковый номер 𝑛 соответствует возрастанию частоты колебаний. Рисунок адаптирован из [69].

стоячие волны, кратные половине длины волны, а на 𝜆/4 – кратные четвер-
ти длины волны. При одинаковой частоте моды 𝜆/4 линия короче, а значит,
компактнее. Различают два вида граничных условий – когда линия закороче-
на на землю, и когда изолирована диэлектриком некоторой ширины. В первом
случае на конце такой линии напряжение равно нулю, а ток максимален, во
втором – напряжение максимально, а ток равен нулю. В зависимости от этого
можно по-разному связывать кубит и резонатор [67]. Если связь емкостная, то
необходимо помещать кубит в точку, где напряжение линии максимально. Если
связь индуктивная, то в точку, где максимален ток.

При дальнейшем рассмотрении системы копланарного резонатора с куби-
том делается упрощение, согласно которому учитывается только нижняя мода.
Это значит, что резонатор рассматривается в модели сосредоточенных элемен-
тов в виде LCR-контура. Это облегчает дальнейшие классические и квантовые
вычисления и оправдывается тем, что моды резонатора большего порядка по
частоте находятся далеко от частот кубита. Соответственно, параметры чет-
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вертьволнового резонатора [70]:

𝐿 =
1

𝜔2𝐶
=

2𝐿′𝑙

𝜋2
,

𝐶 =
𝜋

4𝜔𝑍0
=
𝐶 ′𝑙

2
,

𝑅 =
𝑍0

𝛼𝑙
,

(1.3.2)

где 𝑍0 =
√︁

𝐿′

𝐶 ′ – характеристический импеданс, 𝜔 = 1√
𝐿𝐶

– циклическая часто-
та, 𝛼 – константа аттенюации [70], связанная с потерями при распространении
волны в передающей линии.

Важной характеристикой резонатора является его добротность. В силу на-
личия резистивных потерь внутри самого резонатора, на практике возника-
ющих из-за наличия паразитных двухуровневых систем [67], его собственная,
или внутренняя, добротность конечна. Также существует внешняя добротность,
описывающая связь резонатора с окружением, как правило со считывающей
линией. Общая добротность, называемая нагруженной, описывается выраже-
нием [66]:

1

𝑄𝑙
=

1

𝑄int
+

1

𝑄ext
. (1.3.3)

Характеристики резонатора извлекаются из зависимости прохождения вол-
ны через него. Имеется в виду, что резонатор, связанный со считывающей ли-
нией, представляет собой четырехполюсник и к нему применим подход ABCD-
матрицы. Сигнал, вошедший в резонатор, а затем вышедший из него, сравни-
вается, и исследуется зависимость S-параметра, который представляет собой
отношение входящего и выходящего напряжения. Зависимость S-параметра от
частоты для резонатора можно описать выражением [71]:

𝑆21(𝑓) = 𝑎𝑒𝑖𝛼𝑒−2𝜋𝑖𝑓𝜏

(︂
1− (𝑄𝑙/|𝑄ext|)𝑒𝑖𝜑

1 + 2𝑖𝑄𝑙(𝑓/𝑓𝑟 − 1)

)︂
, (1.3.4)

где 𝑎 – общее затухание (усиление) в линиях передачи, 𝛼 – фазовый сдвиг в
линиях передачи, 𝜏 – задержка сигнала вследствие наличия длины кабеля и
конечности скорости света, 𝑓𝑟 – резонансная частота, 𝜑 – параметр рассогласо-
вания импедансов.

В упомянутой работе [71] описан алгоритм определения всех величин из
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S-параметра. Зная нагруженную добротность, можно аппроксимировать фазу
сигнала зависимостью

Θ(𝑓) = Θ0 + 2arctan

(︂
2𝑄𝑙[1−

𝑓

𝑓𝑟
]

)︂
, (1.3.5)

где Θ0 – общий фазовый сдвиг, и определить резонансную частоту.

Система резонатор-кубит с точки зрения квантовой оптики описывается га-
мильтонианом Джейнса-Каммингса

𝐻𝐽𝐶 = ℏ𝜔𝑟𝑎
†𝑎+

ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔(𝜎−𝑎† + 𝜎+𝑎), (1.3.6)

где 𝜎± =
𝜎𝑥∓𝑖𝜎𝑦

2 – аналоги операторов рождения и уничтожения для кубита. Это
можно проверить, подействовав оператором 𝜎+ на основное состояние кубита
|0⟩:

𝜎+|0⟩ =
(︃
0 0

1 0

)︃(︃
1

0

)︃
=

(︃
0

1

)︃
= |1⟩. (1.3.7)

В ур. 1.3.6 𝑔 – это сила взаимодействия кубита с резонатором. Для нее су-
ществует несколько видов записи, получаемых из квантовой электродинамики
цепей [49, 52, 72, 73]. Например, если упрощенно считать, что взаимодействуют
два осциллятора, в таком случае сила связи определяется выражением:

𝑔 =
𝐶𝑞𝑟

2
√︀
𝐶𝑞𝐶𝑟

√
𝜔𝑞𝜔𝑟, (1.3.8)

в котором 𝐶𝑞𝑟 – взаимная емкость кубита и резонатора, 𝐶𝑞 – емкость кубита,
𝐶𝑟 – емкость резонатора.

В модели Джейнса-Каммингса принят ряд упрощений. Во-первых, рассмат-
ривается только одна мода резонатора. Во-вторых, во взаимодействии учитыва-
ются только слагаемые, соответствующие сохранению числа возбуждений в си-
стеме, что называется также приближением вращающейся волны. Также здесь
учитывается только два уровня кубита.

Собственные энергии гамильтониана Джейнса-Каммингса могут быть най-
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дены аналитически [7]:

𝐸𝑔,0/ℏ =
𝜔𝑟 − 𝜔𝑔𝑒

2
,

𝐸±,𝑛/ℏ = (𝑛+ 1)𝜔𝑟 ±
1

2

√︁
4𝑔2(𝑛+ 1) + (𝜔𝑔𝑒 − 𝜔𝑟)2,

(1.3.9)

где 𝑛 – число фотонов в резонаторе, а символ ± означает, что существует два
варианта: если 𝜔𝑟 < 𝜔𝑔𝑒, то берется знак «−», и наоборот. В случае двухкон-
тактного трансмона частота кубита является функцией магнитного потока:

𝜔𝑔𝑒(Φ) = 𝜔max
𝑔𝑒

[︂
cos2

(︂
𝜋Φ

Φ0

)︂
+ 𝑑2 sin2

(︂
𝜋Φ

Φ0

)︂]︂1/4
. (1.3.10)

Частота перехода такой системы при 𝑛 = 0 равна

(𝐸±,0 − 𝐸𝑔,0)/ℏ =
𝜔𝑟 + 𝜔𝑔𝑒

2
± 1

2

√︁
4𝑔2 + (𝜔𝑟 − 𝜔𝑔𝑒)2. (1.3.11)

Отсюда следует, что изменяя магнитный поток в СКВИДе кубита, можно изме-
рить частоту перехода такой системы. Она будет близка к частоте резонатора,
но, при наличии связи с кубитом, появится зависимость от магнитного потока.
Из данной зависимости, имея достаточно точную модель, можно определить
параметры системы кубит-резонатор [74]. Однако, для получения информации
о состоянии кубита необходимо более сложное измерение, называемое диспер-
сионным считыванием [51,67,75]. Оно реализуется при условии:

𝑔/|Δ| << 1; 𝑔/|Δ+ 𝜂| << 1, (1.3.12)

где Δ = 𝜔01 − 𝜔𝑟 – отстройка между частотой перехода кубита и резонато-
ром, а 𝜂 = 𝐸12 −𝐸01 – ангармонизм. Гамильтониан системы резонатор-кубит в
дисперсионном режиме можно записать следующим образом [6]:

𝐻̂ =
ℏ𝜔′

01

2
𝜎𝑧 + (ℏ𝜔′

𝑟 + ℏ𝜒𝜎𝑧)𝑎̂†𝑎̂. (1.3.13)

Здесь 𝜔′
𝑟 = 𝜔𝑟 − 𝜒12/2 – эффективная частота резонатора, 𝜔′

01 = 𝜔01 + 𝜒01 –
эффективная частота кубита и 𝜒 = 𝜒01−𝜒12/2 – дисперсионный сдвиг, причем
𝜒𝑖𝑗 =

𝑔2𝑖𝑗
𝜔𝑖𝑗−𝜔𝑟

, 𝜔𝑖𝑗 = 𝜔𝑗 − 𝜔𝑖, 𝑔𝑖𝑗 – сила связи резонатора и 𝑖𝑗-перехода кубита.

Из гамильтониана 1.3.13 можно сделать вывод, что частота резонатора за-
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висит от состояния кубита. Поэтому, если измерять S-параметр на одной из
возможных частот резонатора, можно определять, в каком состоянии находит-
ся кубит. В силу наличия дисперсионного сдвига, сигнал на частоте считывания
будет отличаться в зависимости от состояния кубита. Выходящий из системы
сигнал на частоте считывания представим в виде [51]:

𝑠(𝑡) = 𝐴ROcos(𝜔RO𝑡+ 𝜃RO) = Re(𝐴RO𝑒
𝑖𝜃RO𝑒𝑖𝜔RO𝑡). (1.3.14)

Для измерения состояния кубита после выполнения на нем логических опе-
раций, исследуются квадратуры считывающего сигнала I и Q:

𝐴RO𝑒
𝑖𝜃RO = 𝐴ROcos𝜃RO + 𝑖𝐴ROsin𝜃RO = 𝐼 + 𝑖𝑄, (1.3.15)

которые получаются путем демодулирования выходящего сигнала.

1.4 Двухкубитные системы на трансмонах

Сверхпроводниковые двухкубитные системы претерпевают эволюцию по-
следние двадцать лет. Однако, проследить ее тяжело, так как исследования
проводятся параллельно во многих группах на кубитах разных типов, некото-
рые более ранние работы удостаиваются меньшего внимания, чем последующие
и т. д. Поэтому, нельзя сказать однозначно, кто первым выполнил двухкубит-
ную операцию и как изменялась архитектура систем в том смысле, в котором
описывают двухкубитные схемы сейчас. Известно, что двухкубитные операции
выполнялись еще 20 лет назад [76] на зарядовых кубитах, которые были про-
демонстрированы раньше всех остальных известных в настоящее время типов
кубитов. Информацию о видах двухкубитных операций и архитектурах, на ко-
торых они были выполнены впервые и с рекордной на тот момент достоверно-
стью, можно почерпнуть в обзоре [53].

Обобщенно можно описать двухкубитные системы в зависимости от их типа
связи (рис. 1.6) [51,67]. Во-первых, кубиты могут быть связаны емкостным или
индуктивным образом напрямую. Во-вторых, кубиты могут взаимодействовать
через частотно перестраиваемый или неперестраиваемый соединительный эле-
мент. При этом не учитывается, что в качестве кубитов могут использоваться не
только трансмоны различных модификаций, но и другие типы кубитов. Отсюда
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следует, что существует крайне разнообразный набор архитектур двухкубитной
системы.

M1C M2C

(а)

(б)

(в)

Рис. 1.6: Некоторые типы элементов связи в двухкубитной системе: (а) перестраиваемый
каплер, емкостно связанный с кубитами, (б) перестраиваемый каплер, индуктивно связан-
ный с кубитами, (в) резонатор в роли каплера, емкостно связанный с кубитами. Рисунок
адаптирован из [51].

Как уже было упомянуто ранее, в настоящее время наиболее популярны
системы с перестраиваемым элементом связи (далее для краткости — «капле-
ра») в виде трансмона (рис. 1.6(а)), используемые в корпорации Google [1,4,42]
(𝐹CZ = 99.75% на 105-кубитном процессоре) и IBM [77, 78] (𝐹CZ = 99.38% на
133-кубитном процессоре), например, а также системы с неперестраиваемым
элементом связи (рис. 1.6(в)), используемые в Дельфтском техническом уни-
верситете [79] (𝐹CZ = 99.93%) и IBM [5, 78] (𝐹CZ = 98.3% на 127-кубитном
процессоре). При этом научные группы всего мира демонстрируют и другие
подходы с весьма высокой достоверностью двухкубитных операций, как на-
пример, двухкубитная система с элементом связи в виде двух трансмонов [32]
(𝐹CZ = 99.92%), а также перестраиваемая индуктивная связь [80,81] (𝐹iSWAP =

99.88%). Проблема в том, что при масштабировании процессоров такими си-
стемами управлять становится довольно сложно. Например, в статье Google о
квантовом превосходстве [1] сказано, что ранее они использовали упомянутую
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выше перестраиваемую индуктивную связь, но отказались от нее из соображе-
ний удобства. К тому же, нужно иметь весьма стабильную технологию, которая
сможет обеспечить воспроизводимость размеров джозефсоновских контактов,
что особенно важно для структур с критическими токами, отличающимися в
несколько раз, как например, в случае c двойным трансмоном. Помимо этого,
перечисленные достоверности операций были получены на двухкубитных си-
стемах. При масштабировании, нужно прилагать больше усилий для калибров-
ки операций с сохранением точности [4]. Помимо достоверности двухкубитных
операций, нужно обращать внимание на длительности двухкубитных операций
и способы, при помощи которых достоверность была определена. В конечном
итоге, все это приобретет осязаемый смысл только на стадии выполнения кван-
товых алгоритмов.

Для описания двухкубитной системы так же актуальны операторы Паули,
однако размерность пространства увеличивается, и взаимодействие описается
как тензорное произведение двух операторов. Причем выбор оператора зависит
от конкретной системы [51]. Например, в случае с прямым емкостным взаимо-
действием двух кубитов без элемента связи гамильтониан традиционно прини-
мает следующий вид:

𝐻̂ =
ℏ𝜔𝑞1

2
𝜎̂𝑧 ⊗ 1̂ +

ℏ𝜔𝑞2

2
1̂⊗ 𝜎̂𝑧 + ℏ𝑔𝜎̂𝑥 ⊗ 𝜎̂𝑥, (1.4.1)

и такая связь между кубитами называется ХХ-связью. Существует также за-
пись двухкубитного взаимодействия через 𝜎𝑧 операторы, и тогда связь называ-
ется ZZ-взаимодействием. Однако, по большей части это лишь вопрос записи
через операторы, позволяющие показать прямое взаимодействие между двумя
кубитами, исключающие остальные элементы цепи. На самом деле, значение
имеет только сила связи, являющаяся множителем в члене двухкубитного га-
мильтониана с операторами рождения и уничтожения вида

𝐽(𝑎𝑏† + 𝑎†𝑏). (1.4.2)

При наличии дополнительных элементов в системе, через которые проис-
ходит взаимодействие кубитов, необходимо выполнять преобразования, при-
водящие гамильтониан к вышеупомянутому виду. Например, преобразование
Шриффера-Вульфа, активно используемое для учета вклада элемента связи в
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ZZ-взаимодействие [35,51,67,82].

Поэтому, при исследовании двухкубитных систем, записывается гамильто-
ниан конкретного вида согласно квантовой электродинамике цепей [49,52,72,73],
и затем численно определяются собственные энергии и вектора. Причем важно
учитывать как можно больше уровней, потому что своим наличием они давят на
более низкие уровни, меняя частоты их переходов. Бездиссипативная динами-
ка исследуется из уравнения Шредингера. При вводе диссипации используется
матрица плотности для учета смешанных состояний в рассмотрении.

1.5 О гейтах

Квантовые гейты, они же вентили, с точки зрения квантовой информатики
представляют собой унитарные преобразования над 𝑛-кубитной системой. С
экспериментальной точки зрения это микроволновые импульсы, меандры или
мгновенное изменение фазы сигнала.

В общем виде унитарную операцию над одним кубитом можно записать
как вращение относительно единичного вектора 𝑛⃗ на угол 𝜃 и множителем-
глобальной фазой 𝛼 [45]:

𝑈 = 𝑒𝑖𝛼𝑅𝑛⃗(𝜃). (1.5.1)

Здесь вращение определяется как:

𝑅𝑛⃗(𝜃) = 𝑒−𝑖𝜃𝑛⃗·𝜎⃗/2 = cos

(︂
𝜃

2

)︂
𝐼 − 𝑖sin

(︂
𝜃

2

)︂
𝑛⃗ · 𝜎⃗. (1.5.2)

Ранее упоминалось, что любая однокубитная операция может быть представле-
на через матрицы Паули. Отсюда немудрено, что существует множество одно-
кубитных операций с вращениями на произвольный угол вокруг любой из трех
осей сферы Блоха. Существует теорема о Z-Y разложении [45], утверждающая,
что любую однокубитную операцию можно представить в виде трех вращений
относительно Z-Y-Z осей с некоторой глобальной фазой.

В квантовых вычислениях чаще всего встречаются X, Y, Z операции, обес-
печивающие вращение на угол 𝜋 вокруг соответствующей оси. Матрицы этих
операций полностью совпадают с матрицами Паули. В общем виде вращение на
угол 𝜃 вокруг одной из осей сферы Блоха записывается согласно выражению
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1.5.2, где вектором 𝑛⃗ является одна из матриц Паули. Также часто использу-
ются S гейт, гейт Адамара и гейт 𝜋/8

𝑆 =

(︃
1 0

0 𝑖

)︃
, 𝐻 =

1√
2

(︃
1 1

1 −1

)︃
, 𝑇 =

(︃
1 0

0 𝑒𝑖𝜋/4

)︃
. (1.5.3)

S-гейт осуществляет вращение вокруг оси Z на угол 𝜋/2, операция Адамара
– вращение на 𝜋/2 вокруг оси (𝑋 + 𝑍)/

√
2. Эта операция используется для

приготовления суперпозиции базисных состояний при изначальном нахождении
кубита в одном из базисных состояний. Также это очень полезная операция с
точки зрения выполнения одного двухкубитного гейта через другой с добавле-
нием Адамаров, о чем будет сказано позднее.

Двухкубитных операций также большое множество из-за вращений на про-
извольные углы. Существуют условно направленные операции, где есть контро-
лирующий кубит, а есть целевой. Это операции CNOT и CPHASE

CNOT =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ ,CPHASE =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒𝑖𝜑

⎞⎟⎟⎟⎟⎠ . (1.5.4)

В случае CNOT выполняется логическая операция, при которой в зависимости
от состояния контролируемого кубита выполняется поворот целевого кубита на
угол 𝜋 вокруг оси Х. В случае CPHASE гейта, если контролирующий кубит
находится в возбужденном состоянии, выполняется поворот целевого кубита на
угол 𝜑 вокруг оси Z. Однако, эта операция на самом деле не является направ-
ленной, потому что если поменять местами контролирующий и контролируемый
кубиты, вид матрицы гейта не изменится. Также стоит отметить упомянутое
выше свойство, что двухкубитные операции представимы через друг друга. Это
называется теоремой о полноте, суть которой в том, что любой двухкубитный
гейт можно представить через операцию CNOT и однокубитные гейты [45].
В случае этой пары операций, CPHASE операцию можно получить последо-
вательностью H-CNOT-H, где гейт Адамара выполняется на контролируемом
кубите. Также стоит отдельно отметить CZ гейт, который является CPHASE
операцией с фазой 𝜋.
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Существуют также ненаправленные двухкубитные операции SWAP вида.
Операции этого вида отличаются фазой, которая набегает на состояниях, об-
менивающихся населенностью. Так, например, разница между SWAP и iSWAP
операциями заключается в том, что на состояниях |01⟩ и |10⟩ набегает фаза 0
и 𝜋/2:

SWAP =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 1

⎞⎟⎟⎟⎟⎠ , iSWAP =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 𝑖 0

0 𝑖 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ . (1.5.5)

Также стоит отметить, что SWAP гейт можно сделать из трех CNOT операций
с чередованием контролирующего кубита.

Вид двухкубитной связи определяет вид нативной двухкубитной операции,
то есть той, которая является для системы естественной и выполняется за одно
реальное экспериментальное действие. Так, например, SWAP операции явля-
ются нативными для систем с прямым емкостным взаимодействием, в то время
как CPHASE операции – для систем с перестраиваемым элементом связи, ем-
костно связанным с каждым из кубитов.

Для квантовых вычислений довольно трудоемко и часто попросту невоз-
можно уметь выполнять любую логическую операцию на процессоре. В связи
с этим существуют универсальные наборы квантовых операций, через которые
можно представлять любую унитарную операцию. Наиболее популярный набор
– это однокубитные операции Адамар, S, T, вместе с двухкубитной CNOT опе-
рацией. Стоит отметить, что универсальные наборы заменяют любую операцию
в некотором приближении [45], согласно теореме Соловея-Китаева. В одноку-
битном пространстве универсальным набором является упомянутый выше, но
без гейта CNOT.

Стоит отметить, однако, что в настоящее время весьма популярной явля-
ется клиффордовская группа операций [49, 83]. Сама по себе она не является
универсальной, но имеет ряд полезных свойств. Оператор, представимый в ви-
де тензорного произведения матриц Паули, после действия на него гейтов из
клиффордовской группы, остаётся представимым через матрицы Паули. По-
мимо этого, согласно теореме Готтесмана–Книлла, моделирование квантовых
вычислений для группы Клиффорда на классическом компьютере занимает
меньше времени, так как вычислительная сложность зависит от числа кубитов
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полиномиально (𝑛2), а не экспоненциально (2𝑛). Также группа Клиффорда ис-
пользуется в кодах корреции ошибок на основе стабилизаторов [84]. С одной
стороны, гейты из группы Клиффорда проще моделировать и использовать в
целом. С другой, они не являются универсальным набором, но это решается
добавлением хотя бы одного гейта не из группы Клиффорда. Также у груп-
пы Клиффорда есть удобное свойство, заключающееся в том, что можно ис-
следовать среднее значение достоверности произвольных квантовых операций,
используя конечный набор гейтов из группы Клиффорда [49].

Безусловно, в реальности матричный вид операций отличается от теорети-
ческого. Существует множество ошибок, возникающих из-за шумов или недо-
статочно точной калибровки импульсов [45]. Упрощенно можно считать, что
эффективно существуют X, Y, Z ошибки, имеющие матричное представление
в виде операторов Паули. Тем не менее, помимо ошибок в базисе Паули, су-
ществует также деполяризующий канал, для которого есть отдельное понятия
деполяризационной точности. Суть деполяризации заключается в том, что со-
стояние с некоторой вероятностью переводится в полностью смешанное [45,84]

𝜌′ =
𝑝𝐼

2
+ (1− 𝑝)𝜌. (1.5.6)

1.6 Метрика точности операций

Данный раздел посвящен описанию того, как оценить, насколько ожидание
совпадает с реальностью.

