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Введение

Актуальность работы

Квантовые вычисления достигли значительных успехов за последние деся-

тилетия, несмотря на серьезные концептуальные, теоретические и технические

трудности, возникающие на пути. Среди множества прорывных достижений,

сопровождавших развитие области, можно отметить две. Первая — алгоритм

факторизации Шора [1, 2], который позволяет решить экспоненциально слож-

ную задачу за полиномиальное время и тем самым положил начало широкому

интересу к идее квантового процессора. Вторая — теория коррекции квантовых

ошибок [3–5], направленная на преодоление фундаментальной проблемы деко-

геренции и дающая уверенность в том, что создание полноценных квантовых

устройств действительно возможно.

Исследовательские группы по всему миру, начав с базовых экспериментов

по управлению одиночными квантовыми системами, перешли к работе с кван-

товыми процессорами, содержащими несколько десятков физических кубитов,

и показали превосходство квантового компьютера над классическим, пусть и

лишь для специально подобранных задач [6–9]. А в последние годы удалось

экспериментально показать, что коды коррекции квантовых ошибок не только

могут успешно справляться с возникающими ошибками [10–15], но и с их помо-

щью можно получить логические кубиты, обладающие лучшими когерентными

свойствами, чем физические кубиты, на которых они реализованы [16].

До сих пор остается открытым вопрос, какой именно физический принцип

будет стоять за практически полезным квантовым процессором. Для реализа-

ции кубитов предложено множество вариантов, среди которых на сегодняшний

день можно выделить ионы в оптических ловушках [17,18], ультрахолодные ато-

мы [19,20], спины электронов в кремнии [21,22], поляризацию фотонов [23,24],

квантовые точки [25,26] и сверхпроводниковые электрические цепи [27].

Несмотря на то, что все эти платформы развиваются параллельно, благода-

ря существованию отработанных на классических процессорах методов микро-

литографии [28] и разнообразию управляющей электроники, работающей в ги-
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гагерцовом диапазоне [29], именно сверхпроводниковые кубиты считаются наи-

более перспективными кандидатами для создания масштабируемого квантового

процессора, устойчивого к ошибкам. Их часто называют искусственными ато-

мами, подчеркивая возможность реализовать квантовую систему с практически

любыми заранее заданными свойствами энергетического спектра, что обеспечи-

вается широким выбором возможных параметров и методов реализации связи

логических операций.

Первый сверхпроводниковый кубит был сделан группой японских физиков

в самом конце двадцатого века [30]. Они впервые показали когерентное состоя-

ние суперпозиции с использованием так называемого «ящика куперовских пар»

или, другими словами, зарядового кубита, что послужило спусковым крючком

для активного экспериментального развития области, появлению новых типов

кубитов и усовершенствованию методов управления. Среди знаковых дости-

жений можно выделить реализацию дисперсионного считывания кубита с по-

мощью копланарного резонатора [31, 32] и создание трансмона [33] — самого

распространенного на сегодняшний день типа сверхпроводниковых кубитов.

Именно на трансмонах сделаны наиболее производительные на сегодняшний

день сверхпроводниковые квантовые процессоры Sycamore и Willow (Google,

США), Heron (IBM, США) и Zuchongzhi (Китай). Этими крупными коллек-

тивами были проделаны колоссальные усилия по созданию масштабируемых

квантовых процессоров, при этом особое внимание уделялось снижению уров-

ня ошибок и повышению стабильности одновременной работы большого числа

кубитов. В 2024 году Google представила 105-кубитный квантовый процессор,

преодолевший пороговое значение, при котором с увеличением числа кубитов

частота ошибок не растет, а снижается, что является значительным достиже-

нием в области коррекции квантовых ошибок [16].

Наряду с крупными компаниями огромный вклад в развитие сверхпровод-

никовых квантовых вычислений вносят исследовательские научные группы по

всему миру: США, Швейцарии, Китая, Нидерландов, Японии, Германии, Рос-

сии и многих других стран. Эти работы направлены на улучшение когерент-

ности и управляемости квантовых систем. Разработка новых типов кубитов
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[34–37], способов считывания [38, 39] и инициализации [40, 41], эффективных

методов управления [42] являются ключевыми направлениями научных иссле-

дований для обеспечения надежности и эффективности квантовых вычислений.