В первую очередь, можно оценить, насколько близки два квантовых состо-
яния. Существуют следовая метрика и точность состояния [45,84]. Первая оце-
нивает след разницы между ожидаемой и реальной матрицей плотности

𝐷(𝜌, 𝜎) =
1

2
Tr|𝜌− 𝜎|. (1.6.1)

Вторая оценивает степень совпадения между измеряемой матрицей плотности
𝜎 и ожидаемой матрицей плотности

𝐹 (𝜌, 𝜎) =

(︂
Tr
√︁√

𝜌𝜎
√
𝜌

)︂2

. (1.6.2)
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Определение выглядит довольно странно, но, например, в случае чистого ожи-
даемого состояния 𝜌 = |𝜓⟩⟨𝜓|, выражение для достоверности записывается как
квадрат скалярного произведения двух векторов

𝐹 (𝜌, 𝜎) = ⟨𝜓|𝜎|𝜓⟩. (1.6.3)

Однако, на практике оценивать достоверность операции по ее действию на
одно конкретное состояние некорректно. Вместо этого оценивается точность
операции в представлении матриц переноса Паули ℛ [49, 84]:

𝐹 =
Tr(ℛ𝑇

idealℛ)/𝑑+ 1

𝑑+ 1
. (1.6.4)

Матрица переноса Паули – это представление оператора 𝑈 в базисе Паули:

ℛ𝑖𝑗 =
1

𝑑
Tr(𝜎𝑖𝑈𝜎𝑗𝑈

†). (1.6.5)

Здесь ℛideal - матрица переноса Паули идеальной операции 𝑈ideal, 𝑑 – размер-
ность пространства состояний системы.

Также можно оценить точность унитарного оператора 𝑈 по формуле, учи-
тывающей усреднение по всевозможным чистым квантовым состояниям систе-
мы [85–87]:

𝐹 =
Tr(𝑈 †𝑈) + |Tr(𝑈 †

ideal𝑈)|2
𝑑(𝑑+ 1)

. (1.6.6)

1.7 Выводы по Главе 1

В данной главе представлен обзор ключевых теоретических аспектов и со-
временных исследований в области сверхпроводниковых квантовых схем. Ос-
новная цель заключалась в систематизации информации, необходимой для по-
нимания последующих разделов диссертации, где будут рассмотрены конкрет-
ные методы теоретического исследования, проектирования и измерения сверх-
проводниковых систем.

Рассмотрены базовые принципы работы кубитов, включая их описание в
рамках квантовой механики. Особое внимание уделено кубиту-трансмону как
наиболее распространенному элементу в масштабируемых квантовых вычисле-
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ниях. Описаны его преимущества, а также возможные модификации, влияющие
на перестраиваемость и когерентные свойства.

Отдельно разобраны методы считывания кубитов, начиная от исторических
подходов и заканчивая современными дисперсионными схемами с использова-
нием копланарных резонаторов. Показано, как взаимодействие кубита с резо-
натором может быть описано в рамках модели Джейнса-Каммингса, что важно
для последующего анализа экспериментальных данных.

В части, посвященной двухкубитным системам, обобщены основные архи-
тектуры взаимодействия, включая емкостную и индуктивную связь, а также
использование соединительных элементов.

Наконец, рассмотрены метрики оценки точности квантовых операций, что
необходимо для последующего анализа ошибок и оптимизации гейтов.
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2 Разработка трехконтактного трансмона с шун-
тирующей емкостью круглой формы

Данная глава диссертации посвящена теоретическому описанию трехкон-
тактного кубита-трансмона с шунтирующей емкостью круглой формы и моде-
лированию его характеристик.

2.1 Введение

Наиболее распространённый тип трансмонов – перестраиваемый X-мон [88],
имеющий крестообразную шунтирующую емкость и два джозефсоновских кон-
такта, образующих СКВИД. Такая конструкция позволяет изменять частоту
кубита из-за захватывания разных долей кванта магнитного потока в СКВИДе.
Для многокубитных схем часто требуется более четырёх электродов для ём-
костной связи, поэтому встречаются модификации трансмона с шунтирующей
емкостью в форме звезды, например [89].

В настоящее время основной причиной ограничения добротности кубитов-
трансмонов являются диэлектрические потери. Потери обусловлены наличи-
ем двухуровневых дефектов (TLS), расположенных вблизи границ интерфей-
сов вакуум-подложка и металл-подложка, а также внутри туннельного барьера
джозефсоновского контакта [90–93]. В областях с высокой плотностью энергии
электрического поля такие дефекты могут быть сильно связаны с кубитом, при
этом их общее количество невелико, что позволяет наблюдать индивидуальные
резонансы кубита с отдельными дефектами [94]. Важной характеристикой яв-
ляется доля участия энергии электрического поля на интерфейсе, потенциально
содержащем дефекты, определяемая как отношение энергии поля в исследуе-
мой области к полной энергии.

Помимо паразитных двухуровневых систем, в системе неизбежно присут-
ствуют низкочастотные потоковые шумы, снижающие время когеретности ку-
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бита. Несмотря на широкий диапазон перестройки частоты трансмонов, мак-
симальные времена когерентности достигаются в экстремумах зависимости ча-
стоты от магнитного потока в СКВИДе. В этих точках производная частоты
кубита по магнитному полю равна нулю, что делает его в первом приближении
нечувствительным к потоковому шуму [95].

Таким образом, при проектировании кубитов-трансмонов для достижения
высоких времен жизни необходимо уменьшать долю участия интерфейсов с де-
фектами и производную зависимости частоты кубита от магнитного потока.
Простейшим способом уменьшения доли участия является уменьшение разме-
ров джозефсоновского контакта. Однако, его минимальный размер ограничен
возможностями технологии изготовления и вопроизводимостью.

2.2 Теоретическое описание

В данном разделе рассматривается оптимизированный кубит-трансмон с по-
следовательным соединением одиночного джозефсоновского контакта и СКВИДа
[59], а также с круглой шунтирующей емкостью [96–98].

Топология такого кубита и его эквивалентная электрическая схема пред-
ставлены на рис. 2.1(a-б). Круглая шунтирующая емкость 𝐶2 (красный цвет)
соединена с землёй (чёрный цвет) через контур, состоящий из трёх джозеф-
соновских контактов 𝐽1, 𝐽2, 𝐽3 с собственными емкостями 𝐶𝐽1,2 и 𝐶3 (зелёный
цвет). К СКВИДу кубита подведена управляющая линия, предназначенная для
его микроволнового возбуждения и частотной перестройки. Синим цветом обо-
значены электроды, обеспечивающие емкостную связь кубита с другими эле-
ментами схемы.

Гамильтониан трехконтактного трансмона выводится из классической дина-
мики электромагнитных цепей [99]:

𝐻̂q = 4𝐸C𝑞
𝑛̂2 + 𝐸J3 (1− cos𝜙2)+

+ (𝐸J1 + 𝐸J2) cos
𝜋Φ

Φ0

√︂
1 + 𝑑2 tan2

𝜋Φ

Φ0
(1− cos𝜙1) ,

(2.2.1)

где 𝜙1, 𝜙2 – фазовые операторы на джозефсоновских контактах 𝐽1 и 𝐽3 со-
ответственно, 𝑛̂ оператор числа куперовских пар, канонически сопряженный
сумме операторов 𝜙 = 𝜙1 + 𝜙2. Зарядовая энергия трансмона определена как
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(а)

(б)

(в)

1

2

C2

J2J1 CJ1,2

J3 CJ3

Рис. 2.1: (а) Топология трансмона с круглой шунтирующей емкостью (красный цвет). На
вставке показано увеличенное изображение одиночного джозефсоновского перехода, после-
довательно соединённого со СКВИДом (зелёный цвет). Внешний магнитный поток подаёт-
ся на СКВИД через индуктивно связанную управляющую линию (желтый цвет). Синим
цветом выделены электроды-арки, обеспечивающие емкостную связь с другими возможны-
ми элементами схемы. (б) Эквивалентная электрическая схема трёхконтактного трансмона.
Цифрами обозначены узлы электрической цепи: 1 — узел между одиночным джозефсонов-
ским контактом 𝐽3 (с собственной емкостью 𝐶𝐽3) и СКВИДом, содержащим джозефсонов-
ские контакты 𝐽1 и 𝐽2 (их суммарная емкость 𝐶𝐽1,2); 2 — узел, соединяющий шунтирующую
емкость 𝐶2 с землёй. (в) Частота кубита и его ангармонизм в зависимости от магнитного
потока в СКВИДе, рассчитанные численно и по аналитическим формулам для трёхконтакт-
ного трансмона.

𝐸C𝑞
= 𝑒2/2𝐶Σ, где 𝐶Σ = 𝐶2 + 𝐶𝐽3𝐶𝐽1,2/(𝐶𝐽3 + 𝐶𝐽1,2). Здесь 𝐸𝐽𝑖 – джозефсонов-

ская энергия 𝑖-го контакта, 𝑑 = (𝐸J2−𝐸J1)/(𝐸J2+𝐸J1) – асимметрия СКВИДа,
Φ – внешний магнитный поток в СКВИДе, Φ0 =

ℎ
2𝑒 – квант магнитного потока.

В некотором приближении можно получить аналитическое выражение для
уровней энергии данного трансмона. Прежде всего, будем считать, что одиноч-
ный джозефсоновский переход и СКВИД соединены последовательно, а токи
через джозефсоновские контакты можно разложить в ряд Тейлора до первой
степени, поскольку соответствующие фазы малы:

𝐼𝐶12
sin𝜙1 = 𝐼𝐶3

sin𝜙2 ⇒ ̃︀𝐸𝐽12𝜙1 = 𝐸𝐽3𝜙2. (2.2.2)

Здесь введено обозначение ̃︀𝐸𝐽12 = 𝐸𝐽12 cos(𝜋Φ/Φ0)
√︀

1 + 𝑑2 tan2(𝜋Φ/Φ0) —
эффективная джозефсоновская энергия СКВИДа, зависящая от внешнего маг-
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нитного потока. Из соотношения (2.2.2) следует зависимость фаз:

𝜙1 =
𝐸𝐽3̃︀𝐸𝐽12

𝜙2.

Таким образом, вся система может быть описана через одну фазу 𝜙:

𝜙 = 𝜙1 + 𝜙2 =
̃︀𝐸𝐽12 + 𝐸𝐽3̃︀𝐸𝐽12

𝜙2 =
̃︀𝐸𝐽12 + 𝐸𝐽3

𝐸𝐽3

𝜙1. (2.2.3)

Гамильтониан трансмона тогда принимает следующий вид:

𝐻̂q = 4𝐸C𝑞
𝑛̂2 + 𝐸𝐽3

(︃
1− cos

̃︀𝐸𝐽12̃︀𝐸𝐽12 + 𝐸𝐽3

𝜙

)︃
+

+ ̃︀𝐸𝐽12

(︃
1− cos

𝐸𝐽3̃︀𝐸𝐽12 + 𝐸𝐽3

𝜙

)︃
.

(2.2.4)

Аналогично работе [6], разложим косинус в ряд Тейлора до четвёртого по-
рядка по малой фазе 𝜙, предполагая выполнение условия 𝐸𝐶

𝐸𝐽𝑠
≪ 1 [100]:

𝐻̂q = 4𝐸C𝑞
𝑛̂2 + 𝐸𝐽3

⎛⎝(︃ ̃︀𝐸𝐽12̃︀𝐸𝐽12 + 𝐸𝐽3

)︃2
𝜙2

2
−
(︃ ̃︀𝐸𝐽12̃︀𝐸𝐽12 + 𝐸𝐽3

)︃4
𝜙4

24

⎞⎠+

+ ̃︀𝐸𝐽12

⎛⎝(︃ 𝐸𝐽3̃︀𝐸𝐽12 + 𝐸𝐽3

)︃2
𝜙2

2
−
(︃

𝐸𝐽3̃︀𝐸𝐽12 + 𝐸𝐽3

)︃4
𝜙4

24

⎞⎠ .

(2.2.5)

Объединяя слагаемые с одинаковой степенью фазы, введём обозначения: для
линейной части индуктивной энергии —

𝐸𝐽𝑠 =
𝐸𝐽3

̃︀𝐸𝐽12

𝐸𝐽3 +
̃︀𝐸𝐽12

,

а для нелинейной части —

𝐸𝐽𝑞 =
𝐸4

𝐽3
̃︀𝐸𝐽12 + 𝐸𝐽3

̃︀𝐸4
𝐽12

(𝐸𝐽3 +
̃︀𝐸𝐽12)

4
.
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Тогда гамильтониан можно записать в следующем виде:

𝐻̂q = 4𝐸C𝑞
𝑛̂2 +

1

2
𝐸𝐽𝑠𝜙

2 − 1

24
𝐸𝐽𝑞𝜙

4, (2.2.6)

Переходя к формализму вторичного квантования, выразим операторы фазы
и числа куперовских пар через операторы рождения и уничтожения [75]:

𝑛̂ = − 𝑖

2

(︂
𝐸𝐽𝑠

2𝐸𝐶

)︂1/4

(𝑎̂− 𝑎̂+),

𝜙 =

(︂
2𝐸𝐶

𝐸𝐽𝑠

)︂1/4

(𝑎̂+ 𝑎̂+).

(2.2.7)

Возведя выражения для 𝑛̂ и 𝜙 в квадрат, получим:

𝑛̂2 =
1

4

(︂
𝐸𝐽𝑠

2𝐸𝐶

)︂1/2

(𝑎̂𝑎̂+ + 𝑎̂+𝑎̂− 𝑎̂𝑎̂− 𝑎̂+𝑎̂+),

𝜙2 =

(︂
2𝐸𝐶

𝐸𝐽𝑠

)︂1/2

(𝑎̂𝑎̂+ + 𝑎̂+𝑎̂+ 𝑎̂𝑎̂+ 𝑎̂+𝑎̂+).

(2.2.8)

Для вычисления уровней энергии рассмотрим действие операторов рожде-
ния и уничтожения на базисные состояния системы |𝑛⟩:

⟨𝑛|𝑎̂𝑎̂+|𝑛⟩ = 𝑛+ 1, ⟨𝑛|𝑎̂𝑎̂|𝑛⟩ = 0,

⟨𝑛|𝑎̂+𝑎̂|𝑛⟩ = 𝑛, ⟨𝑛|𝑎̂+𝑎̂+|𝑛⟩ = 0.
(2.2.9)

Отсюда видно, что в выражении четвёртой степени фазы необходимо учиты-
вать только те произведения операторов, которые содержат равное количество
операторов рождения и уничтожения:

𝜙4 =

(︂
2𝐸𝐶

𝐸𝐽𝑠

)︂
(𝑎̂𝑎̂𝑎̂+𝑎̂+ + 𝑎̂𝑎̂+𝑎̂𝑎̂+ + 𝑎̂𝑎̂+𝑎̂+𝑎̂+ 𝑎̂+𝑎̂𝑎̂𝑎̂+ + 𝑎̂+𝑎̂𝑎̂+𝑎̂+ 𝑎̂+𝑎̂+𝑎̂𝑎̂).

(2.2.10)

Вычислим усреднённые значения этих операторов:

⟨𝑛|𝑎̂𝑎̂𝑎̂+𝑎̂+|𝑛⟩ = (𝑛+ 1)(𝑛+ 2), ⟨𝑛|𝑎̂𝑎̂+𝑎̂𝑎̂+|𝑛⟩ = (𝑛+ 1)2,

⟨𝑛|𝑎̂𝑎̂+𝑎̂+𝑎̂|𝑛⟩ = 𝑛(𝑛+ 1), ⟨𝑛|𝑎̂+𝑎̂𝑎̂𝑎̂+|𝑛⟩ = 𝑛(𝑛+ 1),

⟨𝑛|𝑎̂+𝑎̂𝑎̂+𝑎̂|𝑛⟩ = 𝑛2, ⟨𝑛|𝑎̂+𝑎̂+𝑎̂𝑎̂|𝑛⟩ = (𝑛− 1)𝑛.

(2.2.11)
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𝐸𝐽1 (ГГц) 𝐸𝐽2 (ГГц) 𝐸𝐽3 (ГГц) 𝐸C𝑞
(МГц)

124.2 43.5 17.4 251

Таб. 2.1: Параметры трансмона: джозефсоновские энергии трех контактов, зарядовая энер-
гия

Подставляя данные результаты в выражение (2.2.6), окончательно получаем
уровни энергии трёхконтактного трансмона:

𝐸𝑚 =
√︁

8𝐸C𝑞
𝐸𝐽𝑠(𝑚+ 1/2)− 𝐸C𝑞

𝐸𝐽𝑞

12𝐸𝐽𝑠

(6𝑚2 + 6𝑚+ 3), (2.2.12)

что позволяет записать выражения для частоты перехода 𝑓01 и ангармониз-
ма 𝛼 = 𝑓21 − 𝑓01:

𝑓01 =

(︂√︁
8𝐸C𝑞

𝐸𝐽𝑠 − 𝐸C𝑞

𝐸𝐽𝑞

𝐸𝐽𝑠

)︂
/ℎ, (2.2.13)

𝛼 = −𝐸C𝑞

𝐸𝐽𝑞

𝐸𝐽𝑠

/ℎ. (2.2.14)

На рис. 2.1(в) показаны диапазон перестройки частоты кубита и его ан-
гармонизм, рассчитанные по аналитическим выражениям (2.2.13) и (2.2.14), а
также численно, в зависимости от величины внешнего магнитного потока в
СКВИДе. При проведении расчётов использовались параметры, представлен-
ные в таб. 2.1. Можно заметить, что аналитическая формула имеет погрешность
в силу принятых ранее приближений. Трёхконтактный трансмон обладает до-
статочным ангармонизмом и при этом более узким диапазоном перестройки
частоты по сравнению с двухконтактными вариантами [58], что делает его бо-
лее удобным в многокубитных схемах.

2.3 Оценка диэлектрических потерь

Для исследования влияния формы круглой емкости трансмонов на скорость
релаксации кубита при помощи пакета Ansys HFSS было выполнено моделиро-
вание и расчет доли участия электрического поля в технологических интерфей-
сах для двух форм шунтирующих емкостей одинаковой величины в трансмоне.
Диэлектрические потери в интерфейсах вносят вклад в обратную добротность
кубита [101], которая, в свою очередь, влияет на скорость релаксации кубита в
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силу соотношения
𝛾1 = 𝜔𝑄−1. (2.3.1)

Вклад диэлектрических потерь в добротность кубита описывается соотно-
шением

𝑄−1 =
∑︁
𝑖

𝑝𝑖 tan 𝛿𝑖, (2.3.2)

где 𝑝𝑖 – доля участия поверхностной энергии электрического поля на 𝑖-м техно-
логическом интерфейсе, tan 𝛿𝑖 – тангенс угла диэлектрических потерь. Поверх-
ностная энергия электрического поля представляется в виде интеграла энергии
электрического поля по 𝑖-й поверхности:∫︁ ⃒⃒

𝐸2
⃒⃒
𝑑𝑆𝑖. (2.3.3)

(а) круглый трансмон (б) Х-мон

0 0.2 0.4 (мм) 0 0.15 0.3 (мм)

0 0.05 0.1 (мм) 0 0.05 0.1 (мм)

D, дБ

Рис. 2.2: Моделирование распределения электрического поля при помощи пакета Ansys
HFSS в трансмонах с разной формой шунтирующей емкости. (a) Трансмон с круглой емко-
стью (круглый трансмон), (б) трансмон с крестообразной емкостью (X-мон). Внизу показаны
увеличенные области с джозефсоновскими переходами. Цветом обозначено значение электри-
ческого смещения на поверхности (D) в децибелах.

Первый тип трансмона имеет круглую емкость, второй – крестообразную.
Оба кубита включают в себя три джозефсоновских контакта. В моделировании
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ИнтерфейсТип кубита
ms-e ms-o sa

Круглый трансмон 3.92 17.2 30.4
Х-мон 3.61 46.9 78.9

Таб. 2.2: Интегралы энергии электрического поля по поверхностям в относительных едини-
цах

участвуют три типа интерфейсов: металл-подложка в основном слое фотоли-
тографии (ms-o), металл-подложка для слоя электронной литографии (ms-e) и
поверхность кремниевой подложки (sa). Электронная литография предназначе-
на для изготовления джозефсоновских переходов, имеющих размеры меньше 1
мкм. В моделировании не учитывается интерфейс металл-воздух, так как доля
участия поля в нем пренебрежимо мала по отношению к интерфейсу металл-
подложка [91]. Cверхпроводник моделируется как идеальный проводник, что
упрощает расчет, так как вклад кинетической индуктивности не учитывается.
Область симуляции ограничена до 1 мм перпендикулярно поверхности подлож-
ки. Полученное распределение электрического поля показано на рис. 2.2(а-б)
для круглого трансмона и X-мона соответственно.

Помимо минимизации диэлектрических потерь, в Ansys HFSS была произ-
ведена оценка релаксации круглого трансмона в контролирующую линию. Для
этого было введено граничное условие на потоковой линии в виде согласованной
нагрузки (50 Ом), а джозефсоновские контакты моделировались как линеари-
зованные эквивалентные сосредоточенные индуктивности. Аналогично вычис-
лению доли участия, толщина кремниевой подложки и слоя воздуха над ме-
таллом составляют 0.5 мм. Результаты моделирования показали, что верхний
предел для релаксации кубита в точке с наибольшей частотой в данный канал
составляет 1.6 мс. Итоговые доли участия интерфейсов приведены в таб. 2.2.
По сравнению с X-моном, круглый трансмон имеет более низкую энергию в
подложке (sa) и в фотолитографическом интерфейсе металл-подложка (ms-o).

2.4 Выводы по Главе 2

В данной главе разработана новая топология трансмона с тремя джозефсо-
новскими контактами, обеспечивающая улучшение характеристик сверхпровод-
никового квантового процессора. Получено аналитическое выражение для спек-
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тра уровней энергии трёхконтактного трансмона, позволяющее провести пря-
мое сопоставление с характеристиками стандартного двухконтактного транс-
мона. Показано, что введение третьего джозефсоновского контакта приводит к
сужению диапазона перестройки рабочей частоты кубита по сравнению с двух-
контактными аналогами, что существенно снижает чувствительность устрой-
ства к потоковому шуму и, как следствие, увеличивает время когерентности на
всём диапазоне рабочих частот.

Результаты электромагнитного моделирования продемонстрировали, что ис-
пользование круглой формы шунтирующей ёмкости в конструкции трансмона
позволяет существенно снизить уровень диэлектрических потерь на интерфей-
сах по сравнению с более традиционной крестообразной формой. Это имеет
важное значение для увеличения добротности кубита.

Основные результаты работы опубликованы в статье [38]. Предложенная оп-
тимизированная топология круглого трёхконтактного трансмона реализована в
составе сверхпроводникового восьмикубитного квантового процессора. Экспе-
риментальные исследования характеристик таких трансмонов подробно пред-
ставлены в работах [39, 40]. В частности, в работе [40] трансмон впервые был
использован в качестве кутритной системы, что подтверждает как его практи-
ческую ценность, так и научную значимость.
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3 Двухкубитная система с перестраиваемым эле-
ментом связи

В данной главе представлено теоретическое описание трёхмодового элемен-
та связи кубитов, а также двухкубитной системы с предложенной топологией
трёхконтактных трансмонов круглой формы.

3.1 Гамильтониан элемента связи

Элемент связи представляет собой копланарную линию со СКВИДом в цен-
тре и одиночными джозефсоновскими переходами по краям (рис. 3.1(a)). Его
эквивалентная электрическая схема показана на рис. 3.1(в) (синяя область).

Связующий элемент имеет три узла (обозначенные на электрической схеме
цифрами 3, 4 и 5), что соответствует трём модам в классическом приближении.
Если записать гамильтониан через переменные узлов, то фазовые переменные
в джозефсоновских энергиях контактов не разделяются. В связи с этим необ-
ходимо выбрать замену. Например, фазы узлов 𝜙𝑖=3,4,5 могут быть выражены
через фазовые координаты нормальных мод ̃︀𝜙3, ̃︀𝜙4, ̃︀𝜙5 как:

𝜙3 = ̃︀𝜙3 + ̃︀𝜙4; 𝜙4 = ̃︀𝜙3; 𝜙5 = ̃︀𝜙3 − ̃︀𝜙5. (3.1.1)

После переопределения фаз гамильтониан элемента связи принимает вид:

𝐻c = 4𝐸𝐶00
̃︀𝑛23 + 4𝐸𝐶11

̃︀𝑛24 + 4𝐸𝐶22
̃︀𝑛25 + 2𝐸𝐶01

̃︀𝑛3̃︀𝑛4 + 2𝐸𝐶02
̃︀𝑛3̃︀𝑛5+

+ 2𝐸𝐶12
̃︀𝑛4̃︀𝑛5 + 𝐸𝐽4 (1− cos ̃︀𝜙4) + 𝐸𝐽7 (1− cos ̃︀𝜙5)+

+ (𝐸J5 + 𝐸J6) cos
𝜋Φ

Φ0

√︂
1 + 𝑑2tan2𝜋Φ

Φ0
(1− cos ̃︀𝜙3).

(3.1.2)

Здесь 𝑑 – асимметрия СКВИДа связующего элемента. Зарядовая энергия
определяется как 𝐸𝐶𝑖𝑗

= 𝑒2/2𝐶𝑖𝑗, где 𝐶𝑖𝑗 – это элемент емкостной матрицы
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(a)

(б)

(в)

100 мкм

10 мкм 10 мкм10 мкм

Кубит A Кубит BЭлемент связи

C2

J2 CJ1,2

J3 CJ3

C23

C3

C26

C35

J4
J5 J6

J7 J8

J9 J10

C34

C4

C45

C5

C56

CJ8

CJ9,10

C6

J1

1

2 3 4 5 6

7

Рис. 3.1: Двухкубитная ячейка. (a) Фотография образца. Каждый трансмон (красный)
состоит из круглого острова и контура из трех джозефсоновских контактов (салатовый).
Трансмоны взаимодействуют друг с другом через элемент связи (синий). (б) Увеличенные
изображения джозефсоновских контактов (слева направо): контур трансмона, одиночный
джозефсоновский переход на конце элемента связи, СКВИД элемента связи. (в) Эквива-
лентная электрическая схема двухкубитной системы.𝐶𝑖 – емкость 𝑖-го узла на землю, 𝐶𝐽𝑖

(𝑖 = 1, . . . , 10) – емкости джозефсоновских переходов, 𝐶𝐽1,2 = 𝐶𝐽1 + 𝐶𝐽2 𝐶𝐽9,10 = 𝐶𝐽9 + 𝐶𝐽10

– суммарная емкость контактов в СКВИДе первого и второго трансмонов, 𝐶𝑖𝑗 – взаимные
емкости между узлами 𝑖 and 𝑗, которые определяют итоговую силу связи кубитов. 𝐽𝑖 – ин-
дуктивность 𝑖-го джозефсоновского контакта.
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(индексы 𝑖, 𝑗 соответствуют номерам строки и столбца матрицы, нумерация
начинается с нуля) после переопределения операторов числа куперовских пар̃︀𝑛𝑖, канонически сопряженных фазовым координатам нормальных мод:

1

2

⎡⎢⎣𝐶3 + 𝐶4 + 𝐶5 𝐶3 −𝐶5

𝐶3 𝐶3 + 𝐶34 + 𝐶35 𝐶35

−𝐶5 𝐶35 𝐶35 + 𝐶45 + 𝐶5

⎤⎥⎦ . (3.1.3)

В концептуальной форме гамильтониан связующего элемента можно пред-
ставить как сумму гамильтонианов трёх подсистем, емкостно связанных между
собой:

𝐻c =
∑︁
𝑖

𝐻𝑖 +
∑︁
𝑖̸=𝑗

𝐻𝑖𝑗, 𝑖, 𝑗 ∈ {3, 4, 5}. (3.1.4)

Здесь индекс 𝑖 соответствует фазе 𝑖-го узла.

Спектр элемента связи, полученный из выражения 3.1.2, показан на рис. 3.2.
Степень частотной перестройки уровней определяется вкладом центрального
узла в соответствующие моды колебаний системы.

3.2 Классический расчет элемента связи

Рассмотрим элемент связи как отдельную подсистему и охарактеризуем его
с точки зрения теоретической механики. В линейном приближении возможно
получить аналитические выражения для трех мод соединительного элемента и
определить соответствующее направление колебаний заряда на узлах.

Вычисления проводятся в целях наглядной демонстрации принципа работы
элемента связи в рамках линейного приближения и без учета малых взаимных
емкостей для получения простых аналитических выражений мод. Таким обра-
зом, в рассмотрение включаются только собственные емкости узлов, поскольку
взаимные емкости в линейном приближении пренебрежимо малы:

𝐶 =

⎡⎢⎣𝐶3 0 0

0 𝐶4 0

0 0 𝐶3

⎤⎥⎦ . (3.2.1)

Чтобы диагонализовать матрицу индуктивности, выполняется следующее
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(a)

(б)

Кубит A Элемент связи Кубит B

QA QBc1 c2 c3

c1 c2 c3

Рис. 3.2: (a) Упрощенная электрическая схема двухкубитной системы. Рыжим цветом обо-
значены кубиты, синим - элемент связи. (б) Уровни энергий элемента связи в зависимости
от магнитного потока в его СКВИДе, полученные из численного гамильтониана 3.1.2. Нор-
мальные моды связующего элемента определяются тремя его узлами. Стрелки показывают
относительные направления колебаний заряда на узлах для каждой из трех мод.
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преобразование:

𝑇 =

⎡⎢⎣1 1 0

0 1 0

0 1 1

⎤⎥⎦ , (3.2.2)

которое меняет вид матрицы емкостей:

𝐶𝑇 =

⎡⎢⎣𝐶3 𝐶3 0

𝐶3 2𝐶3 + 𝐶4 𝐶3

0 𝐶3 𝐶3

⎤⎥⎦ (3.2.3)

и матрицы индуктивностей

𝐿̂𝑇 =

⎡⎢⎣𝐿J4 0 0

0 𝐿J56 0

0 0 𝐿J4

⎤⎥⎦ . (3.2.4)

Отметим, что данное преобразование отличается от того, что использова-
лось при численном расчёте энергетических уровней элемента связи. Тем не
менее, оно эквивалентно по сути и не влияет на вычисленные величины. В то
же время оно представляется интуитивно более понятным, так как не требует
перестановки фаз узлов.

Решая задачу на собственные частоты и собственные вектора системы для
матрицы

𝐼 − 𝜔2𝐿𝑇𝐶𝑇 , (3.2.5)

получаем выражения для квадратов циклических частот мод элемента связи:
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𝜔2
𝑐+ =

2

𝐶3𝐿𝐽4 + 2𝐶3𝐿𝐽56 + 𝐶4𝐿𝐽56+

+

⎯⎸⎸⎷ 𝐶2
3𝐿

2
𝐽4 + 4𝐶2

3𝐿𝐽4𝐿𝐽56 + 4𝐶2
3𝐿

2
𝐽56

−2𝐶3𝐶4𝐿𝐽4𝐿𝐽56 + 4𝐶3𝐶4𝐿
2
𝐽56 + 𝐶2

4𝐿
2
𝐽56

,

𝜔2
𝑐0 =

1

𝐶3𝐿𝐽4
,

𝜔2
𝑐− =

2

𝐶3𝐿𝐽4 + 2𝐶3𝐿𝐽56 + 𝐶4𝐿𝐽56−

−

⎯⎸⎸⎷ 𝐶2
3𝐿

2
𝐽4 + 4𝐶2

3𝐿𝐽4𝐿𝐽56 + 4𝐶2
3𝐿

2
𝐽56

−2𝐶3𝐶4𝐿𝐽4𝐿𝐽56 + 4𝐶3𝐶4𝐿
2
𝐽56 + 𝐶2

4𝐿
2
𝐽56

.

(3.2.6)

Собственные моды перечислены в порядке возрастания частоты. Можно за-
метить, что вторая мода неперестраиваемая, так как не зависит от индуктивно-
сти СКВИДа. Подставляя проектные параметры, можно определить собствен-
ные вектора системы в фазовом базисе, отражающие направления фазовых ко-
лебаний на узлах для каждой моды:

𝑣+ =

⎡⎢⎣ 1

2.66

1

⎤⎥⎦ , 𝑣0 =
⎡⎢⎣−1

0

1

⎤⎥⎦ , 𝑣− =

⎡⎢⎣ 1

−0.45

1

⎤⎥⎦ . (3.2.7)

Исходя из полученных векторов, можно сделать вывод, что в самой нижней
по частоте моде колебания сонаправлены, в то время как в третьей моде ко-
лебания в центральном узле противоположны по направлению по отношению
к боковым узлам. Во второй моде нет колебаний в центральном узле, что со-
гласуется с предположением о независимости этой моды от магнитного потока
в СКВИДе. Полученные результаты изображены на рисунке 3.2(б). Описанное
поведение системы согласуется с расчетом в библиотеке QuCat Python [102], где
также можно нарисовать электрическую схему и проанализировать направле-
ния колебаний заряда на узлах в зависимости от выбранной моды.
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3.3 Описание двухкубитной системы

Гамильтониан двухкубитной системы в общем виде можно записать следу-
ющим образом:

𝐻̂sys =
∑︁

𝑖∈{𝑄A,𝑄B,𝑐1,𝑐2,𝑐3}
𝐻̂𝑖 + 𝐻̂int, (3.3.1)

где вся система состоит из пяти подсистем (узлы 1-7 на рис. 3.1(в)). Две пары
узлов (1-2 и 6-7) соответствуют кубитам, узлы 3, 4 и 5 относятся к модам эле-
мента связи. Взаимодействие между подсистемами описывается выражением:

𝐻̂int =
∑︁
𝑖̸=𝑗

𝐸𝐶𝑖𝑗𝑛̂𝑖𝑛̂𝑗, (3.3.2)

где {𝑖, 𝑗} – это комбинации пар перечисленных узлов и 𝐸𝐶𝑖𝑗 – энергия емкост-
ного взаимодействия.

Чтобы записать гамильтониан, используемый в численных расчетах, опре-
деляются фазы узлов 𝜙𝑖, соответствующие узлу 𝑖 на рис. 3.1(в), в качестве
обобщённых координат системы. Затем лагранжиан 𝐿(𝜙𝑖, 𝜙̇𝑖) выражается че-
рез соответствующие фазовые координаты и их производные 𝜙̇𝑖:

𝐿 = 𝑇 − 𝑈,

𝑇 =
Φ2

0

2(2𝜋)2

[︁
𝐶𝐽1,2𝜙̇

2
1 + 𝐶2𝜙̇

2
2 + 𝐶J3(𝜙̇2 − 𝜙̇1)

2 + 𝐶23(𝜙̇3 − 𝜙̇2)
2 + 𝐶3𝜙̇

2
3+

+ 𝐶34(𝜙̇4 − 𝜙̇3)
2 + 𝐶4𝜙̇

2
4 + 𝐶5𝜙̇

2
5 + 𝐶45(𝜙̇5 − 𝜙̇4)

2 + 𝐶35(𝜙̇5 − 𝜙̇3)
2+

+ 𝐶6𝜙̇
2
6 + 𝐶56(𝜙̇6 − 𝜙̇5)

2 + 𝐶26(𝜙̇6 − 𝜙̇2)
2 + 𝐶J8(𝜙̇7 − 𝜙̇6)

2 + 𝐶𝐽9,10𝜙̇
2
7

]︁
,

𝑈 = 𝐸J1
(︀
1− cos𝜙1

)︀
+ 𝐸J2

(︀
1− cos(𝜙1 − 𝜙ext,1)

)︀
+ 𝐸J3

(︀
1− cos(𝜙2 − 𝜙1)

)︀
+

+ 𝐸J4
(︀
1− cos(𝜙4 − 𝜙3)

)︀
+ 𝐸J5

(︀
1− cos𝜙4

)︀
+ 𝐸J6

(︀
1− cos(𝜙4 − 𝜙ext,𝑐)

)︀
+

+ 𝐸J7
(︀
1− cos(𝜙5 − 𝜙4)

)︀
+ 𝐸J8

(︀
1− cos(𝜙6 − 𝜙7)

)︀
+ 𝐸J9

(︀
1− cos𝜙7

)︀
+

+ 𝐸J10
(︀
1− cos(𝜙7 − 𝜙ext,2)

)︀
,

(3.3.3)

где 𝑇 и 𝑈 – кинетическая и потенциальная энергии. Кинетическая энер-
гия может быть записана в матричном виде как 𝑇 = 1

2
⃗̇𝜙𝑇𝐶 ⃗̇𝜙. Здесь ⃗̇𝜙 =
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[𝜙̇1, 𝜙̇2, 𝜙̇3, 𝜙̇4, 𝜙̇5, 𝜙̇6, 𝜙̇7] и 𝐶 – емкостная матрица размерностью 7× 7:

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶1Σ −𝐶J3 0 0 0 0 0

−𝐶J3 𝐶2Σ −𝐶23 0 0 −𝐶26 0

0 −𝐶23 𝐶3Σ −𝐶34 −𝐶35 0 0

0 0 −𝐶34 𝐶4Σ −𝐶45 0 0

0 0 −𝐶35 −𝐶45 𝐶5Σ −𝐶56 0

0 −𝐶26 0 0 −𝐶56 𝐶6Σ −𝐶J8

0 0 0 0 0 −𝐶J8 𝐶7Σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.3.4)

где

𝐶1Σ = 𝐶J1,2 + 𝐶J3,

𝐶2Σ = 𝐶2 + 𝐶J3 + 𝐶23 + 𝐶26,

𝐶3Σ = 𝐶3 + 𝐶23 + 𝐶34 + 𝐶35,

𝐶4Σ = 𝐶4 + 𝐶34 + 𝐶45,

𝐶5Σ = 𝐶5 + 𝐶45 + 𝐶35 + 𝐶56,

𝐶6Σ = 𝐶6 + 𝐶56 + 𝐶26 + 𝐶J8,

𝐶7Σ = 𝐶J8 + 𝐶J9,10.

(3.3.5)

Применяя преобразование координат элемента связи (см. ур.3.1.1) к емкост-
ной матрице, получаем

𝐶new = 𝑇 𝑇
𝑟 × 𝐶 × 𝑇𝑟, (3.3.6)

где матрица преобразования выглядит как:

𝑇𝑟 =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 0 0 0 0

0 0 1 0 −1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3.7)

После преобразования координат потенциальная энергия принимает следу-
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ющий вид

𝑈 = 𝐸J1
(︀
1− cos𝜙1

)︀
+ 𝐸J2

(︀
1− cos(𝜙1 − 𝜙ext,1)

)︀
+ 𝐸J3

(︀
1− cos(𝜙2 − 𝜙1)

)︀
+

+ 𝐸J4
(︀
1− cos ̃︀𝜙4

)︀
+ 𝐸J5

(︀
1− cos ̃︀𝜙3

)︀
+ 𝐸J6

(︀
1− cos(̃︀𝜙3 − 𝜙ext,𝑐)

)︀
+

+ 𝐸J7
(︀
1− cos ̃︀𝜙5

)︀
+ 𝐸J8

(︀
1− cos(𝜙6 − 𝜙7)

)︀
+ 𝐸J9

(︀
1− cos𝜙7

)︀
+

+ 𝐸J10
(︀
1− cos(𝜙7 − 𝜙ext,2)

)︀
.

(3.3.8)

При помощи данного преобразования гамильтониан элемента связи разделяется
на три подсистемы. Это позволяет существенно упростить вычисления за счёт
перехода к матрицам меньшей размерности. Добавляя два трансмона, мы имеем
пять подсистем, в каждой из которых будет рассмотрено по пять уровней. Для
каждой фазовой переменной 𝜙𝑖 задаётся дискретная сетка с шагом 𝛿𝜙𝑖 = 𝜋/16

и соответствующий канонически сопряженный заряд 𝑞𝑖 = 𝜕𝐿
𝜕𝜙̇𝑖
. Сетка для внеш-

него магнитного потока в СКВИДе элемента связи имеет шаг 𝛿𝜙𝑒𝑥𝑡 = 𝜋/128.

Гамильтониан всей системы через нормальные моды определяется как

𝐻 =
∑︁
𝑖

𝑞𝑖𝜙̇𝑖 − 𝐿 =
1

2
𝑞⃗𝑇𝐶−1

new𝑞⃗ + 𝑈, (3.3.9)

где 𝐶−1
new – обратная матрица емкости. Собственные значения каждой подсисте-

мы рассчитываются в фазовом базисе при помощи численной диагонализации,
а затем находится зарядовые матрицы при помощи преобразования Фурье. Да-
лее собирается полный гамильтониан системы путем добавления слагаемых с
взаимодействием между подсистемами ур. (3.3.2). При этом зарядовая энергия
определяется как 𝐸𝐶𝑖𝑗 = 𝑒2

2 𝐶
−1
new. Наконец, диагонализуется полный гамильто-

ниан.

Спектр всей системы в зависимости от магнитного потока в СКВИДе эле-
мента связи Φext показан на рис. 3.3(a). При расчете использовались целевые па-
раметры цепи (таб. 3.1). Кубиты при этом находятся в своих верхних точках по
частоте. Собственные состояния системы обозначены как |𝑛q1, 𝑛q2, 𝑛c1, 𝑛c2, 𝑛c3⟩,
где 𝑛𝑖 – населенность 𝑖-й моды. Четыре вычислительных состояния системы
обозначены как |𝑔𝑔000⟩, |𝑒𝑔000⟩, |𝑔𝑒000⟩, |𝑒𝑒000⟩.

Для выполнения двухкубитного гейта CZ, который является естественным
(или нативным) для данной системы, то есть реализуется без дополнительных
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(a)

(б)

146 кГц

М
Гц

Рис. 3.3: (a) Уровни энергий системы трансмон-элемент связи-трансмон в зависимости от
магнитного потока в СКВИДе элемента связи. Состояние всей системы описывается комби-
нацией состояний пяти подсистем: первые два символа соответствуют трансмонам (|𝑔⟩, |𝑒⟩
или |𝑓⟩), а оставшиеся — модам элемента связи, аналогично рис. 3.2. Перестраиваемые уров-
ни соединительного элемента двигают уровни трансмонов, изменяя силу их взаимодействия.
(б) Сила связи трансмонов в зависимости от магнитного потока в элементе связи.
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Джозефсоновская
энергия (ГГц)

— Емкость — (фФ) — Емкость — (фФ)

𝐸𝐽1, 𝐸𝐽10 124.2 𝐶2 75.6 𝐶35 0.005
𝐸𝐽2, 𝐸𝐽9 43.5 𝐶3 47.2 𝐶56 9.5
𝐸𝐽3, 𝐸𝐽8 17.4 𝐶4 144 𝐶𝐽1, 𝐶𝐽10 11.1
𝐸𝐽4, 𝐸𝐽7 124.2 𝐶5 46.5 𝐶𝐽2, 𝐶𝐽9 3.9
𝐸𝐽5 79.5 𝐶6 75.9 𝐶𝐽3, 𝐶𝐽8 1.5
𝐸𝐽6 129.1 𝐶23 9 𝐶𝐽4, 𝐶𝐽7 11.1
- - 𝐶26 0.015 𝐶𝐽5 11.5
- - 𝐶34, 𝐶45 13 𝐶𝐽6 7.1

Таб. 3.1: Проектные параметры двухкубитной схемы: емкости и джозефсоновские энергии
контактов, емкости узлов. Емкости джозефсоновских контактов элемента связи 𝐶𝐽4, 𝐶𝐽5 и
𝐶𝐽6, 𝐶𝐽7 учтены в величинах 𝐶34, 𝐶4, 𝐶45 соответственно.

однокубитных операций, необходимо иметь возможность контролировать вза-
имодействие между кубитами. В данной системе эффективное взаимодействие
определяется как разность между частотой состояния, в котором оба вычис-
лительных кубита возбуждены (|𝑒𝑒⟩), и суммой частот состояний, в которых
возбуждён только один кубит: 𝜁𝑍𝑍 = 𝑓𝑒𝑒 − 𝑓𝑒𝑔 − 𝑓𝑔𝑒, и зависит от магнитного
потока в СКВИДе элемента связи. Рассчитанная сила связи между кубитами
в верхних точках по частоте показана на рис. 3.3(б) и принимает значения в
диапазоне от 146 кГц при магнитном потоке в СКВИДе элемента связи (Φ = 0)
до 44 МГц в точке Φ = 0.5Φ0.