Важной задачей остается совершенствование выполнения двухкубитных опера-

ций [43–45], поскольку их точность определяющим образом влияет на эффек-

тивность квантовых алгоритмов и эффективность методов коррекции ошибок.

Помимо кубитов-трансмонов, все большее внимание исследователей привле-

кают кубиты-флаксониумы, обладающие высокой когерентностью [46,47] и ва-

риативностью реализации высокоточных двухкубитных операций. Именно на

кубитах этого типа продемонстрированы рекордные по точности однокубит-

ные [48] и двухкубитные операции [49]. Сейчас и в ближайшие несколько лет

основной фокус исследований в этом направлении вероятнее всего будет на-

правлен на масштабирование флаксониумных процессоров [50].

Цель работы

Цель данной диссертационной работы заключается в разработке и экспери-

ментальной реализации методов выполнения двухкубитных операций на сверх-

проводниковых кубитах-флаксониумах, а также в создании эффективных кодов

коррекции квантовых ошибок для процессоров с ограниченной связностью.

Для достижения намеченной цели были сформулированы и решены следу-

ющие задачи:

1. Предложить метод реализации двухкубитной операции на сверхпроводни-

ковых кубитах-флаксониумах без перестройки магнитного потока в эле-

менте связи;

2. Экспериментально реализовать предложенную микроволновую двухку-

битную операцию и оценить точность методом перекрестно-энтропийного

тестирования;

3. Разработать способ масштабирования пятикубитного кода коррекции кван-

товых ошибок для процессоров циклической связности и выполнить чис-

ленное моделирование, характеризующее эффективность предложенного
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подхода;

4. Предложить и реализовать алгоритм декодирования квантовых ошибок,

основанный на искусственных нейронных сетях.

Основные положения, выносимые на защиту

1. Микроволновое возбуждение соединительного элемента между двумя ку-

битам-флаксониумами позволяет выполнить двухкубитную операцию СZ.

Точность экспериментально реализованной операции составила 97,6 % при

длительности 44 нс.

2. Динамическая переадресация физических кубитов позволяет реализовать

пятикубитный код коррекции квантовых ошибок и линейно по числу фи-

зических кубитов масштабировать его на малых дистанциях d = 5, 7, 9.

3. Алгоритм декодирования на основе искусственных нейронных сетей поз-

воляет эффективно исправлять ошибки в кодах коррекции со стабили-

заторами высокого веса (w = 4, 6, 8) и смешанного типа, отвечающими

одновременно битовым и фазовым ошибкам.

Научная новизна исследования

В данной работе предложен и впервые реализован новый метод выполне-

ния двухкубитной операции на кубитах-флаксониумах, основанный на микро-

волновом возбуждении дополнительного связующего кубита, частота которого

зависит от вычислительного состояния системы. Важно отметить, что схожие

исследования в это время были выполнены в Массачусетском технологическом

институте [45] (предварительная версия публикации появилась на интернет-

ресурсе arXiv после публикации результатов, описанных в диссертационной

работе). Возможность выполнения такой операции с высокой точностью от-

крывает перспективы реализации запутывающих операций в масштабируемых

сверхпроводниковых квантовых процессорах на основе флаксониумов, остав-

ляя кубиты в оптимальных точках по потоку в течение всего времени работы.

Предложен оригинальный метод коррекции квантовых ошибок, использующий
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динамическую переадресацию физических кубитов, что позволяет эффективно

реализовывать пятикубитный код на процессорах с циклической связностью.

Также разработан и исследован алгоритм декодирования квантовых ошибок

на основе искусственных нейронных сетей, обеспечивающий экспоненциальное

снижение вероятности логической ошибки и успешно работающий в условиях

неразделимых синдромов ошибок X и Z высокого веса.