3.4 Вывод XX- и ZZ- взаимодействий

Для понимания принципов работы системы полезно получить аналитиче-
ские выражения, описывающие ее ключевые характеристики. В случае двухку-
битной подсистемы основной интерес представляет сила связи между кубита-
ми и ее зависимость от параметров цепи. Описываемая в диссертации система,
как уже было упомянуто, имеет ZZ-тип взаимодействия, зависящий от маг-
нитного потока в элементе связи. Для таких систем общепринятым методом
поиска формулы, описывающей связь между кубитами, является преобразо-
вание Шриффера-Вульфа, упомянутое в Главе 1. Преобразование позволяет
исключить все остальные подсистемы, кроме кубитных, оставив только видо-
измененное двухкубитное взаимодействие с поправкой на присутствие других
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элементов цепи. Однако применение данного преобразования допустимо лишь
в рамках определённых приближений, и его сложность возрастает при увели-
чении количества подсистем, которые надо исключить из преобразованного га-
мильтониана. В нашем случае таких подсистем три, и предположение о слабом
взаимодействии между подсистемами по сравнению с их частотным разнесени-
ем не соблюдается.

Тем не менее, существуют другие подходы, позволяющие аналитически опи-
сать систему. Например, получить выражение для силы связи в линейном при-
ближении, которое является функцией импеданса между кубитами согласно
работам [103,104].

В линейном приближении емкости джозефсоновских переходов не учитыва-
ются, а сами джозефсоновские переходы заменяются на линейные индуктив-
ности. Соответственно, число элементов в электрической схеме на рис. 3.1(в)
сокращается, а кубиты A и B ассоциируются с узлами 2 и 6 соответственно.
Емкости 𝐶34, 𝐶45 и 𝐶35 без учета вкладов джозефсоновских контактов пре-
небрежимо малы и, следовательно, не учитываются. Прямое емкостное взаи-
модействие между кубитами 𝐶26 будет учтено позднее. Матрицы емкостей и
обратных индуктивностей, выраженные через фазовые переменные узлов 𝜙𝑖,
имеют вид:

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶23 + 𝐶qA −𝐶23 0 0 0

−𝐶23 𝐶23 + 𝐶3 0 0 0

0 0 𝐶4 0 0

0 0 0 𝐶5 + 𝐶56 −𝐶56

0 0 0 −𝐶56 𝐶56 + 𝐶qB

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.4.1)

𝐿̃−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0

0 1
𝐿J4

− 1
𝐿J4

0 0

0 − 1
𝐿J4

1
𝐿J4

+ 1
𝐿J56

+ 1
𝐿J7

− 1
𝐿J7

0

0 0 − 1
𝐿J7

1
𝐿J7

0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.4.2)

Здесь кубиты полагаются как источники тока, согласно подходу [103, 104],
поэтому не имеют собственных индуктивностей. После применения преобра-
зования, аналогичного преобразованию для аналитического рассмотрения мод
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элемента связи 3.2.2

𝑇diag =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.4.3)

матрица индуктивностей принимает диагональный вид:

𝐿−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0

0 1
𝐿J4

0 0 0

0 0 1
𝐿J56

0 0

0 0 0 1
𝐿J7

0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.4.4)

Лагранжиан при наличии наведенного тока 𝐼qA от кубита A записывается
как:

𝐿(Φ⃗,
˙⃗
Φ) =

1

2
˙⃗
Φ𝑇𝐶

˙⃗
Φ− 1

2
Φ⃗𝑇𝐿−1Φ⃗ + 𝐼qA(𝑡)Φ2. (3.4.5)

Используя уравнение Эйлера-Лагранжа, получаем систему уравнений дви-
жения:

𝐶
¨⃗
Φ + 𝐿−1Φ⃗ = 𝐼qA(𝑡)𝑒⃗, (3.4.6)

где 𝑒⃗𝑇 = (1, 0, 0, 0, 0). Подстановка временной зависимости потока ̃⃗︀Φ(𝑡) = ⃗̃Φ𝑒𝑖𝜔𝑡

в систему уравнений движения приводит к выражению, описывающему связь
между потоками узлов и наведенным током:

(−𝜔2𝐶 + 𝐿−1)̃⃗︀Φ = 𝐼qA 𝑒⃗. (3.4.7)

Для упрощения в дальнейших вычислениях рассматривается симметричная
система: 𝐶56 = 𝐶23, 𝐶3 = 𝐶5, 𝐶qA = 𝐶qB, 𝐿J7 = 𝐿J4. Путем элементарных
преобразований строк выделяются переменные элемента связи, что приводит к
следующей системе уравнений, содержащей только потоки связующего элемен-
та:

(1− 𝜔2𝐿c𝐶c)̃⃗︀Φc =
𝐶23

𝐶23 + 𝐶qA

𝐼qA

⎛⎜⎝𝐿J4

𝐿J56

0

⎞⎟⎠ , (3.4.8)
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где матрицы индуктивности и емкости элемента связи имеют вид:

𝐿c =

⎡⎢⎣𝐿J4 0 0

0 𝐿J56 0

0 0 𝐿J4

⎤⎥⎦ , (3.4.9)

𝐶c =

⎡⎢⎢⎣
− 𝐶2

23
𝐶23+𝐶qA

+ 𝐶23 + 𝐶3 − 𝐶2
23

𝐶23+𝐶qA

+ 𝐶23 + 𝐶3 0

− 𝐶2
23

𝐶23+𝐶qA

+ 𝐶23 + 𝐶3 − 2𝐶2
23

𝐶23+𝐶qA

+ 2𝐶23 + 2𝐶3 + 𝐶4 − 𝐶2
23

𝐶23+𝐶qA

+ 𝐶23 + 𝐶3

0 − 𝐶2
23

𝐶23+𝐶qA

+ 𝐶23 + 𝐶3 − 𝐶2
23

𝐶23+𝐶qA

+ 𝐶23 + 𝐶3

⎤⎥⎥⎦ .
(3.4.10)

Определяя
𝐹 (𝜔) = 1− 𝜔2𝐿c𝐶c, (3.4.11)

потоки элемента связи выражаются как:

Φ⃗c =
𝐶23

𝐶23 + 𝐶qA

𝐼qA
adj(𝐹 (𝜔))

det(𝐹 (𝜔))

⎛⎜⎝𝐿J4

𝐿J56

0

⎞⎟⎠ , (3.4.12)

где adj(𝐹 (𝜔)) – алгебраическое дополнение матрицы 𝐹 (𝜔),
det(𝐹 (𝜔)) =

𝜔2
c+

𝜔2
c0
𝜔2
c±

(𝜔2
c+

−𝜔2)(𝜔2
c0
−𝜔2)(𝜔2

c−−𝜔2) — определитель, зависящий от нормальных
мод элемента связи 𝜔𝑐+, 𝜔𝑐0, 𝜔𝑐− (ур. 3.2.6), представленных на рис. 3.2(б) в по-
рядке возрастания частоты.

Во время элементарных преобразований строк выявляется соотношение меж-
ду потоками на узлах соединительного элемента:

𝜔2𝐶23Φ̃4 + 𝜔2𝐶23Φ̃5 − 𝜔2(𝐶qA + 𝐶23)Φ̃6 = 0.

Совместно с выражением 𝑉qB = 𝑖𝜔Φ̃6, напряжение на втором кубите можно
записать как:

𝑉qB = 𝑖𝜔

(︂
𝐶23

𝐶23 + 𝐶qA

)︂2 𝐿J56𝜔
2
c+
𝜔2
c0
𝜔2
c−

(𝜔2
c+

− 𝜔2)(𝜔2
c0
− 𝜔2)(𝜔2

c−
− 𝜔2)

𝐼qA,

где подставлены выражения для детерминанта и алгебраического дополнения
матрицы 𝐹 (𝜔). Следовательно, мнимая часть импеданса между двумя кубита-
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ми, определяемая как 𝑍qAqB = 𝑉qB/𝐼qA, имеет вид:

Im𝑍qAqB(𝜔) = 𝜔

(︂
𝐶23

𝐶23 + 𝐶qA

)︂2 𝐿J56𝜔
2
c+
𝜔2
c0
𝜔2
c−

(𝜔2
c+

− 𝜔2)(𝜔2
c0
− 𝜔2)(𝜔2

c−
− 𝜔2)

.

Наконец, при известном импедансе можно найти силу связи как функцию им-
педанса, согласно [103,104]:

𝐽qAqB = −1

4

√︂
𝜔qA𝜔qB

𝐿qA𝐿qB

Im

[︂
𝑍qAqB(𝜔qA)

𝜔qA

+
𝑍qAqB(𝜔qB)

𝜔qB

]︂
,

где 𝐿qA и 𝐿qB — это полные индуктивности цепей трехконтактных кубитов в
данном случае. Полная сила связи между кубитами оценивается как

𝐽𝑋𝑋 = 𝐽qAqB + 𝐽0, (3.4.13)

где 𝐽0 представляет собой силу связи, обусловленную наличием прямого ем-
костного взаимодействия 𝐶26.

Зная выражение для силы связи кубитов, становится возможным опреде-
лить ZZ-взаимодействие. Для этого необходимо построить численный гамиль-
тониан двухкубитной подсистемы, составленный из уровней, которые вносят
наибольший вклад в ZZ-взаимодействие и описать вклад джозефсоновских кон-
тактов элемента связи в гамильтониан двухкубитной системы.

В нашей системе ZZ-взаимодействие в первую очередь определяется сдви-
гом уровня |𝑒𝑒⟩ из-за возмущений в системе уровней |𝑓𝑔⟩, |𝑔𝑓⟩ и |𝑒𝑒⟩. Согласно
упомянутой ранее работе [104], взаимодействие между уровнями |𝑓𝑔⟩ и |𝑒𝑒⟩, а
также между уровнями |𝑔𝑓⟩ и |𝑒𝑒⟩, примерно равно

√
2𝐽𝑋𝑋 в первом прибли-

жении. Однако также следует учитывать нелинейные вклады джозефсоновских
контактов связующего элемента.

Гамильтониан подпространства двухкубитных состояний описывается с ис-
пользованием модели осцилляторов Дуффинга:

𝐻 = 𝜔qA𝑎
†𝑎+

𝛿qA
2
𝑎†𝑎(𝑎†𝑎− 1) + 𝜔qB𝑏

†𝑏+
𝛿qB
2
𝑏†𝑏(𝑏†𝑏− 1) + 𝐽𝑋𝑋(𝑎

†𝑏+ 𝑎𝑏†).

Здесь 𝐽𝑋𝑋 представляет собой полное XX-взаимодействие, определенное выше
(ур. 3.4.13).
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Нелинейные вклады от джозефсоновских контактов соединительного эле-
мента задаются следующим образом:

𝐻nonlinear = − 1

24

∑︁
𝑖=𝑐1,𝑐2,𝑐3

𝐸𝐽,𝑖

ℏ
𝜙4
𝑖 , (3.4.14)

где учитываются потоки всех узлов каплера. Для учета этих вкладов в гамиль-
тониане осцилляторов Дуффинга каждая координата потока соединительного
элемента Φ𝑖 = 2𝜋𝜙𝑖 выражается как линейная комбинация потоков кубитов ΦqA

и ΦqB:

Φ𝑖 = 𝛼𝐴,𝑖ΦqA + 𝛼𝐵,𝑖ΦqB =

√︂
ℏ
𝑍qA

2
𝛼𝐴,𝑖(𝑎

† + 𝑎) +

√︂
ℏ
𝑍qB

2
𝛼𝐵,𝑖(𝑏

† + 𝑏), (3.4.15)

где 𝛼𝐴,𝑖 — это коэффициент, связывающий поток 𝑖-го узла связующего элемента
с суммой операторов уничтожения и рождения кубита 𝐴. То же самое относится
и к коэффициенту 𝛼𝐵,𝑖 и кубиту 𝐵.

Для определения этих коэффициентов перепишем уравнение 3.4.7 без инду-
цированного тока и с измененным порядком переменных: (̃︀ΦqA,

̃︀ΦqB,
̃︀Φ3, ̃︀Φ4, ̃︀Φ5).

Матрица ёмкости в этом случае принимает вид:

𝐶 ′ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶23 + 𝐶qA 0 −𝐶23 −𝐶23 0

0 𝐶56 + 𝐶qB 0 −𝐶56 −𝐶56

−𝐶23 0 𝐶23 + 𝐶3 𝐶23 + 𝐶3 0

−𝐶23 −𝐶56 𝐶23 + 𝐶3 𝐶23 + 𝐶3 + 𝐶4 + 𝐶5 + 𝐶56 𝐶5 + 𝐶56

0 −𝐶56 0 𝐶5 + 𝐶56 𝐶5 + 𝐶56

⎤⎥⎥⎥⎥⎥⎥⎦ .
(3.4.16)

Определив 𝐴 = −𝜔2𝐶 ′ + 𝐿′−1, получаем систему уравнений:

𝐴

⎛⎜⎜⎜⎜⎜⎜⎝

̃︀ΦqÃ︀ΦqB̃︀Φ3̃︀Φ4̃︀Φ5

⎞⎟⎟⎟⎟⎟⎟⎠ = 0. (3.4.17)
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Здесь 𝐴 — это блочная матрица:

𝐴 =

(︃
𝐴11 𝐴12

𝐴21 𝐴22

)︃
, (3.4.18)

где 𝐴11 и 𝐴22 — диагональные. Связь между фазами соединительного элемента
и фазами кубитов описывается уравнением:

𝐴21

(︃̃︀ΦqÃ︀ΦqB

)︃
+ 𝐴22

⎛⎜⎝̃︀Φ3̃︀Φ4̃︀Φ5

⎞⎟⎠ = 0. (3.4.19)

Наконец, мы получаем⎛⎜⎝̃︀Φ3̃︀Φ4̃︀Φ5

⎞⎟⎠ = −𝐴−1
22 𝐴21

(︃̃︀ΦqÃ︀ΦqB

)︃
= −𝜔2𝐶23𝐴

−1
22

⎛⎜⎝ ̃︀ΦqÃ︀ΦqA + ̃︀ΦqB̃︀ΦqB

⎞⎟⎠ . (3.4.20)

Используя соотношения в ур. 3.4.20, находятся коэффициенты 𝛼𝐴,𝑖 и 𝛼𝐵,𝑖 из
ур. 3.4.15, что позволяет выразить фазы соединительного элемента 𝜙𝑖 через
операторы рождения и уничтожения кубитов. Здесь выражения для коэффи-
циентов не приводятся в виду их громоздкости. Затем вычисляются матрич-
ные элементы ⟨𝑘𝑙|𝜙4

𝑖 |𝑚𝑛⟩ для каждой комбинации состояний в подпространстве
{|𝑓𝑔⟩, |𝑔𝑓⟩, |𝑒𝑒⟩}. Данные действия аналогичны выводу аналитической форму-
лы трехконтактного трансмона в Главе 2. Опишем их более подробно.

Распишем выражение 𝜙4
𝑖 =

(︀
𝜙𝐴,𝑖(𝑎

† + 𝑎) + 𝜙𝐵,𝑖(𝑏
† + 𝑏)

)︀4, в котором коэффи-
циенты известны и равны

𝜙𝐴,𝑖 =
2𝜋

Φ0

√︂
ℏ
𝑍qA

2
𝛼𝐴,𝑖, 𝜙𝐵,𝑖 =

2𝜋

Φ0

√︂
ℏ
𝑍qB

2
𝛼𝐵,𝑖 :

𝜙4
𝑖 = 𝜙4

𝐴,𝑖(𝑎
† + 𝑎)4 + 𝜙4

𝐵,𝑖(𝑏
† + 𝑏)4 + 6𝜙2

𝐴,𝑖𝜙
2
𝐵,𝑖(𝑎

† + 𝑎)2(𝑏† + 𝑏)2+

+4𝜙3
𝐴,𝑖𝜙𝐵,𝑖(𝑎

† + 𝑎)3(𝑏† + 𝑏) + 4𝜙𝐴,𝑖𝜙
3
𝐵,𝑖(𝑎

† + 𝑎)(𝑏† + 𝑏)3.
(3.4.21)

Далее скобки со степенями раскрываются, рассчитываются матричные элемен-
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ты 𝜙4
𝑖 для состояний двухкубитной системы:

⟨𝑒𝑒|𝜙4
𝑖 |𝑒𝑒⟩ = 15𝜙4

𝐴,𝑖 + 15𝜙4
𝐵,𝑖 + 54𝜙2

𝐴,𝑖𝜙
2
𝐵,𝑖

⟨𝑓𝑔|𝜙4
𝑖 |𝑓𝑔⟩ = 39𝜙4

𝐴,𝑖 + 3𝜙4
𝐵,𝑖 + 30𝜙2

𝐴,𝑖𝜙
2
𝐵,𝑖

⟨𝑔𝑓 |𝜙4
𝑖 |𝑔𝑓⟩ = 39𝜙4

𝐵,𝑖 + 3𝜙4
𝐴,𝑖 + 30𝜙2

𝐴,𝑖𝜙
2
𝐵,𝑖

⟨𝑒𝑒|𝜙4
𝑖 |𝑔𝑓⟩ = 12

√
2𝜙3

𝐴,𝑖𝜙𝐵,𝑖 + 24
√
2𝜙𝐴,𝑖𝜙

3
𝐵,𝑖

⟨𝑒𝑒|𝜙4
𝑖 |𝑓𝑔⟩ = 24

√
2𝜙3

𝐴,𝑖𝜙𝐵,𝑖 + 12
√
2𝜙𝐴,𝑖𝜙

3
𝐵,𝑖

⟨𝑒𝑒|𝜙4
𝑖 |𝑓𝑔⟩ = 12𝜙2

𝐴,𝑖𝜙
2
𝐵,𝑖.

(3.4.22)

Таким образом, нелинейная поправка из ур. 3.4.14 получается для каждого
состояния в подпространстве. Матричные элементы этой поправки затем вы-
числяются и включаются в численный гамильтониан, который формируется из
состояний |𝑓𝑔⟩, |𝑔𝑓⟩ и |𝑒𝑒⟩, с учетом взаимодействия

√
2𝐽𝑋𝑋 . Наконец, сила ZZ-

взаимодействия определяется как разница частот между уровнем энергии |𝑒𝑒⟩
в диагональном гамильтониане без взаимодействия и так называемом гамиль-
тонианом с «одетыми» состояниями:

𝜁𝑍𝑍 = 𝜔dr
11 − 𝜔0

11, (3.4.23)

𝐻0 = ℏ

⎛⎜⎝𝜔20 0 0

0 𝜔11 0

0 0 𝜔02

⎞⎟⎠ , (3.4.24)

𝐻dr = ℏ

⎛⎜⎝ 𝜔20

√
2𝐽XX 0√

2𝐽XX 𝜔11

√
2𝐽XX

0
√
2𝐽XX 𝜔02

⎞⎟⎠ . (3.4.25)

Стоит отметить, однако, что нелинейный вклад элемента связи в ZZ-взаи-
модействие пренебрежимо мал и практически не влияет на определяемую вели-
чину. Сравнение с численным расчетом и экспериментальными данными будет
проведено в Разделе 5.6 и на рис. 5.11.
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3.5 Анализ и сравнение с другими элементами связи

Одним из ключевых преимуществ трёхмодового связующего элемента яв-
ляется возможность использования джозефсоновских контактов с малой асим-
метрией в СКВИДе. Это даёт значительное преимущество в случаях, когда
сложно добиться высокой воспроизводимости переходов с разными размера-
ми. Например, в связующем элементе типа «двойной трансмон» [32] требуемая
асимметрия играет решающую роль, так как её отклонения могут привести
к значительным изменениям в энергетической структуре каплера, в опреде-
лённом режиме фактически превращающимся в потоковый кубит. Аналогич-
но, соединительный элемент трансмонного типа [28, 29, 34, 35] требует точного
контроля асимметрии для одновременного достижения как малого остаточно-
го ZZ-взаимодействия, так и силы связи порядка десятков мегагерц в рабочей
точке. Предложенный трёхмодовый каплер обеспечивает сравнимый уровень
остаточного ZZ-взаимодействия, но при этом имеет значительно больший диа-
пазон перестройки связи по сравнению с распространенными одномодовыми
соединительными элементами при одинаковых параметрах цепи.

Чтобы проиллюстрировать упомянутое преимущество трёхмодового элемен-
та связи с технологически доступными параметрами джозефсоновских контак-
тов, было выполнено сравнение силы XX-взаимодействия, рассчитанной с ис-
пользованием аналитических формул для двух случаев: обычного одномодово-
го перестраиваемого [35] и предложенного трёхмодового элемента связи. Все
параметры системы одинаковы, за исключением отсутствия боковых джозеф-
соновских контактов в первом случае, где емкость соединительного элемента
рассчитывается как сумма емкостей всех копланарных частей каплера. Как по-
казано на рис. 3.4(a), диапазон XX-взаимодействия, как функции магнитного
потока в СКВИДе элемента связи, меньше в первом случае. Поскольку сила ZZ-
взаимодействия, в первом приближении, пропорциональна квадрату XX-связи,
диапазон перестройки ZZ-связи также шире для трёхмодового соединительного
элемента. Этот вывод был подтверждён как с помощью ранее описанного ана-
литического подхода, так и численным расчётом (рис. 3.4(б)). В этом контексте
предложенный трёхмодовый элемент связи сохраняет сопоставимый уровень
остаточного ZZ-взаимодействия, при этом предлагая более широкий перестра-
иваемый диапазон связи по сравнению с распространенным соединительным
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Рис. 3.4: (a) Сравнение аналитически рассчитанной силы связи кубитов в зависимости от
магнитного потока в каплере для двух типов элемента связи. (б) Сравнение численно полу-
ченного ZZ-взаимодействия для каплеров двух типов.

элементом типа трансмон.

Однако, по сравнению с другими двухкубитными архитектурами [28,29,31],
исследуемая система имеет недостаток, заключающийся в остаточном взаимо-
действии порядка 100 кГц. В связи с этим был произведен расчет согласно
описанному аналитическому подходу, позволящий оценить тенденцию изме-
нения остаточного ZZ-взаимодействия в зависимости от площадей джозефсо-
новских контактов. Рис. 3.5 иллюстрирует зависимость силы остаточного ZZ-
взаимодействия от площадей наименьшего контакта в СКВИДе (𝑠6) и бокового
джозефсоновского контакта (𝑠4) в двух случаях. Первый случай предполага-
ет одинаковые площади для боковых контактов (𝑠4 = 𝑠7), в то время как во
втором случае фиксируется площадь контакта 𝑠7 и варьируется площадь 𝑠4.
В обоих случаях площадь контакта 𝑠5 также остается фиксированной, соот-
ветствующей значению в дизайне. Таким образом, расчеты показывают, что
сила взаимодействия может быть уменьшена до значения ниже 100 кГц. При
дальнейшем увеличении площадей контактов сила взаимодействия достигает
значений примерно 50 кГц. Этот результат не является наименьшим среди су-
ществующих двухкубитных систем, однако, такой уровень ZZ-взаимодействия
оказывает значительно меньшее влияние на ошибку однокубитного гейта по
сравнению с процессами релаксации и дефазировки, что будет описано в Главе
4. Следует также отметить, что снижение остаточного взаимодействия обуслов-
лено увеличением площадей контактов, что увеличивает количество паразит-
ных двухуровневых систем в туннельном барьере. Вместе с этим при увеличе-
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(б)(а)

Рис. 3.5: Расчет остаточного ZZ-взаимодействия в нуле магнитного потока каплера согласно
аналитическому подходу для случая симметричных боковых джозефсоновских контактов
элемента связи (a) и для несимметричных (б).

нии размеров растут также частоты мод каплера, что отдаляет его от кубитов
и снижает диапазон двухкубитного взаимодействия в целом, на всем интервале
перестройки магнитного потока.

М
Гц

Рис. 3.6: Численно рассчитанное ZZ-взаимодействие между сильно отстроенными трансмо-
нами с использованием трехмодовым элемента связи.

Остаточное ZZ-взаимодействие можно также значительно уменьшить, если
использовать кубиты с большой частотной отстройкой друг от друга. Был про-
изведен численный расчет ZZ-взаимодействия с использованием комбинации
проектных (таб. 3.1) и экспериментальных параметров (таб. 5.3) джозефсонов-
ских контактов (рис. 3.6). В частности, использовались проектные параметры
для элемента связи и одного из двух кубитов, в то время как площади контактов
второго кубита были равны экспериментальным. Это привело к разнице частот
между кубитами примерно в 1,2 ГГц. Рассчитанная сила ZZ-взаимодействия
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составила всего 13 кГц в точке нуля магнитного потока в СКВИДе связующего
элемента и 60 МГц в точке половины кванта магнитного потока. Эти результаты
указывают на то, что для сильно отстроенных кубитов возможно оптимизиро-
вать параметры, чтобы достичь как низкого остаточного ZZ-взаимодействия,
так и достаточной силы связи в рабочей точке.

3.6 Выводы по Главе 3

В данной главе представлены теоретические результаты разработки пере-
страиваемого трехмодового элемента связи, а также исследована двухкубитная
схема, в состав которой входит такой трехмодовый элемент связи и трехкон-
тактные трансмоны круглой формы. Рассмотрен подход к построению гамиль-
тониана такого элемента с учётом его полной нелинейной структуры, а также
получены аналитические выражения в линейном приближении для частот мод.

На основе численного нахождения собственных значений гамильтониана двух-
кубитной системы получены уровни энергии и рассчитано ZZ-взаимодействие
между кубитами в зависимости от магнитного потока в СКВИДе элемента свя-
зи. Кроме того, предложен аналитический метод оценки XX- и ZZ- взаимо-
действий, пригодный для быстрой оценки параметров без полного численного
моделирования.

Проведено сравнение предложенной трёхмодовой схемы с одномодовыми и
другими многомодовыми элементами связи, используемыми в мире. Установле-
но, что при тех же параметрах системы трёхмодовая конфигурация обеспечива-
ет более широкий диапазон перестройки ZZ-связи. При этом устройство менее
чувствительно к асимметрии джозефсоновских контактов в СКВИДе, что сни-
жает требования к точности изготовления.

Дополнительно проанализировано влияние геометрических параметров, в
частности площадей джозефсоновских переходов, на остаточное взаимодействие.
Показано, что за счёт подбора площадей возможно снизить ZZ-взаимодействие
до величин порядка 50–60 кГц. Также рассмотрен случай двух кубитов с раз-
несёнными частотами, при котором остаточное взаимодействие может быть
уменьшено до величины 13 кГц.

Описанные результаты опубликованы в статье [39].
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4 Проектирование 8-кубитного квантового про-
цессора

Данная глава посвящена описанию проектирования элементов 8-кубитного
процессора.

4.1 Описание топологии

Восьмикубитная топология представлена на рис. 4.1, цветом обозначены ос-
новные элементы процессора. Восемь концетрических трансмонов (красный)
и десять перестраиваемых элементов связи (синий) образуют двумерный мас-
сив 4 × 2. Емкостная связь между кубитом и другими элементами топологии
осуществлена посредством электродов дугообразной формы [22, 89]. Каждый
трансмон имеет собственную контролирующую линию (розовый) для управле-
ния магнитным потоком в СКВИДе кубита и подачи микроволновых сигналов.
Такие же линии (оранжевый) используются для подачи сигнала к СКВИДу
каплера. В топологии присутствуют две считывающие линии на отражение (фи-
олетовый), левая из которых связана с четырьмя трансмонами левой половины
процессора, и, аналогично, правая с четырьмя трансмонами правой половины.
Каждый трансмон имеет индивидуальный считывающий резонатор (зеленый)
и парселловский фильтр (желтый) между резонатором и считывающей лини-
ей. Считывающие и управляющие линии в процессоре при проникновении их
в двумерную решетку проходят над копланарами элементов связи при помо-
щи воздушных мостов (черные перемычки над всеми копланарными линиями).
Воздушные мосты используются для равномерного распределения напряжения
на чипе. Слой земли (черный) в подавляющей области топологии представлен
в виде решетки, необходимой для устранения вихрей Абрикосова, наводящих
паразитный магнитный поток в СКВИДы.

Цветом обозначена металлизация чипа, получаемая напылением алюминия
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Управляющая линия 
кубита

Управляющая линия 
элемента связи

Считывающая 
линия

Кубит Элемент связи Резонатор Парселловский фильтр

Рис. 4.1: Топология восьмикубитного процессора размером 5 × 10 мм2. Восемь круглых
трансмонов (красный) расположены в виде решетки 4× 2 и связаны посредством перестра-
иваемых элементов связи (синий). Кубиты и элементы связи имеют индивидуальные линии
управления (розовый и оранжевый соответственно). Каждый трансмон имеет индивидуаль-
ный резонатор (зеленый), связанный со считывающей линией через парселловский фильтр
(желтый). Левая и правая считывающие линии (фиолетовый) связаны с четырьмя трансмо-
нами левой и правой половины топологии соответственно.

на кремниевую подложку. Для изготовления всех структур, кроме джозефсо-
новских переходов, используется оптическая литография, точности которой до-
статочно для получения микронных размеров. Для получения джозефсонов-
ских переходов, воздушных мостов и других структур субмикронных размеров
используется электронная литография. В обоих случаях на подложку первона-
чально наносится резист, который обрабатывается в ходе литографии, а затем
травится, удаляясь в ненужных местах. После этого напыляется алюминий, ко-
торый остается в областях без резиста, формируя описанную ранее микросхему.
Джозефсоновские переходы представляют собой перекрытие пленок алюминия
со слоем оксида алюминия между ними.

Топология отрисована в библиотеке QCreator Python [105], разработанной в
лаборатории. Рисование структур основано на использовании библиотеки gdspy
Python [106], способной создавать полигоны, слои и выполнять логические опе-
рации. Помимо этого, в библиотеке используется встроенная программа для
расчета матрицы емкостей (Fastcap), расчет погонных параметров копланарных
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линий [68], частот и скоростей затухания элементов цепи в модели передающих
линий [107,108], а также S-параметра.

4.2 Проектирование трансмона

Внешний вид трансмона претерпел ряд изменений по мере измерения об-
разцов. Менялся внешний вид управляющей линии, размер круглой емкости, а
также ориентация джозефсоновских контактов в СКВИДе относительно управ-
ляющей линии.

В ходе экспериментального исследования однокубитных образцов (рис. 4.2(а))
было выявлено, что используемая управляющая линия является ограничиваю-
щим фактором для времени жизни кубита. Первоначально сигнал на круглые
трансмоны подавался через сильно встроенную конструкцию с большой вза-
имной индуктивностью между линией и трансмоном (рис. 4.2(в)). Это было
сделано для адресации сигнала и избежания перекрестных наводок между ку-
битами. Однако, времена релаксации таких кубитов не превышали в лучшем
случае нескольких микросекунд, в то время как времена на Х-монах с общепри-
нятой управляющей линией (рис. 4.2(в)) имели порядки нескольких десятков
микросекунд. При этом, в случае заземления контролирующих линий кубитов
времена жизни круглых трансмонов и Х-монов имели один и тот же порядок.
Это говорит о том, что проблема заключается в конструкции управляющей ли-
нии.

Первой причиной являлась упомянутая высокая взаимная индуктивность,
квадрат которой пропорционален скорости релаксации трансмона [6]. Помимо
экспериментальных исследований, это было проверено при помощи электромаг-
нитного моделирования двух конфигураций кубита и его управляющей линии
(рис. 4.3). В обеих конфигурациях СКВИД круглого трансмона и управляющая
линия связаны гальванически, но меняется геометрия общей индуктивности.
Значение величины добротности, полученное в ходе моделирования в програм-
ме HFSS в режиме Eigenmode, позволяет оценить границу сверху для времени
релаксации кубита в управляющую линию согласно ур. 2.3.1. В первом случае
(рис. 4.3(a)) время релаксации кубита составляет 1,72 мкс. Во втором случае
(рис. 4.3(б)) время релаксации кубита составляет 857 мкс. Однако, в данном
случае имеет значение сравнение порядков этих верхних границ, потому что
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Рис. 4.2: (а) Тестовый дизайн исследования однокубитных систем. Шесть трансмонов с
разной формой шунтирующей емкости и видом управляющей линии. (б) Вид управляющей
линии Х-мона. (в) Вид управляющей линии круглого трансмона.

расчеты в программе не всегда точны. Так, например, если выполнить модели-
рование S-параметра в той же программе в режиме Modal Network, и аппрок-
симировать зависимость фазы S-параметра от частоты согласно ур. 1.3.5, то
получатся значения 11 мкс и 6 мс. Тем не менее, в обеих случаях максималь-
ное время релаксации отличается на два-три порядка для двух разных видов
контролирующей линии.

(a) (б)

Рис. 4.3: Электромагнитное моделирование в HFSS добротности моды трансмона с разны-
ми типами контролирующей линии. Цветом обозначено распределение амплитуды тока. (a)
Сильно встроенная контролирующая линия с высокой взаимной индуктивностью. (б) Обще-
принятая управляющая линия.

Помимо поиска наиболее удачного расположения контролирующей линии,
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в ходе которого проводилось сравнение моделирования в режиме Eigenmode,
согласовывалось с полученными экспериментальными результатами (получен-
ные времена когерентности и релаксации кубитов лежат в диапазоне 1-2 мкс),
также была обнаружена зависимость времен релаксации кубита с разным рас-
положением джозефсоновских контактов в СКВИДе кубита относительно кон-
тролирующей линии первого типа. Экспериментально было установлено, что
при контакте управляющей линии и джозефсоновского перехода с большим
значением критического тока, времена жизни кубита ниже. Они составляли
несколько сотен наносекунд, либо их вообще не удавалось измерить, а только
оценить из ширины спектра кубита [49]. Это подтверждается нижеописанным
расчетом.

Рассмотрим электрическую схему трехконтактного трансмона с некоторой
индуктивностью 𝑀 куска контролирующей линии в СКВИДе (рис. 4.4(а)). Для
визуального удобства перерисуем схему так, чтобы можно было представить,
как считается импеданс системы пошагово (рис. 4.4(б)).

(а) (б)

Рис. 4.4: (а) Электрическая схема кубита трансмона, соответствующая случаю с сильно
встроенной управляющей линией. (б) Схема, использующаяся для определения импеданса
системы и нахождения скорости релаксации.

Общий импеданс системы 𝑍Σ записывается исходя из соединений элементов
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в узлах:

𝑍01 = 𝑍0||𝑍𝑀

𝑍012 = 𝑍01 + 𝑍𝐿1

𝑍02Σ = 𝑍012||𝑍𝐿2

𝑍03 = 𝑍02Σ + 𝑍𝐿3

𝑍Σ = 𝑍03||𝑍𝐶 .

(4.2.1)

Здесь 𝑍𝑀 = 𝑖𝜔𝑀 – импеданс взаимной индуктивности управляющей линии
и СКВИДа кубита, 𝑍𝐿𝑖

= 𝑖𝜔𝐿𝑖 – импеданс линейных индуктивностей джозеф-
соновских контактов, 𝑍𝐶 = 1/𝑖𝜔𝐶 – импеданс шунтирующей емкости. Символ ||
обозначает параллельное соединение элементов цепи.

Вычисление производилось аналитически в библиотеке Sympy Python. Ито-
говое выражение для импеданса ввиду его громоздкости разделено на числи-
тель Num𝑍Σ

и знаменатель Denom𝑍Σ
:

Num𝑍Σ
= −𝑖𝜔

(︀
𝐿1𝐿2𝑀𝜔 − 𝑖𝐿1𝐿2𝑍0 + 𝐿1𝐿3𝑀𝜔 − 𝑖𝐿1𝐿3𝑍0+

+ 𝐿2𝐿3𝑀𝜔 − 𝑖𝐿2𝐿3𝑍0 − 𝑖𝐿2𝑀𝑍0 − 𝑖𝐿3𝑀𝑍0

)︀
,

Denom𝑍Σ
= 𝐶𝐿1𝐿2𝑀𝜔3 − 𝑖𝐶𝐿1𝐿2𝑍0𝜔

2 + 𝐶𝐿1𝐿3𝑀𝜔3−
− 𝑖𝐶𝐿1𝐿3𝑍0𝜔

2 + 𝐶𝐿2𝐿3𝑀𝜔3 − 𝑖𝐶𝐿2𝐿3𝑍0𝜔
2−

− 𝑖𝐶𝐿2𝑀𝑍0𝜔
2 − 𝑖𝐶𝐿3𝑀𝑍0𝜔

2 − 𝐿1𝑀𝜔 + 𝑖𝐿1𝑍0−
− 𝐿2𝑀𝜔 + 𝑖𝐿2𝑍0 + 𝑖𝑀𝑍0.

(4.2.2)

Так как в системе присутствуют бездиссипативные элементы, импеданс име-
ет мнимую часть. Если рассмотреть нули выражения в знаменателе, можно
определить собственные частоты системы, при которых импеданс будет беско-
нечным. В системе имеются три собственных значения, однако, подходит только
одно, так как оно единственное положительное после подстановки номиналов
элементов цепи. Релаксация связана с собственной частотой системы [70]:

𝑇1 =
2𝜋

Im(𝜔)
. (4.2.3)

Было установлено, что в зависимости от ориентации контактов в СКВИДе
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кубита, время релаксации отличается на порядок. Этот вывод получен после
измерения образцов с неудачной ориентацией контактов, после которого был
произведен расчет. Результат расчета изображен на рис. 4.5.

(a) (б)

Рис. 4.5: (а) Топология кубита с сильно встроенной управляющей линией. (б) Зависимость
времени релаксации кубита от ориентации джозефсоновских контактов в СКВИДе по отно-
шению к расположению к контролирующей линии

Таким образом, полученные результаты наглядно иллюстрируют принцип
«лучшее – враг хорошего», в связи с чем было принято решение вернуться к
более простой конфигурации управляющей линии.

4.3 Считывающие резонаторы и парселловские фильтры

Считывающие резонаторы, в настоящее время используемые в схемах сверх-
проводниковых кубитов, представляют собой копланарные 𝜆/4 линии, емкостно
связанные с кубитом и передающей (считывающей) линией. При этом резонато-
ры проектируются с определенной величиной добротности и скорости релакса-
ции в считывающую линию. Если добротность высокая, то скорость релаксации
низкая, но при этом длительность считывания такого резонатора ограничена
снизу. Это плохо с точки зрения скорости вычислений. С другой стороны, так
как кубит связан с резонатором, который является одним из каналов релак-
сации для кубита, то необходимо, чтобы релаксация резонатора в линию была
медленной. Релаксация кубита в считывающую линию через резонатор обуслов-
лена эффектом Парселла [51].

Для снижения скорости релаксации кубита в считывающую линию и оп-
тимизации длительности считывания, используются парселловские фильтры



74

[51,109]. Они представляют собой 𝜆/4 резонаторы, аналогичные считывающим,
но с гораздо меньшей добротностью, и являются дополнительным препятстви-
ем для релаксации кубита в считывающую линию.

Парселловская релаксация кубита через резонатор в линию без фильтра
описывается формулой [51,108,110]:

𝛾𝑝 = 𝜅
𝑔2𝑞𝑟
Δ2

, (4.3.1)

где 𝜅 – ширина линии резонатора, 𝑔𝑞𝑟 — сила связи кубита и резонатора, Δ =

𝑓𝑟−𝑓𝑞 — отстройка между кубитом и резонатором. В то же время парселловская
релаксация при наличии фильтра подавлена:

̃︀𝛾𝑝 ∼ 𝜅
𝑔2𝑞𝑟
Δ2

𝜅𝑝
Δ
, (4.3.2)

где 𝜅𝑝 – ширина линии парселловского фильтра. Схемы проектируются обычно
таким образом, что 𝑔, 𝜅 ≪ Δ, поэтому добавление фильтра значительно сни-
жает скорость релаксации кубита в линию. Важным условием является совпа-
дение резонатора и парселловского фильтра по частоте для оптимальной связи
резонатора со считывающей линией. Это означает, что пик резонатора должен
попасть в широкий пик парселловского фильтра.

С точки зрения проектирования в качестве микроволновых резонаторов для
индивидуального считывания кубитов используются отрезки копланарных вол-
новодов с асимметричными граничными условиями: замкнутые с одной стороны
и разомкнутые с другой. На разомкнутом конце расположен конденсатор в виде
клешни, емкостно связывающий резонатор с кубитом. Парселловские фильтры
в данной топологии реализованы в виде низкодобротных четвертьволновых ре-
зонаторов, емкостным образом связанных с соответствующим индивидуальным
резонатором и микроволновой передающей линией. Фильтр состоит из четырех
участков: отрезок, связанный с индивидуальным резонатором, который закан-
чивается замкнутым концом (далее – каплер к резонатору); отрезок связи с
микроволновой передающей линией (каплер к микроволновой линии); отрезок
копланарного волновода между предыдущими двумя; участок с разомкнутым
концом определенной длины от каплера к микроволновой линии. Последний от-
резок определяется оставшейся длиной микроволновой линии от конца каплера
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Рис. 4.6: (а) Фотография участка образца с резонатором и парселловским фильтром. В
красных рамках выделены участки многополосковых копланарных линий, обеспечивающие
емкостную связь считывающей линии и парселловского фильтра, а также парселловского
фильтра и резонатора. (б) Эквивалентная схема резонатор - парселловский фильтр - микро-
волновая считывающая линия. Здесь 𝐶𝑞𝑟 – взаимная емкость резонатора и кубита; 𝑙𝑟 – длина
резонатора, связанная с кубитом; 𝑍𝑟 – импеданс резонатора; 𝑙𝑟𝑝 – длина связи резонатора
и парселловского фильтра; 𝜅𝑟𝑝 –коэффициент связи резонатора и фильтра; 𝑙𝑝 –свободная
длина фильтра; 𝑍𝑝 – импеданс фильтра; 𝑙𝑝𝑙 – длина связи фильтра и микроволновой линии;
𝜅𝑝𝑙 –коэффициент связи фильтра и микроволновой линии; 𝑙𝑙 – длина микроволновой линии
от конца элемента связи с парселловским фильтром до конца самой линии; 𝑍𝑙 – импеданс
микроволновой линии.

к микроволновой линии до конца самой линии.

Схематично расположение элементов в системе резонатор – парселловский
фильтр – микроволновая считывающая линия представлено на рис. 4.6(б). Фо-
тография участка образца приведена на рис. 4.6(а). Каждый парселловский
фильтр состоит из четырех секций передающих линий с оптическими длина-
ми 𝑙𝑟𝑝, 𝑙𝑝, 𝑙𝑝𝑙, 𝑙𝑙 и одинаковыми импедансами 𝑍𝑝. Участок 𝑙𝑝𝑙 сильно связан с
микроволновой линией; участок 𝑙𝑟𝑝 – каплер к резонатору, один конец которого
замкнут на землю; 𝑙𝑝 – длина копланара между двумя предыдущими отрезками;
𝑙𝑙 – участок с разомкнутым концом, длина которого равна длине микроволно-
вой линии от конца каплера к микроволновой линии до конца самой линии.
Каждый резонатор, предназначенный для индивидуального считывания куби-
тов, состоит из двух секций передающих линий с оптическими длинами 𝑙𝑟, 𝑙𝑟𝑝
и одинаковыми импедансами 𝑍𝑟. Участок 𝑙𝑟 заканчивается клешней, емкостно
связанной с кубитом, участок 𝑙𝑟𝑝 – каплер к парселловскому фильтру, закорочен
на землю.

Частота четвертьволновой передающей линии описывается второй форму-



76

1 2 3 4 5 6 7 8
𝑓𝑝 (ГГц) 7.049 7.500 7.350 7.200 7.425 7.275 7.125 7.575
𝑓𝑟 (ГГц) 7.049 7.500 7.349 7.200 7.425 7.275 7.125 7.575
𝜅𝑝 (МГц) 55.7 62.2 64.3 48.4 66.6 50.1 57.8 64.4
𝜅𝑟 (МГц) 3.0 3.6 3.1 3.8 3.1 3.8 3 3.6
𝑇1 (мс) 9.0 12.5 11.6 10.2 12.3 11.0 9.7 13.2

Таб. 4.1: Таблица с параметрами считывающих резонаторов и парселловских фильтров:
частоты, скорости затухания и соответствующий предел времени релаксации кубита 𝑇1 в
данный канал.

лой в системе 1.3.1. Соответственно, формулы для первых мод фильтра и резо-
натора:

𝑓𝑝 =
𝑐

4(𝑙𝑟𝑝 + 𝑙𝑝 + 𝑙𝑝𝑙 + 𝑙𝑙)
√
𝜖eff

𝑓𝑟 =
𝑐

4(𝑙𝑟𝑝 + 𝑙𝑟)
√
𝜖eff

.
(4.3.3)

Частоты и скорости затухания в линию резонаторов и фильтров были вы-
числены в модели передающих линий [102] при помощи программного кода,
разработанного ранее в лаборатории [105,107]. Суть заключается в расчете по-
гонных емкостей и индуктивностей копланаров исходя из их геометрических
размеров [68]. Также необходимо соблюдать условие согласование импедансов,
которые для всех линий должна быть равны 50 Ом. При расчете мосты над все-
ми копланарными линиями учитываются как плоскопараллельные проводники,
дающие вклад в емкость линии. Исходя из этих величин, также была проведе-
на оценка скорости релаксации кубита [51] (таб. 4.1). Важно отметить, что для
резонатора необходимо учитывать поправку к частоте, вызванную наличием
емкостной связи с кубитом в виде клешни конечного размера [46].

Помимо этого, был промоделирован S-параметр в считывающей линии на
диапазоне частот резонатора и парселловского фильтра. Так как линия на от-
ражение, то в идеальном случае на амплитуде параметра не должно быть осо-
бенностей, в отличие от фазы сигнала. На рис. 4.7(a) наблюдаются два скачка
по фазе каждый на величину 2𝜋 (синяя кривая). Если посмотреть на развер-
нутую фазу без учета немонотонных скачков (оранжевые точки), то в области
проектной частоты можно увидеть суммарный сдвиг частоты 2𝜋. То же самое



77

(a) (б)

Рис. 4.7: Моделирование фазы сигнала в считывающей линии в диапазоне частот парсел-
ловского фильтра и резонатора. (a) Фаза 𝑆21-параметра. (б) Задержка сигнала.

должно наблюдаться и в эксперименте в идеальном случае. Также на рис. 4.7(б)
построена задержка сигнала как производная фазы по частоте. Видно, что она
максимальна в области проектируемой частоты резонатора и фильтра с номе-
ром 1.

4.4 Выводы по Главе 4

В данной главе рассмотрены основные этапы проектирования восьмику-
битного квантового процессора на основе трёхконтактных трансмонов круглой
формы с трёхмодовыми элементами связи. Разработана топология размещения
кубитов и элементов связи, обеспечивающая адресуемость и возможность реа-
лизации всех парных взаимодействий между кубитами.

Особое внимание было уделено проектированию индивидуальных управляю-
щих линий кубитов. В процессе измерений однокубитных образцов были выяв-
лены существенные различия во временах релаксации трансмонов в зависимо-
сти от конструкции управляющей линии. Первоначально использовалась кон-
фигурация с высокой взаимной индуктивностью между управляющей линией и
СКВИДом трансмона, что позволяло точно адресовать сигнал, но приводило к
значительным потерям энергии и низким временам релаксации. Альтернатив-
ные образцы с общепринятой конструкцией управляющей линии демонстриро-
вали времена релаксации, превышающие десятки микросекунд. Данное поведе-
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ние было интерпретировано при помощи электромагнитного моделирования в
программе HFSS.

Кроме того, было установлено, что ориентация джозефсоновских контактов
в СКВИДе трансмона относительно управляющей линии также существенно
влияет на потери: при расположении линии со стороны контакта с большим кри-
тическим током наблюдалось снижение времени жизни вплоть до нескольких
сотен наносекунд. Расчёт импеданса системы с учётом расположения индуктив-
ностей дал объяснение полученным экспериментальным результатам. По ито-
гам работы было принято решение использовать более простую форму управля-
ющей линии, обеспечивающую стабильные времена релаксации и достаточную
степень адресуемости.

Было спроектированы считывающие резонаторы и парселловские фильтры,
обеспечивающие высокую скорость считывания состояния каждого кубита при
подавлении нежелательной релаксации в считывающую линию. При помощи
моделирования были подобраны такие геометрические параметры резонаторов
и фильтров, при которых достигается согласование их резонансных частот и
обеспечивается оптимальная скорость парселловской релаксации кубита. Рас-
чет выполнен с использованием модели передающих линий и программного ко-
да QCreator Python, разработанного ранее в лаборатории. Для всех резонаторов
и фильтров рассчитаны добротности, частоты и скорости релаксации кубитов
в считывающую линию.

Также было выполнено моделирование S-параметра в системе резонатор-
фильтр. Полученный фазовый сдвиг сигнала в области проектной частоты и
соответствующая задержка сигнала подтверждают согласованную работу резо-
натора и фильтра. Таким образом, выбранная топология и параметры элемен-
тов обеспечивают необходимые характеристики считывания.

Разработанная топология микросхемы была зарегистрирована в ФИПС как
«Топология интегральной микросхемы сверхпроводникового квантового про-
цессора из 8 кубитов-трансмонов в планарной архитектуре» (Номер регистра-
ции (свидетельства): 2023630240).
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5 Экспериментальное исследование 8-кубитного
процессора

Данная глава посвящена описанию экспериментального исследования про-
цессора и анализу полученных результатов. В первую очередь по спектроско-
пическим измерениям находятся частоты считывающих резонаторов и куби-
тов. Затем импульсными измерениями определяются времена когерентности и
релаксации. Для исследования точности двухкубитной операции калибруются
однокубитные и двухкубитный гейт. Для калибровки двухкубитной операции
измеряется диапазон перестройки силы связи между кубитами и затем выбира-
ется рабочая точка. Наконец, производится оценка точности выполнения опе-
раций.

5.1 Образец в держателе

Образец с топологией, описанной в Главе 4, был изготовлен в Центре кол-
лективного пользования МФТИ технологами из лаборатории Искусственных
квантовых систем. Джозефсоновские контакты Al/AlOx/Al изготавливались с
использованием стандартной технологии мостов Долана [111] в одном ваку-
умном цикле для обеспечения одинаковой плотности критического тока для
всех контактов. Гальванический контакт со слоем основной металлизации до-
стигается путем нанесения бандажей (заплаток, соединяющих основной слой и
джозефсоновские переходы) через однослойную органическую маску после об-
работки аргоном алюминиевого оксида [112]. Более подробную информацию о
методах изготовления можно найти в [40,113,114].

Кремниевый чип вклеивается в держатель образца (рис. 5.1(а)), разработан-
ный Н.Н. Абрамовым. Держатель имеет контактные площадки, которые под
слоем меди связаны через печатную контактную плату с разъемами для под-
ключения управляющих линий. Соединение контактных площадок образца и



80

(а) (б)

1 мм

Рис. 5.1: (а) Фотография образца в держателе. (б) Фотография чипа в микроскопе.

держателя осуществляется посредством ультразвуковой сварки, позволяющей
протянуть металлические нити между портами (рис. 5.1(б)). Также выполня-
ется заземление образца при помощи бондов, связывающих основной металли-
ческий слой образца и металл держателя. После этого держатель закрывается
крышкой и прикручивается к нижней ступени криостата растворения, а в разъ-
емы держателя подключаются микроволновые линии, идущие через все ступени
криостата.

5.2 Схема экспериментальной установки

Экспериментальная установка представлена на рис. 5.2. Традиционно опи-
сание делится на комнатную и криостатную части.

Образец в пермаллоевом экране, предназначенном для магнитного экрани-
рования, помещен на нижнюю ступень криостата растворения (серая область).
К трансмонам и элементам связи подключены управляющие линии с аттеню-
аторами и порошковыми фильтрами. Первые ослабляют на выбранное коли-
чество дБ приходящий в криостат сигнал, одинаково понижая уровень шума
вместе с полезным сигналом [49, 50]. Аттенюаторы 0 дБ обеспечивают терма-
лизацию для того, чтобы более нижние ступени меньше нагревались. Порош-
ковые фильтры, изготовленные Н.Н. Абрамовым, обеспечивают неравномерное
ослабление со степенью около 5дБ/ГГц, тем самым активнее избавляясь от вы-
сокочастотных сигналов, убирая шумы.

Трансмоны связаны с линией на отражение через индивидуальные считыва-
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Рис. 5.2: Схема экспериментальной установки.

ющие резонаторы и парселловские фильтры. К считывающей линии подключен
циркулятор, направляющий подаваемый из комнаты сигнал на образец. После
того, как сигнал отражается в считывающей линии, он идет обратно в цир-
кулятор, а затем дальше на выход из криостата через параметрический усили-
тель с согласованием сопротивления [115]. Для накачки усилителя используется
отдельная коаксиальная линия. Также на усилитель необходимо подавать по-
стоянное смещение. Помимо этого, используется система из двух циркуляторов,
изолирующая накачку и выходящий от образца сигнал. Подаваемый сигнал для
считывания, а также накачка параметрического усилителя ослабляются и тер-
мализуются на разных ступенях криостата аналогично управляющим сигналам
на кубиты и элементы связи. После параметрического усилителя выходящий
сигнал проходит через изолятор, который не пропускает сигнал снаружи, да-
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лее через полосовой фильтр, а затем усиливается малошумящим криогенным и
комнатными усилителями.

Снаружи криостата собрана система управления микроволновым и посто-
янным сигналом. Параллельно сосуществуют схемы для спектроскопических и
импульсных измерений. Для этого используются делители мощности, работаю-
щие в обе стороны. Например, считывающий сигнал, выходящий из криостата,
разделяется на две части, одна из которых идет напрямую на векторный ана-
лизатор цепей, а вторая демодулируется и обрабатывается оцифровщиком.

Для генерации импульсов на частотах кубитов и резонаторов используются
квадратурные смесители с входами для генератора синусоидального сигнала и
генератора сигналов произвольной формы [49, 51]. При смешении непрерывно-
го сигнала на гигагерцовой частоте (LO) и импульсного на частоте нескольких
сотен мегагерц (IF), получается ряд боковых гармоник, одна из которых об-
ладает нужной частотой для возбуждения целевого элемента процессора (RF).
Также смесители можно «открывать» на прохождение непрерывного сигнала
для спектроскопических измерений, подавая постоянное напряжение от генера-
торов импульсов произвольной формы. Для калибровки смесителей подключен
спектральный анализатор сигнала.

Для обработки считывающего сигнала используется квадратурный смеси-
тель, работающий в обратном направлении: усиленный сигнал с линии считы-
вания поступает на RF-порт, перемножается с LO-сигналом и преобразуется в
квадратуры I и Q, которые поступают на оцифровщик.

Стоит отметить, что схема может выглядеть иначе. Например, в некоторых
кругах считается нерациональным использование векторного анализатора це-
пей в качестве гетеродина на два смесителя. Вместо этого можно использовать
обычный генератор синусоидального сигнала, а векторный анализатор цепей
подключать вместо 50-омной заглушки в направленный ответвитель перед вхо-
дом сигнала в криостат. Также есть способы обойтись без оцифровщика [50].
Для этого выходящий из криостата считывающий сигнал перемножается с квад-
ратурами, подаваемыми от генератора импульсов произвольной формы, а затем
попадает на векторный анализатор цепей и сравнивается с гетеродином, пода-
ваемым на первый смеситель из считывающей пары.

Следует также упомянуть, что в данной архитектуре процессора у каждого
кубита и элемента связи управляющая линия одна, то есть нет микроволно-
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вой антенны и отдельно линии постоянного смещения. Поэтому перед подачей
в криостат микроволновый и постоянный сигналы соединяются при помощи
делителя мощности.

5.3 Спектроскопические и импульсные измерения

До эксперимента, демонстрирующего конечный результат, выполняется це-
лый ряд калибровочных измерений, необходимый для налаживания работы об-
разца. Это методичный процесс, ставший в некоторых кругах рутиной. В на-
стоящее время все вспомогательные измерения, определяющие характеристики
кубитов, уже начинают выполнять без участия человека [73]. Возможно, скоро
этот процесс будет повсеместно автоматизирован. Однако, основы нужно пом-
нить хотя бы для того, чтобы уметь ориентироваться во внештатных ситуациях.

В первую очередь, при достижении минимально возможной температуры на
нижней ступени криостата (порядка 10 мК), на векторном анализаторе цепей
измеряется зависимость 𝑆21-параметра от частоты проходящего через образец
микроволнового сигнала для определения количества резонаторов и их частот.
Вообще говоря, это можно делать при достижении температуры ниже темпера-
туры сверхпроводимости металла, из которого изготавливается схема. Однако,
такое измерение является предварительным, так как при дальнейшем снижении
температуры частоты резонатора продолжают съезжать [65]. В случае считы-
вающей линии на отражение в идеальном случае не должно быть изменения
амплитуды сигнала на частотах резонаторов. Поэтому исследуется фаза и за-
держка сигнала, которая является производной фазы по частоте. На рис. 5.3
изображена фаза сигнала в диапазоне частот резонаторов одной из двух счи-
тывающих линий восьмикубитного образца. В идеальном случае скачок фазы
должен быть кратен 2𝜋, однако, это не выполняется для двух резонансов с
меньшей частотой. Такое поведение объясняется тем, что спектральная линия
резонатора не попадает в ширину спектральной линии парселловского фильтра.
Причинами несовпадения может быть недостаточно точное проектирование, пе-
ретрав/недотрав копланарных линий, а также увеличение сдвига частоты ре-
зонатора из-за отклонения частоты кубита в большую сторону от проектной
величины.

Здесь также могут быть исследованы нагруженная и собственная доброт-
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Рис. 5.3: Измерение частот резонаторов.

ности резонаторов [71]. Для дальнейших измерений строится зависимость за-
держки сигнала от частоты резонатора, где частотой считается точка, соответ-
ствующая пику задержки (аналогично рис. 4.7).

Вторым измерением является однотоновая спектроскопия, в ходе которой
исследуется зависимость частоты резонатора от магнитного потока в СКВИДе
трансмона. На считывающую линию подается микроволновой сигнал в некото-
ром диапазоне относительно определенной ранее частоты резонатора при набо-
ре значений напряжения смещения, подаваемого в линию контроля кубита, а за-
тем измеряется S-параметр (рис. 5.4(a)). Аналогично предыдущему измерению,
положение экстремума S-параметра при выбранном напряжении соответствует
резонансной частоте. Данное измерение, помимо значений частоты резонатора,
позволяет также определить ряд других параметров [74]. Например, напряже-
ние, соответствующее точкам верхнего и нижнего экстремумов частоты кубита.
Так как в экстремумах значение времени когерентности кубита максимально,
эти две точки являются рабочими при выполнении квантовых операций. Также,
нижний экстремум имеет большее время релаксации по отношению к верхнему,
так как находится дальше от резонатора по частоте. При условии, что вихри
Абрикосова в СКВИДе не захвачены, верхнему экстремуму соответствует ну-
левое значение напряжение, в отличие от нижнего. Это может быть критично,
если контролирующая линия на чипе нагревается от подаваемого напряжения.
Однако, в таком случае едва ли можно назвать образец рабочим. Также из од-
нотоновой спектроскопии можно определить значение взаимной индуктивности
управляющей линии и кубита и соотнести его с проектной величиной [116].
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Рис. 5.4: Однотоновая (а) и двухтоновая (б) спектроскопии пятого резонатора и кубита

Следующим калибровочным измерением является двухтоновая спектроско-
пия. Суть ее заключается в том, что помимо подачи первого тона на считы-
вающую линию на частоте резонатора и напряжения на кубит, подается так-
же второй тон в предполагаемом диапазоне частот кубита. Затем, аналогично
предыдущему измерению, исследуется зависимость S-параметра считывающего
сигнала в зависимости от выбранной частоты второго тона, подаваемой на ку-
бит. На рис. 5.4(б) показана двухтоновая спектроскопия пятого кубита вблизи
верхнего экстремума. Вообще говоря, для выполнения двухкубитной операции
бывает достаточно выполнить измерение в нуле по напряжению, при условии,
что визуально на однотоновой спектроскопии эта точка выглядит как верхний
экстремум. В силу привычки и малого значения подаваемого напряжения, эта
точка полагается наиболее удобной. Однако, как можно увидеть на рисунке, экс-
тремум находится не в абсолютном нуле, и гораздо лучше установить это сразу,
так как это упрощает дальнейшие поиски в импульсных измерениях. В случае,
если в верхнем экстремуме, или, как принято его называть, свитспоте, не уда-
ется выполнить импульсные измерения или получить высокие достоверности
операций, можно попробовать повторить процедуру для нижнего свитспота.

Что касается исследования всего спектра кубита, при перестройке резона-
тора от напряжения больше, чем на его ширину линии, необходимо выполнять
адаптивную двухтоновую спектроскопию, при которой в каждой точке по на-
пряжению выставляется частота первого тона, соответствующая значению из
однотоновой спектроскопии. В данном случае наблюдается именно такая си-
туация. Так как исследование спектра здесь не являлось целью работы и оно
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занимает некоторое количество времени, то показан как раз фрагмент спектра
кубита, который удалось получить при измерении S-параметра на одной и той
же частоте резонатора.

Также в спектроскопическом режиме выполняется калибровка параметри-
ческого усилителя. Подбирается частота и мощность накачки, а также подавае-
мый постоянный ток, для получения полосы с нужной шириной и максимально
возможным усилением.

Импульсные измерения начинаются с калибровки квадратурных смесите-
лей. В первую очередь исследуется режим закрытых смесителей, когда сигнал
не проходит через них. Это необходимо для подавления паразитных сигналов в
момент времени, когда на элемент схемы ничего не должно подаваться. Обычно
это постоянное напряжение на порты I и Q, близкое к нулю. Оно определяется
на спектральном анализаторе как точка, где мощность проходящего сигнала
минимальна. Далее выполняется калибровка активного режима, где гармони-
ка на частоте кубита или резонатора должна иметь высокую мощность, а все
остальные компоненты – маленькую, в идеале они вообще должны быть подав-
лены. Для этого выбирается частота гетеродина, которая должна отличаться от
частоты измеряемого элемента процессора на несколько сотен МГц. Здесь важ-
но одновременно учитывать возможности генераторов импульсов произволь-
ной формы, имеющих ограниченный диапазон возможной генерации, и нали-
чие нежелательных возбуждаемых энергетических переходов в трансмоне. Так,
в используемом генераторе импульсов произвольной формы максимальная ча-
стота сигнала составляла 750 МГц. В то же время если выбрать значение раз-
ности между гетеродином и частотой кубита, составлящее 100-200 МГц, суще-
ствует вероятность, что паразитные гармоники будут влиять на населенность
кубитного перехода. Помимо частоты гетеродина, устанавливается мощность
сигнала, соответствующая разрешенной из спецификации квадратурного сме-
сителя. Затем начинается непосредственно калибровка, в ходе которой подбира-
ется амплитуда и фаза квадратур, соответствующие случаю, наиболее близкому
к идеальному.

После калибровки смесителей выполняется измерение задержки сигнала,
проходящего через всю систему, связанную со считывающей линией. Эта за-
держка затем учитывается при подаче последовательности импульсов.

Первым импульсным измерением является исследование отклика резонато-
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ра на прямоугольный сигнал варьируемой амплитуды [49] (рис. 5.5(а)). Выбира-
ется та амплитуда, в которой резонатор находится в линейном режиме, причем
это значение должно быть как можно меньше (рис. 5.5(б)). Если нелинейный
отклик не наблюдается, это значит, что не удалось попасть по частоте в резо-
натор, связанный с кубитом [49].

(а) (б)

(в) (г)

Рис. 5.5: Калибровка считывания кубита 5. (а) Измерение отклика резонатора на пря-
моугольный импульс варьируемой амплитуды. (б) Отклик резонатора при выбранной оп-
тимальной амплитуды считывания. (в) Измерение точности считывания в зависимости от
амплитуды считывания. (г) Гистограмма, показывающая распределение результатов считы-
вания двух состояний кубита. Наличие области перекрытия ухудшает точность считывания.

После выбора амплитуды считывания, выполняется измерение Раби осцил-
ляций, в ходе которого подается непрерывный синусоидальный сигнал на часто-
те кубита разной длительности. На резонатор подается считывающий импульс
и исследуется комплексное напряжение, приходящее на оцифровщик от счи-
тывающей линии. При успешном проведении данного измерения наблюдаются
осцилляции напряжения, что соответствует осцилляциям населенности кубита.
Из этого измерения определяется длительность 𝜋-импульса, которая соответ-
ствует расстоянию между ближайшими максимумом и минимумом населенно-
сти.
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После того, как кубит был найден, выполняется калибровка считывания
(рис. 5.5(в)–(г)). Для этого приготавливаются две последовательности, в одной
из которых на кубит подается возбуждающий импульс, в другой не подается.
Выполняется обучение классификатора [49] на выборке считанных сигналов,
где инициализированное состояние кубита известно. Определяется пороговое
значение, разделяющее две области напряжений, соответствующие разным со-
стояниям кубита. Далее на тестовом наборе проверяется, как часто состояние
кубита определяется верно (рис. 5.5(г)). Такая процедура выполняется для раз-
ных амплитуд и частот считывания, что позволяет выбрать точку с наибольшей
получаемой точностью (рис. 5.5(в)).

После калибровки считывания повторно измеряются Раби осцилляции, а за-
тем уточняется частота кубита путем измерения осцилляций Рамзея. Для этого
на кубит подаются два 𝜋/2-импульса с варьируемым расстоянием между ними
и с дополнительной накруткой фазы на втором импульсе в зависимости от дли-
тельности задержки. Накрутка фазы аналогична сдвигу относительно частоты
кубита, позволяющему различить и отделить друг от друга осцилляции и экспо-
ненциальное затухание. Из аппроксимируемой зависимости в виде осцилляций,
модулированных экспонентой, определяется реальный сдвиг частоты подавае-
мого сигнала от частоты кубита. Если он отличается от предполагаемого, то
частота кубита в программном коде меняется, и повторяются измерения, начи-
ная с калибровки квадратурных смесителей. Причем об улучшении определе-
ния частоты кубита можно сделать выводы уже на стадии осцилляций Раби,
потому что при резонансном попадании они будут медленнее первоначальных.

После того, как частота кубита в данной точке по выставленному напря-
жению определена, выполняется уточнение свитспота. Для этого выполняется
измерение осцилляций Рамзея вблизи экстремума с разными значениями напря-
жения (рис. 5.6(a)). В точке реального свитспота будет наблюдаться экстремум
частоты осцилляций (рис. 5.6(б)).

После уточнения частоты кубита и его свитспота, измеряются времена ре-
лаксации и когерентности. В первом случае подается 𝜋-импульс и исследуется
экспоненциальное затухание населенности кубита в зависимости от задержки
между возбуждением кубита и считыванием резонатора. Для точного определе-
ния времени релаксации необходимо выбрать такой диапазон задержки, чтобы
определенное время было больше задержки и населенность выходила на плато.
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Рис. 5.6: Определение свитспота кубита 6. (а) Осцилляции Рамзея кубита 6 в зависимости от
подаваемого постоянного смещения. (б) Зависимость сдвига частоты кубита от подаваемого
постоянного смещения. Положение экстремума соответствует рабочей точке кубита.

1 2 3 4 5 6 7 8
𝑓𝑟 (ГГц) 7,047 7,47 7,335 7,24 7,405 7,245 7,127 7.558
𝑓𝑞 (ГГц) 6,059 6,199 6,43 6,781 6,356 6,450 6,494 6,186
𝑇 *
2 (мкс) 5,7 3,1 7,6 4,4 5,8 8,6 10,8 10,6
𝑇1 (мкс) 8,8 8,3 5 11,8 5,1 15,8 8,3 13,6

Таб. 5.1: Таблица с экспериментальными параметрами: частоты резонаторов и кубитов,
времена когерентности 𝑇 *

2 и релаксации 𝑇1 кубитов.

Для измерения времени когерентности выполняется эксперимент по наблюде-
нию осцилляций Рамзея, причем требование по соотношению время когерентно-
сти/задержка аналогичны процедуре измерения времени релаксации. Пример
таких измерений показан на рис. 5.7.

В таб. 5.1 занесены параметры, измеренные на исследуемом восьмикубитном
образце: частоты восьми резонаторов и кубитов, а также времена релаксации
и когерентности восьми кубитов. Из сравнения экспериментальных параметров
с проектными (таб. 4.1) можно сделать вывод, что частоты резонаторов близ-
ки к проектируемым, в отличие от частот кубитов, которые выше расчетных
(таб. 5.2).
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(a)

(б)

(в)

Рис. 5.7: Измерение времен когерентности и релаксации: (а) пятого кубита, (б) шестого
кубита, (в) седьмого кубита.

5.4 О зарядовой дисперсии

В ходе измерений одной из итераций восьмикубитной схемы были обнару-
жены биения на осцилляциях Рамзея кубитов (рис. 5.8(а)), которые вызваны
наличием зарядовой дисперсии трансмона [6]. Это означает, что в зависимости
от спонтанно изменяющегося наведенного заряда 𝑛𝑔 в единицах 2𝑒 на кубит-
ный остров существуют флуктуации частоты перехода кубита. Причинами мо-
гут быть флуктуации заряда в подложке и туннелирование квазичастиц через
СКВИД трансмона. Первое событие является медленным по сравнению с про-
цессом измерения динамики населенности кубита, поэтому его исследуют путем
измерения зависимости частоты кубита в реальном времени [117, 118]. Второй
процесс можно обнаружить при измерении населенности кубита на осцилля-
циях Рамзея [118]. Квазичастицы несут заряд, близкий к заряду электрона. В
связи с этим быстрый процесс туннелирования приводит к случайной флук-
туации частоты кубита. Амплитуда этих флуктуаций определяется величиной
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(б)(а)

Рис. 5.8: (a) Биения на осцилляциях Рамзея кубита №7. (б) Зависимость частоты кубита
от наведенного заряда (в единицах 2e). Сопоставление численного расчета (синяя кривая) с
теорией (рыжая кривая).

зарядовой дисперсии 𝜖01, которую можно вычислить согласно [6]

𝜖01 = 25𝐸𝐶

√︂
2

𝜋

(︂
𝐸𝐽

2𝐸𝐶

)︂ 3
4

(︃
16

√︂
𝐸𝐽

2𝐸𝐶
− 1

)︃
𝑒−
√

8𝐸𝐽/𝐸𝐶 , (5.4.1)

где 𝐸𝐶 = 𝑒2

2𝐶 – зарядовая энергия кубита, 𝐸𝐽 = ℏ
2𝑒

2 1
𝐿Σ

– суммарная джозеф-
соновская энергия кубита с суммарной индуктивностью трех контактов 𝐿Σ =

𝐿1||𝐿2 + 𝐿3.

Частота кубита при этом описывается выражением [6]

𝐸01 = 𝐸01

(︀
𝑛𝑔 =

1
4

)︀
− 𝜖01

2
cos (2𝜋𝑛𝑔) , (5.4.2)

На рис. 5.8(б) показаны численный расчет частоты кубита в верхней рабочей
точке с добавленным зарядом 𝑛𝑔 в зарядовую сетку (синяя кривая), а так-
же расчет согласно ур. 5.4.1-5.4.2 (рыжая кривая). Значения используемых
параметров при расчете составили 𝐸𝐽/ℎ = 10, 45ГГц, 𝐸𝐶/ℎ = 0, 293ГГц и
𝜖01 = 201 кГц.

Таким образом, для снижения зарядовой дисперсии у трансмонов были изме-
нены параметры кубитов (таб. 5.2). Были увеличены размеры джозефсоновских
переходов и размер круглой шунтирующей емкости кубитов, понижающий за-
рядовую энергию, так как увеличение отношения

√︀
8𝐸𝐽/𝐸𝐶 , находящегося под

экспонентой в соотношении для зарядовой дисперсии, подавляет ее.



92

№ 𝑆𝐽1, мкм2 𝑆𝐽2, мкм2 𝑆𝐽3, мкм2 𝑓01, ГГц 𝐶, фФ 𝐸𝐽/𝐸𝐶

1 0,5× 0,5 0,15× 0,5 0,15× 0,15 5,04 66 29
2 0,5× 0,5 0,175× 0,5 0,175× 0,2 5,57 75,6 48

Таб. 5.2: Параметры трансмона первой итерации, в которой наблюдалась зарядовая дис-
персия, и второй итерации с подавленной дисперсией.

5.5 Исследование спектров элемента связи

Для грубого определения напряжения рабочей точки элемента связи, в кото-
рую он переводится при выполнении CZ-операции, снимается его спектр. Каж-
дый каплер емкостно связан хотя бы с одним считывающим резонатором, так
как электроды емкостной связи кубит-каплер и кубит-резонатор находятся ря-
дом друг с другом. Поэтому, снимая зависимость частоты резонатора от на-
пряжения на элементе связи, можно увидеть периодическое изменение частоты
резонатора, аналогично периодической зависимости от напряжения на куби-
те, так как частота соединительного элемента перестраивается от минимума
до максимума на несколько гигагерц. Внизу элемент связи приближается к
спектральным линиям кубитов, далее проходит через частотную область резо-
наторов, взаимодействуя с некоторыми из них, а затем уходит в область частот,
которую не всегда можно качественно измерить в том числе из-за частотных
диапазонов микроволновых компонентов в схеме. Например, некоторые цирку-
ляторы работают в диапазоне до 9 ГГц и искажают сигналы выше по частоте.

(б)(а)

Рис. 5.9: (a) Дизайн тестируемой четырехкубитной системы. (б) Измерение спектра одного
из элементов связи с вычтенным фоном.
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На рис. 5.9(а) показан дизайн четырехкубитной системы, созданный ранее в
лаборатории. Схема была изготовлена в ЦКП МФТИ сотрудниками лаборато-
рии Искусственных квантовых систем. Дизайн аналогичен восьмикубитному, но
с некоторыми отличиями. Все резонаторы и парселловские фильтры находятся
внутри четырехкубитной схемы, при этом меандры копланарных линий узко
укомпонованы, так как не имеют воздушных мостов, требующих места. Также
сбоку имеется резонатор для считывания элемента связи, который не исполь-
зовался. После измерения этой схемы был сделан вывод о том, что резонаторы
нужно разнести для того, чтобы они слабее влияли на частоты друг друга. Так-
же оказалось, что резонатор для элемента связи не нужен. Во-первых, потому
что каплер можно считывать и через линию на отражение, так как она прохо-
дит над двумя из четырех элементов связи, а во-вторых, потому что это лишний
элемент, занимающий место. На рис. 5.9(б) показан спектр одного из элементов
связи, полученный при измерении однотонового спектра через считывающую
линию, на всем его частотном диапазоне. Частотный диапазон широкий и ко-
личество точек по частоте составляет около 10000, поэтому линию видно плохо.
Для того, чтобы она была более различима, при каждом значении частоты для
набора амплитуд S-параметра было вычтено среднее значение, чтобы сделать
фон более гладким. На этом рисунке можно увидеть описанные ранее особенно-
сти, связанные с взаимодействием элемента связи с резонаторами (в диапазоне
7.5-8.5 ГГц) и кубитами (в диапазоне 5-6.5 ГГц).

На восьмикубитной схеме подобные спектры измерялись гораздо позже ос-
новных измерений и исключительно для того, чтобы определить параметры
джозефсоновских контактов элементов связи. Эти параметры будут упоминать-
ся в следующем разделе при описании аппроксимации зависимости двухкубит-
ного взаимодействия. На рис. 5.10(a) показана однотоновая спектроскопия эле-
мента связи через считывающую линию. Видно, что в области, отдаленной от
резонаторов, обнаружить элемент связи не удается. В связи с этим была из-
мерена адаптивная двухтоновая спектроскопия элемента связи (рис. 5.10(б))
с переменной частотой 6-го считывающего резонатора на рис. 5.10(a) в обла-
сти нижней рабочей точки каплера. Было установлено, что нижняя точка по
частоте элемента связи находится на частотах ниже переходов кубитов. Этих
результатов было достаточно для определения значений критических токов и
последующего моделирования гейтов.
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(б)(a)

Резонатор 7

Резонатор 6

Нижняя точка каплера

Рис. 5.10: (a) Однотоновая спектроскопия элемента связи. (б) Адаптивная двухтоновая
спектроскопия элемента связи.

5.6 Измерение силы взаимодействия кубитов

После грубого определения расположения нижней точки по частоте каплера
выполняется измерение силы связи двух кубитов в зависимости от магнитного
потока в СКВИДе элемента связи. Были измерены осцилляции Рамзея кубита B
при помощи двух 𝜋/2 импульсов, подаваемых на кубит B, и прямоугольного им-
пульса с фронтами в виде окон Ханна длительностью 9 нс на элемент связи,
как показано на рис. 5.11(a). При этом на контролирующем кубите A не вы-
полняется или выполняется однокубитная 𝑋 операция. Для каждой выбранной
амплитуды импульса на элемент связи были определены частоты осцилляций
населенности кубита B в зависимости от длительности импульса на элемент
связи 𝑡𝑑 для двух случаев: когда кубит A находится в основном состоянии или
возбужденном состоянии (рис. 5.11(б, в) соответственно). При этом величина
ZZ-взаимодействия 𝜁𝑍𝑍 определялась как разница этих частот. Чтобы прона-
блюдать осцилляции на масштабах сотен наносекунд при маленьком внешнем
магнитном потоке, применяются виртуальные вращения 𝑅𝑍(𝜙) [119] вокруг оси
Z на кубит B до второго 𝑅𝑋(𝜋/2) импульса. Фаза 𝜙 зависит от длительности
импульса на элемент связи 𝜙 = 2𝜋𝑓offset𝑡𝑑, где 𝑓offset заданная отстройка частоты
возбуждающего сигнала от частоты кубита B. Для того, чтобы иметь возмож-
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ность визуально различить осцилляции, были выбраны сдвиги частот 10 МГц
для малых и 50 МГц для больших амплитуд CZ импульса. Граница между дву-
мя этими областями показана красной линией на рис. 5.11(б, в). Полученная
величина ZZ-взаимодействия показана на рис. 5.11(г) синими точками.

(a)

Кубит A

Элемент связи

Кубит B

(г)

(б) (в)

min

max

416 кГц

Рис. 5.11: Измерение силы связи кубитов 6 и 7. (a) Последовательность импульсов: изме-
ряются осцилляции Рамзея кубита B, когда контролирующий кубит A находится в основном
состоянии или в возбужденном. При этом магнитный поток в СКВИДе элемента связи изме-
няется при помощи прямоугольного импульса с краями формы окна Ханна с варьируемыми
общей длительностью 𝑡𝑑 и амплитудой. Параметр 𝜙 виртуального вращения 𝑅𝑍 определяется
сдвигом частоты 𝑓offset и длительностью 𝑡𝑑. (б, в) Результаты измерения населенности кубита
B в относительных единицах. Красная линия разделяет две области с разным сдвигом ча-
стоты возбуждающего кубит импульса от частоты кубита для лучшей видимости картины
осцилляций в области больших амплитуд потокового импульса. (г) Диапазон перестройки си-
лы взаимодействия двух кубитов, определяемый как разница между частотами осцилляций
населенности кубита B в случаях (б) и (в) (cиние точки). Красная линия показывает силу
связи 𝜁𝑍𝑍 , вычисленную в численной модели (раздел 3.3) при параметрах системы, опреде-
ленных из двухтоновой спектроскопии кубитов и элемента связи (таб. 5.3). Синяя пунктир-
ная линия показывает величину ZZ-взаимодействия, 𝜁𝑍𝑍 , рассчитанную согласно разделу 3.2
с использованием экспериментальных параметров цепи. Отдельно отмечена точка с остаточ-
ным ZZ-взаимодействием, составляющим 416 кГц в данном случае.

Для сравнения экспериментального результата с теоретической моделью бы-
ли определены параметры джозефсоновских контактов двухкубитной системы.
Размеры переходов кубитов определялись из двухтоновой спектроскопии. На
рис. 5.12 показан пример определения значений частоты переходов шестого ку-
бита от поданного на него напряжения. При низкой мощности наблюдается ос-
новной переход, частоты которого определяются как экстремум амплитуды или
задержки S-параметра при каждом токе. Затем определяется частота двухфо-
тонного перехода 𝑔𝑓/2 из спектроскопии высокой мощности. При этом ангармо-
низм и частота двухфотонного перехода связаны соотношением 𝛼 = 𝑓𝑔𝑓 − 2𝑓𝑔𝑒.
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(а) (б)

Рис. 5.12: Измерение двухтоновой спектроскопии шестого кубита при низкой (а) и высокой
(б) мощности для определения размеров джозефсоновских контактов. Красными точками
показана частота основного перехода кубита, определенная из спектра (а). Фиолетовыми
точками показана частота перехода 𝑔𝑓/2, определенная из спектра (б).

После определения экспериментальных значений частот кубитов осуществля-
ется подбор площадей джозефсоновских контактов, при которых численно по-
лученные значения частот хорошо согласуются с экспериментальными. Подбор
осуществляется методом наименьших квадратов при помощи библиотеки Scipy
Python. При известных частотах кубитах 𝑓A, 𝑓B и ангармонизмах 𝛼A, 𝛼B, за-
висящих от внешнего магнитного потока в СКВИДе кубита, можно получить
критические токи трех джозефсоновских контактов двух трансмонов.

Из двухтоновой спектроскопии элемента связи (рис. 5.10) можно опреде-
лить его частоту в точке Φext = 0.5Φ0. Используя гамильтониан всей систе-
мы, при известных джозефсоновских параметрах трансмонов и всех емкостях,
можно определить параметры четырех джозефсоновских контактов элемента
связи, два из которых имеют одинаковые размеры. Было выполнено оптими-
зирование значений критических токов джозефсоновских контактов элемента
связи, аналогичное поиску площадей контактов кубитов, при известных значе-
ниях ZZ-взаимодействия в точке 𝜁𝑍𝑍(Φext = 0) и частоте элемента связи в точке
𝑓C(Φext = 1/2). Определенные параметры приведены в таб. 5.3. Был численно
рассчитан диапазон ZZ-взаимодействия кубитов путем диагонализации гамиль-
тониана всей системы, при ранее определенных параметрах образца (таб. 5.3), в
зависимости от внешнего магнитного потока в элементе связи Φext (рис. 5.11(г)),
а также сопоставлен с аналитической формулой, описанной в разделе 3.2. Взаи-
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𝐽1 𝐽2 𝐽3 𝐽4, 𝐽7 𝐽5 𝐽6 𝐽8 𝐽9 𝐽10
𝐸𝐽 (ГГц) 104.4 23.1 28.8 159.8 191.5 117.0 29.3 23.5 106.1
𝐶 (фФ) 9.3 2.1 2.6 14.2 17.1 10.4 2.6 2.1 9.5

Таб. 5.3: Параметры джозефсоновских контактов, определенные из экспериментальных дан-
ных: джозефсоновская энергия и ёмкость.

модействие в Φext = 0, составляет 416 кГц, что на 300 кГц выше проектируемо-
го. Отличие обусловлено отклонением реальных значений критических токов
джозефсоновских переходов от целевых.

Другая пара кубитов, пятый и шестой, имеет остаточное взаимодействие в
нуле порядка 600 кГц, что еще больше, чем в паре 6-7 (рис. 5.13). При этом мож-
но оценить получившийся диапазон ZZ-взаимодействия кубитов по рис. 5.13(в),
где видно максимальное взаимодействие, превышающее 50 МГц. Такая сила
связи соответствует длительности двухкубитной операции порядка 10 нс. С од-
ной стороны, такая операция является возможной с точки зрения характери-
стик генератора импульса произвольной формы. С другой стороны, это быст-
рая операция, вызывающая утечки из вычислительного подпространства, о чем
будет рассказано позднее. Поэтому, для выполнения двухкубитной операции
выбирается точка с меньшей силой связи кубитов. На рис. 5.13(в) также сопо-
ставлены проектный диапазон взаимодействия кубитов и измеренный. Видно,
что они сильно отличаются, и элемент связи приближается к частотам кубитов
сильнее, чем ожидалось.

min

max(a) (б) (в)

Рис. 5.13: Измерение силы связи кубитов 5 и 6. (а, б) Результаты измерения населенности
кубита B в относительных единицах. Красная линия разделяет две области с разным сдви-
гом частоты возбуждающего кубит импульса от частоты кубита. (в) Диапазон перестройки
силы взаимодействия двух кубитов, определяемый как разница между частотами осцилля-
ций населенности кубита B в случаях (a) и (б). Красная линия показывает силу связи 𝜁𝑍𝑍 ,
вычисленную при проектируемых параметрах системы (таб. 3.1).
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5.7 Калибровка однокубитных операций

Отметим, что предыдущие измерения выполнялись при использовании пря-
моугольных импульсов. Для дальнейших двухкубитных измерений необходи-
мо откалибровать однокубитные импульсы импульсы с огибающей гауссовой
формы, так как они имеют более узкий спектральный диапазон шума по срав-
нению с прямоугольными [120]. В ходе калибровки подбирается амплитуда и
фаза импульса заданной длины [52]. Пример калибровки амплитуды показан
на рис. 5.14. Для калибровки амплитуды изначально берется число 𝜋/2 им-
пульсов, кратное четырем, под действием которых происходит вращение куби-
та на сфере Блоха на угол, кратный 2𝜋, вокруг оси Х. Положение минимума
населенности первого возбужденного уровня при этом соответствует наиболее
подходящей амплитуде и фазе импульса (рис. 5.14(а)). Для калибровки фазы
(рис. 5.14(б)) последовательность состоит из пары 𝜋/2 импульсов с противопо-
ложной фазой, между которыми добавляется набор из еще 𝑁 таких пар. Перед
каждым импульсом добавляется виртуальное Z вращение на варьируемый угол
и определяется фаза, при которой населенность кубита минимальна. После это-
го повторяется калибровка амплитуды, но с определенной ранее фазой перед
каждым импульсом.

(а) (б)

Рис. 5.14: Калибровка однокубитных микроволновых импульсов с гауссовой огибающей в
зависимости от амплитуды сигнала (а) и добавочной виртуальной фазы (б).
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5.8 Калибровка двухкубитной операции

Для калибровки двухкубитного гейта CZ, являющегося естественным для
данной архитектуры, выполняется первичный подбор длительности и амплиту-
ды прямоугольного импульса на элемент связи, включающего взаимодействие
между кубитами и накапливающего фазу 𝜋 у состояния.

Рис. 5.15: Измерение ZZ-взаимодействия кубитов 6 и 7 в одной точке по напряжению кап-
лера

В лаборатории используется два вида такой калибровки. Первая заключа-
ется в выборе амплитуды на элемент связи из измерения 5.11 и последующем
расчете длительности гейта. Из определенной силы связи можно расчитать дли-
тельность по формуле:

𝜏gate = 𝜋/2𝜁𝑍𝑍 . (5.8.1)

Данная калибровка дает наглядную временную динамику заселенности целево-
го кубита в зависимости от состояния контролирующего, причем при выбранной
амплитуде грубо определить длительность двухкубитной операции можно ви-
зуально, выбрав точку по времени, где осцилляции находятся в противофазе
(рис. 5.15, длительности двухкубитной операции отмечена вертикальной пунк-
тирной линией).

Вторая используемая калибровка описана в работах [121, 122]. Разница за-
ключается в том, что в данном случае длина и амплитуда импульса на элемент
связи предварительно выбраны из предыдущей калибровки, варьируется одно-
кубитная виртуальная фаза, добавляемая ко второму 𝜋/2-импульсу на целевой
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(a)

Кубит A

Элемент связи

Кубит B

UCZ

(б)

(в)

Рис. 5.16: Калибровка двухкубитного гейта. (а) Последовательность импульсов для калиб-
ровки. (б) Калибровка на паре кубитов 5-6. (в) Калибровка на паре кубитов 6-7.

кубит. Если две осцилляции находятся в противофазе, значит, параметры им-
пульса на элемент связи подобраны верно. В противном случае около выбранно-
го значения варьируется амплитуда или длительность, позволяя уточнить фазу
двухкубитной операции. Пример уточняющей калибровки показан на рис. 5.16.

5.9 Калибровка двухкубитного считывания

Перед тем, как перейти к тестированию однокубитных и двухкубитных опе-
раций, выполняемых в виде некоторой цепочки импульсов, необходимо выпол-
нить калибровку двухкубитного считывания, которая позволяет сделать вывод
о том, насколько точно различаются четыре состояния двухкубитной системы.
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Для этого измеряется матрица ошибок, которая показывает, сколько раз при
приготовлении целевого состояния было измерено каждое из четырех возмож-
ных (рис. 5.17). Данное измерение использовалось при обработке результатов
перекрестно-энтропийного тестирования и квантовой томографии, в которых
делается коррекция результата с учетом ошибок считывания.

(а) (б)

Рис. 5.17: Матрица ошибок считывания двухкубитной системы. (а) Калибровка на паре
кубитов 5-6 (б) Калибровка на паре кубитов 6-7.

Как видно из рисунков, точность считывания состояний, когда один из ку-
битов возбужден, а другой нет, меньше точности считываний состояний, когда
на оба кубита либо подается возбуждающий импульс, либо не подается.

5.10 Тестирование двухкубитного гейта

Для определения точности двухкубитной операции обычно используются
квантовая томография [49,84], рандомизированное тестирование [49,84] и пере-
крестно-энтропийное тестирование [1] (XEB).

Квантовая томография делится на томографию состояния или процесса. В
случае томографии состояния исследуется то, насколько хорошо приготовлено
одно состояние системы. Над системой выполняется операция приготовления
состояния, затем она проецируется на комбинацию осей X, Y, Z каждого из ку-
битов и измеряется. После этого востановленная матрица плотности из экспе-
римента сравнивается с матрицей плотности идеального случая. В случае кван-
товой томографии процесса приготавливается набор состояний, над которыми
затем выполняется исследуемый процесс, затем опять происходит измерение
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проекций на комбинации осей и восстанавливается матрица процесса, которая
сравнивается с матрицей идеальной операции.

Так как при томографии выполняется одно приготовление, один процесс и
одно измерение, то считается, что томография подвержена сильному влиянию
ошибок приготовления и считывания состояний (SPAM – state preparation and
measurement). Поэтому, более достоверным являются другие способы тестиро-
вания. В случае рандомизированного тестирования исследуется экспоненциаль-
ное затухание точности от количества операций. Обычное рандомизированное
тестирование подразумевает усредненную точность операций в наборе, кото-
рый повторяется 𝑛 раз. Причем в каждом наборе выполняется также обратная
операция, возвращающая систему в основное состояние. Для того, чтобы иссле-
довать точность одной конкретной операции, выполняется перемежающее ран-
домизированное тестирование. В этом случае к набору операций добавляется
исследуемая, и полученная точность такого набора сравнивается с предыдущей,
для выделения точности одной исследуемой операции. Такой тип тестирования
плох тем, что нужно выполнять обратную операцию, что часто бывает затруд-
нительно и требует дополнительных калибровок. К тому же, он не позволяет
получить матрицу реально выполняемой операции.

В случае перекрестно-энтропийного тестирования выполнение обратных опе-
раций не требуется, а сравнение эксперимента производится с моделированием
на классическом компьютере. Поэтому можно воссоздать матричный вид ис-
следуемой операции.

Для оценки достоверностей однокубитных и двухкубитных гейтов на данном
процессоре выполнялось перекрестно-энтропийное тестирование, программный
код и код обработки которого был разработан ранее в лаборатории. В качестве
однокубитных гейтов брался набор из вращений на угол 𝜋/2 вокруг осей X и Z,
которые вместе с двухкубитным гейтом CZ принадлежат группе Клиффорда.

Результатом экспериментального исследования 8-кубитного процессора ста-
ло выполнение двухкубитных гейтов. Для пары кубитов 6-7 выбрана точка с ам-
плитудой −0.28 В (согласно аппроксимации соответствующая значению 0.4Φ0

магнитного потока в СКВИДе элемента связи), в которой полная длительность
операции CZ составляет 60 нс. Фронты потокового импульса на элемент связи
составляют 9 нс. Для определения достоверности гейта была выполнена томо-
графия двухкубитного квантового процесса (рис. 5.18(в)). Достоверность CZ
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Кубит 𝑓𝑞 𝛼 𝑇 *
2 𝑇1 𝑡1𝑄 𝐹1𝑄

(ГГц) (МГц) (мкс) (мкс) (нс) (%)
5 6.356 – 5.8 5.1 2× 26.66 98.9
6 6.450 156 8.6 15.8 2× 26.66/2× 46.66 99.0/99.1
7 6.494 157 10.8 8.3 2× 46.66 98.3

Таб. 5.4: Параметры трансмонов: частота, ангармонизм, времена дефазировки и релакса-
ции, длительность однокубитных гейтов группы Клиффорда из рис. 5.18(a), усредненная
точность однокубитных операций в последовательности. Коэффициент 2 означает, что гей-
ты собираются из двух 𝑅X(𝜋/2) гейтов.
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Рис. 5.18: Тестирование CZ гейта для пары кубитов 6-7. (a) Последовательность импульсов
для перекрестно-энтропийного тестирования двухкубитного гейта. (б) Деполяризационная
точность, усредненная по 100 произвольным цепочкам как функция глубины последователь-
ности 𝑚 для двух видов измерений (a): без двухкубитного гейта (красный) и с ним (зеле-
ный). Синие точки показывают обработку данных тестирования для оценки чистоты гейта.
Пунктирная линия – это аппроксимация синих точек. (в) Результат квантовой томографии.
Матрица переноса Паули гейта CZ. Достоверность операции составляет 83.3%.

операции из полученной матрицы процесса составила 83.3%, что может быть
объяснено погрешностью двухкубитного считывания. Для оценивания точности
двухкубитного гейта без учета ошибок считывания и приготовления квантовых
состояний было выполнено перекрестно-энтропийное тестирование. Последова-
тельность операций для тестирования изображена на рис. 5.18(a), где 𝐶𝑖𝑗 –
произвольные случайно выбранные однокубитные операции из группы Клиф-
форда. Индекс 𝑖 относится к первому кубиту, индекс 𝑗 – к порядковому номе-
ру однокубитной операции в последовательности. Однокубитная группа Клиф-
форда состоит из 𝜋/2 вращений вокруг оси Х длительностью 46.66 нс и вир-
туальных вращений S, выполненных аналогично работе [123]. Для определения
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достоверности двухкубитного гейта сначала выполнялось тестирование одноку-
битных операций, выполняемых на обоих кубитах одновременно. Полученная
деполяризационная точность усреднялась по произвольным последовательно-
стям при заданной фиксированной длине цепочки 𝑚 (рис. 5.18(б), синий цвет).
Данные описываются зависимостью 𝑎𝑝𝑚, где 𝑝 – деполяризационный параметр,
𝑎 – параметр, зависящий от ошибок приготовления состояний и считывания.
Полученный деполяризационный параметр составляет 𝑝1 = 0.9714 ± 0.0005.
Параметры двух кубитов приведены в таб. 5.4. После определения точности
однокубитных операций выполнялось аналогичное измерение, но с добавлен-
ным двухкубитным гейтом (рис. 5.18(б), зеленый цвет). Деполяризационный
параметр 𝑝2 равен 0.947± 0.001. Итоговая достоверность двухкубитного гейта
была определена по формуле [1, 124]

𝐹 = 𝑝+ (1− 𝑝)/𝐷, (5.10.1)

где 𝑝 = 𝑝2/𝑝1, 𝐷 = 2𝑛 – размерность вычислительного гильбертового про-
странства (𝑛 = 2). Полученная достоверность составила 𝐹CZ = (98.14± 0.12)%.
С помощью данных перекрестно-энтропийного тестирования была определена
фаза двухкубитного гейта, которая в данном случае равна 𝜃 = (1.03± 0.03)𝜋.

Для исследования двухкубитного гейта на наличие некогерентных и коге-
рентных процессов, была определена средняя чистота состояний после выпол-
нения последовательности квантовых операций [1], которая составила 0.955 ±
0.001. При сравнении с величиной 𝑝2, можно сделать вывод, что основной вклад
в ошибку двухкубитной операции вносит декогеренция кубитов. Итоговая до-
стоверность двухкубитного гейта выше, чем однокубитных, так как он короче
(таб. 5.4). Под длительностью однокубитной операции в таблице понимается
полная длительность цепочки однокубитных операций одной повторяющейся
последовательности. Длительность одного 𝜋/2 гауссового импульса составляет
46.66 нс.

Аналогично были выполнены квантовая томография процесса и перекрестно-
энтропийное тестирование для пары кубитов 5-6. Гейт выполнялся в точке с ам-
плитудой −0.227 В (соответствует значению 0.44Φ0 магнитного потока в СКВИ-
Де элемента связи), в которой полная длительность операции CZ составляет
40 нс. Точность гейта из томографии составила 91.7%, согласно перекрестно-
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Рис. 5.19: Тестирование CZ гейта на паре кубитов 5-6. (a) Деполяризационная точность,
усредненная по 100 произвольным цепочкам как функция глубины последовательности 𝑚
для двух видов измерений: без двухкубитного гейта (красный) и с ним (зеленый). Синие
точки показывают обработку данных тестирования для оценки чистоты гейта. Пунктир-
ная линия – это аппроксимация синих точек. Фиолетовым цветом показано приближение
экспериментальных данных перекресно-энтропийного тестирования последовательностями
с двухкубитным гейтом CPhase с произвольной фазой, которая была оптимизирована. (б)
Квантовая томография выполненного гейта CZ. Достоверность операции составляет 91.7%.
(в) Квантовая томография идеального гейта CZ.
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энтропийному тестированию 95.9%. Аналогично предыдущей паре, точность
однокубитный операции выше, чем двухкубитной, как и уровень кривой, опи-
сывающий чистоту двухкубитной операции. Однако, на рис. 5.19(a) можно уви-
деть, что гейт был откалиброван недостаточно точно, так как его фаза соста-
вила 1.16𝜋. При этом, если вычислить точность операции Cphase вращения на
этот угол, то она составляет 97.24%. На рис. 5.19(б) показано сравнение вы-
полненной томографии с томографией двухкубитной операции CZ в идеальном
случае.

(а) (б)

Рис. 5.20: (а) Перекрестно-энтропийное тестирование CZ гейта на паре кубитов 5-8. Депо-
ляризационная точность, усредненная по 100 произвольным цепочкам как функция глубины
последовательности 𝑚 для двух видов измерений: без двухкубитного гейта (красный) и с
ним (зеленый). Синие точки показывают обработку данных тестирования для оценки чи-
стоты гейта. Пунктирная линия – это аппроксимация синих точек. (б) Матрица ошибок
считывания двухкубитной системы.

На рис. 5.20 показана наилучшая точность CZ операции на восьмикубитном
процессоре. Измерение было выполнено после основного анализа двухкубит-
ной операции, приведённого в диссертации. Собранная установка аналогична
описанной ранее (рис. 5.2). На рис. 5.20(а) показано перекрестно-энтропийное
тестирование однокубитных и двухкубитной операций на паре кубитов 5-8. Точ-
ность CZ гейта составляет 98.95%, кривая чистоты операции в данном случае
ближе к кривой перемежающегося тестирования по сравнению с предыдущими
парами кубитов. Это говорит о том, что полученная точность двухкубитного
гейта все еще может быть улучшена за счет повышения когерентности кубитов,
при этом ошибки других процессов нивелированы лучше по отношению к дру-
гим измеренным двухкубитным операциям. На рис. 5.20(б) показана измерен-
ная матрица ошибок двухкубитного считывания пары кубитов 5-8. Она также
показывает наилучшую точность двухкубитного считывания. Длительность од-
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нокубитных операций в цепочке тестирования составила 2×36 нс, длительность
двухкубитной операции - 66 нс.

5.11 Анализ ошибок двухкубитной системы

Общая ошибка, полученная с помощью перемежащего тестирования, вклю-
чает вклад ошибок однокубитных гейтов и ошибки CZ гейта. Рассмотрим каж-
дую из этих составляющих отдельно для пары кубитов 6 и 7. Ошибки одно-
кубитных операций обусловлены дефазировкой, релаксацией кубитов и стати-
ческим ZZ-взаимодействием. Используя измеренные времена релаксации (𝑇1)
и когерентности (𝑇 *

2 ) (таб. 5.4), применяется подход операторной суммы для
моделирования этих каналов ошибок. Точность однокубитных гейтов, выпол-
няемых одновременно на обоих кубитах, рассчитывается по формуле [27,32]:

𝐹 = 1− 2𝑡

5

∑︁
𝐴,𝐵

(︂
1

𝑇1
+

1

𝑇𝜙

)︂
, (5.11.1)

где 𝑡 – длительность операции и время чистой дефазировки 𝑇𝜙 получено из
соотношения 1

𝑇 *
2
= 1

2𝑇1
+ 1

𝑇𝜙
. На основании этого вычисляется точность 98.9%, что

соответствует деполяризационной ошибке 0.015. Следующим вкладом в ошибки
однокубитных гейтов является статическое ZZ-взаимодействие при неактивном
элементе связи. Для оценки его влияния на точность используется выражение
[125]:

𝐹 =
(7 + 3 cos𝜙)

10
, (5.11.2)

где 𝜙 = 2𝜋𝜁ZZ𝜏 , а 𝜁ZZ — это скорость ZZ-взаимодействия при нулевом магнитном
потоке в элементе связи. Подставляя значения для 𝜙, получаем точность 99.1%,
что соответствует деполяризационной ошибке 0.012. Объединяя оба эффекта,
общая точность однокубитных гейтов составляет 98.0%, что хорошо согласу-
ется с измеренным значением 97.68 ± 0.04%. Это соответствие подтверждает
корректность модели ошибок и анализа.

Для дальнейшего обоснования анализа было проведено тестирование одно-
кубитных гейтов для каждого кубита отдельно. Эксперимент выполнялся на
другой установке спустя некоторое время, но на том же образце. Длительность
гейта 𝑅𝑥(𝜋/2) была установлена равной 20 нс, измеренные времена релаксации
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составили 𝑇1 = 16.7 и 14.5 мкс, а времена когерентности 𝑇 *
2 = 8.9 и 10.5 мкс

для кубитов 6 и 7 соответственно. Значения точности однокубитных гейтов,
полученные методом XEB, составили 99.77% и 99.81% для кубитов 6 и 7. Тео-
ретическая оценка, рассчитанная по формуле:

𝐹 = 1− 𝑡1𝑄
3

(︂
1

𝑇1
+

1

𝑇𝜙

)︂
, (5.11.3)

дает значения 99.81% и 99.82%. Эти результаты подтверждают, что для отдель-
ных кубитов точность гейтов в основном ограничена процессами дефазировки
и релаксации.

Далее анализировались ошибки, связанные с CZ гейтом. В ходе дополни-
тельных измерений было обнаружено, что время когерентности 𝑇 *

2 уменьшается
вдвое, когда на элемент связи подается напряжение, соответствующее выполне-
нию двухкубитной операции. Это связано с тем, что при перестройке частоты
элемента связи кубиты уходят из своей рабочей точки. При этом время релакса-
ции остается стабильным при изменении потока в рабочем диапазоне. Предпо-
лагая, что в течение выполнения гейта 𝑇 *

2 вдвое меньше значений, приведенных
в таб. 5.4, формула (5.11.1) дает деполяризационную ошибку 0.016.

Поскольку в эксперименте используется метод XEB, он также позволяет
оценить накопленную двухкубитную фазу 𝜃. Оптимизируя линейную кросс-
энтропию между экспериментальными данными и смоделированными кванто-
выми схемами с чередующимся контролируемым фазовым гейтом, получаем
𝜃 = (1.03± 0.03)𝜋, что приводит к деполяризационной ошибке менее 0.002.

Оставшиеся источники ошибок, согласно численному моделированию, вклю-
чают ошибки обмена, то есть нежелательное перераспределение населенности
состояний в вычислительном подпространстве, а также утечку за его преде-
лы. Для оценки вклада утечки применяется метод speckle purity benchmarking
[1], который позволяет извлечь среднюю чистоту состояния после выполнения
XEB-последовательностей. Вычисленный квадратный корень из чистоты со-
ставляет 0.955± 0.001, что соответствует декогерентным процессам. Учитывая
общую деполяризационную ошибку 𝑝2 = 0.947, ошибка утечки составляет 0.008.
Остаточная ошибка, определяемая как разность между квадратным корнем из
чистоты и суммарным эффектом ошибок, обусловленных 𝑇1, 𝑇 *

2 и двухкубит-
ным взаимодействием, приписывается ошибкам обмена, которые оказываются
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значительно меньшими по сравнению с ошибками декогеренции и утечки.

В заключение можно отметить, что когерентные ошибки вносят наибольший
вклад в ошибку двухкубитного гейта, при этом утечка также играет важную
роль. В то же время, для однокубитных гейтов основным ограничением яв-
ляется статическое ZZ-взаимодействие. Минимизация влияния таких ошибок,
особенно подавление ZZ-взаимодействия, должна стать приоритетной задачей
для будущих исследований.

5.12 Моделирование двухкубитного вентиля CZ

Для полученных параметров двухкубитной схемы 6-7 была промоделирова-
на динамика системы в процессе выполнения двухкубитного гейта в зависи-
мости от амплитуды импульса магнитного потока, приложенного к СКВИДу
элемента связи, в диапазоне от 0.37Φ0 до 0.5Φ0 (рис. 5.21). Для каждого зна-
чения амплитуды подбиралась длительность импульса таким образом, чтобы
накопленная условная фаза вычислительного состояния |𝑒𝑒⟩ составляла 𝜃 = 𝜋.

Для оценки качества полученной операции CZ использовалось стандартное
выражение для точности двухкубитного гейта, использующее представление
матрицы переноса Паули [87, 126], которое затем преобразовывалось в деполя-
ризационную ошибку 𝜖.

Для анализа вклада различных источников ошибок была рассчитана сред-
няя ошибка утечки за пределы вычислительного подпространства [127]:

𝜖leak = 1− 1

4

4∑︁
𝑖,𝑗=1

|𝑢𝑖𝑗|2 , (5.12.1)

а также ошибка обмена (swap error), 𝜖swap, которая количественно описыва-
ет нежелательный для элемента CZ перенос населенности между состояниями
внутри вычислительного подпространства:

𝜖swap =
1

4

4∑︁
𝑖,𝑗=1
𝑖̸=𝑗

|𝑢𝑖𝑗|2 . (5.12.2)

Здесь 𝑢𝑖𝑗 — элементы матрицы эволюции 𝒰 , спроецированной на двухкубитное
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(г)

Фронты
формы окон Ханна

(а)

(б)

(в)

Рис. 5.21: Моделирование гейта CZ для параметров устройства, полученных эксперимен-
тально. (a) Показаны полная ошибка (красный), ошибка обмена между вычислительными
состояниями 𝜖swap (синяя пунктирная линия) и ошибка утечки на высокоэнергетические уров-
ни 𝜖leak (зелёная штрихпунктирная линия) в зависимости от длительности элемента CZ. (б)
Амплитуда магнитного потока в СКВИДе элемента связи, соответствующая выбранной дли-
тельности гейта. (в) Для длительности элемента 43.3 нс (звезда на рисунке (a)) получены
временные зависимости условной двухкубитной фазы 𝜃 (красная линия), ошибки обмена
𝜖swap (синяя пунктирная) и ошибки утечки 𝜖leak (зелёная штрихпунктирная). Достоверность
гейта составляет 𝐹 = 0.9997. (г) Форма импульса на элемент связи с фронтами в виде окон
Ханна, используемая в эксперимента и моделировании.

вычислительное подпространство при элементе связи в основном состоянии.

Полученные ошибки представлены на рис. 5.21(a), а соответствующая дли-
тельность гейта как функция внешней амплитуды потока — на рис. 5.21(б).
При первом минимуме кривой ошибок высокоточная работа гейта не достига-
ется из-за сильного ZZ-взаимодействия. Видно, что ошибка гейта демонстриру-
ет периодическое поведение, обусловленное колебаниями населённости внутри
вычислительного подпространства. Второй минимум ошибки, отмеченный звез-
дой, соответствует достоверности гейта 0.9997 при длительности 43.3 нс. Для
этой точки на рис. 5.21(в) показана временная эволюция ошибки обмена (синяя
пунктирная кривая), двухкубитной фазы (оранжевая линия) и ошибки утечки
(зелёная штрихпунктирная кривая).

На рис. 5.22 показана эволюция населённостей вычислительных состояний
во времени в процессе выполнения элемента CZ (соответствует звезде из
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Рис. 5.22: Динамика населенности четырех вычислительных состояний во время двухку-
битного гейта. Обозначение состояний соответствует населенности мод системы для случая,
обозначенного звездой на рис. 5.21(a).

рис. 5.21(a)) при параметрах экспериментального устройства (см. таб. 3.1). По-
мимо обмена между четырьмя целевыми состояниями, наблюдаются утечки на
уровни |𝑓𝑔000⟩, |𝑔𝑓000⟩ и |𝑔𝑔010⟩. В конце двухкубитной операции суммарная
населённость возвращается в вычислительное подпространство.

5.13 Выводы по Главе 5

Данная глава посвящена экспериментальной демонстрации восьмикубитно-
го квантового процессора с перестраиваемыми трехмодовыми элементами свя-
зи между круглыми трехконтактными кубитами-трансмонами. Подробно опи-
сана экспериментальная установка, а также спектроскопические и импульс-
ные калибровочные измерения. Предложены изменения параметров кубита для
устранения наблюдаемой зарядовой дисперсии. Исследованы спектры элемента
связи, измерены ZZ-взаимодействия между кубитами и проведено сопоставле-
ние экспериментальных данных с численным моделированием и аналитическим
подходом. Проведена калибровка однокубитных операций, двухкубитной опе-
рации и считывания.
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Для оценки точности двухкубитных гейтов применены квантовая томогра-
фия и перекрестно-энтропийное тестирование. Ключевым результатом главы
является экспериментальная реализация двухкубитной операции CZ с досто-
верностью выше 98%, ограниченной в основном временами когерентности ку-
битов. Проведено также моделирование динамики двухкубитной системы при
варьировании амплитуды импульса на элемент связи, в ходе которого рассчи-
таны ошибки утечки и обмена населенностью, а также точность операции в
зависимости от параметров импульса. Моделирование CZ-гейта с параметра-
ми экспериментального устройства показало ошибку гейта менее 3 · 10−4 при
оптимальной длительности импульса гейта около 43 нс.

Основные результаты главы описаны в статье [39].
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6 Заключение

Сформулируем основные результаты, полученные при выполнении настоя-
щей диссертационной работы.

1. Расчитан и экспериментально исследован сверхпроводниковый кубит-транс-
мон с контуром из трех джозефсоновских контактов и круглой формой
шунтирующей емкости, позволяющей уменьшить диэлектрические поте-
ри. Получена аналитическая формула для упрощенного расчета уровней
энергии трехконтактного кубита-трансмона.

2. Произведено электромагнитное моделирование распределения электриче-
ского поля на технологических поверхностях для разработанного кубита
трансмона с шунтирующей емкостью круглой формы. Анализ диэлектри-
ческих потерь в поверхностях показал преимущества предложенной гео-
метрии в сравнении с распространенной крестообразной формой шунти-
рующей емкости. Получен верхний предел времен релаксации кубита в
считывающую и контролирующую линии.

3. Предложен трехмодовый элемент связи для реализации высокоточных
двухкубитных операций между кубитами-трансмонами. Выполнен чис-
ленный расчет и подбор оптимальных параметров системы на основе раз-
работанного элемента связи и трехконтактных кубитов трансмонов с круг-
лой формой шунтирующей емкости. Показан широкий диапазон пере-
стройки ZZ-взаимодействия между кубитами от 13 кГц до 60 МГц. Чис-
ленное моделирование квантовой динамики в процессе двухкубитного гей-
та показало точность двухкубитного гейта выше 99.97%.

4. Спроектирован и экспериментально исследован сверхпроводниковый вось-
микубитный процессор с перестраиваемыми элементами связи. Проде-
монстрирована возможность выполнения однокубитных (с точностью до
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99.82%) и двухкубитных (с точностью до 98.95%) операций на таком про-
цессоре. Показано, что точность выполнения двухкубитных операций огра-
ничена временами когерентности кубитов.

В заключение автор выражает глубокую благодарность всем неравнодуш-
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