Практическая значимость работы

Полученные результаты открывают новые возможности в работе с кубитами-

флаксониумами. В первую очередь это касается дальнейшего масштабирования

устройств и исследования топологических особенностей системы для увеличе-

ния времен когерентности кубитов и повышения точности управления. В работе

реализованы оригинальные идеи выполнения двухкубитных квантовых опера-

ций, что позволяет эффективно осуществлять не только двухкубитные вентили,

но и многокубитные операции [51]. Предложенный подход к коррекции кванто-

вых ошибок с использованием динамической переадресации физических куби-

тов снижает требования к количеству физических кубитов и связности кван-

тового процессора. Алгоритм декодирования на основе искусственных нейрон-

ных сетей позволяет исправлять ошибки, в том числе в условиях их высокой

коррелированности. Главное его преимущество заключается в способности обу-

чаться на данных, полученных непосредственно с конкретного устройства, что

особенно важно, если реальный характер ошибок отличается от теоретических

моделей. Кроме того, алгоритм не зависит от конкретного кода коррекции, что

делает его универсальным при работе с различными архитектурами квантовых

кодов и процессоров.

Личный вклад автора

Автор самостоятельно выполнил аналитические и численные расчеты ди-

намики квантовой системы, соответствующей выполнению двухкубитной опе-

рации, принимал активное участие в подготовке и постановке эксперимента,
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проведении измерений и обработке экспериментальных результатов. Автор вы-

полнил численное моделирование кода коррекции ошибок на циклической архи-

тектуре и непосредственно участвовал в разработке и усовершенствовании ал-

горитма декодирования на основе искусственных нейронных сетей. Кроме того,

автор принимал активное участие в анализе и интерпретации всех полученных

результатов и подготовке работ к публикациям.

Апробация работы

Основные результаты, изложенные в диссертационной работе, докладыва-

лись на следующих конференциях:

◦ 6th International Conference on Quantum Technologies ICQT-2021, Москва,

Россия, июль 2021 (стендовый доклад)

◦ XXIV Международная конференция студентов, аспирантов и молодых

учёных «Ломоносов», Москва, Россия, апрель 2022 (устный доклад)

◦ Математика в квантовых технологиях – 2022, Москва, Россия, декабрь

2022 (устный доклад)

◦ IV Annual Outdoor Conference on Quantum Computing, Эстосадок, Россия,

февраль 2023 (устный доклад)

◦ 65th All-Russian Scientific Conference of MIPT, Долгопрудный, Россия, ап-

рель 2023 (устный доклад)

◦ 7th International Conference on Quantum Technologies ICQT-2023, Москва,

Россия, июль 2023 (стендовый доклад)

◦ V Annual Outdoor Conference on Quantum Computing, Эстосадок, Россия,

февраль 2024 (устный доклад)

◦ XXIX Симпозиум «Нанофизика и наноэлектроника», Нижний Новгород,

Россия, март 2025 (устный доклад)



11

Публикации

Основные результаты по теме диссертации изложены в 4 статьях, опубли-

кованных в периодических научных журналах, входящих в перечень ВАК РФ

и индексируемых Web of Science и Scopus.

Достоверность

Достоверность результатов работы подтверждается соответствием между

теоретическими выкладками, результатами численного моделирования и экс-

периментально полученными данными. Используемые в исследовании экспери-

ментальные и численные методы широко применяются в мировом научном со-

обществе; в тексте приведены соответствующие ссылки на источники. Основные

положения и выводы работы прошли независимое рецензирование в междуна-

родных и российских научных журналах, а также апробацию на конференциях

и семинарах.

Объем и структура работы

Диссертация состоит из введения, трех глав и заключения. Полный объем

диссертации составляет 130 страниц, включая 33 рисунка и 6 таблиц, список

литературы содержит 134 наименования.
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1 Теоретические сведения и обзор литературы

Результаты диссертационной работы можно разделить на две смысловые ча-

сти: экспериментальную реализацию нового метода выполнения двухкубитной

операции на кубитах-флаксониумах и разработку кодов коррекции квантовых

ошибок на циклической архитектуре, для которой и необходимы квантовые про-

цессоры с высокой точностью операций. Первая глава служит введением в обе

эти части и предлагает краткий теоретический обзор, необходимый для пони-

мания последующих глав диссертации. Она состоит из трех подразделов.

Первый подраздел излагает уже ставшие хрестоматийными за последние

годы сведения об основах квантовых вычислений [52] и определяет основные

математические понятия, используемые в работе. Несмотря на их привычный

характер, эти определения необходимо привести во избежание разночтений.

Второй подраздел кратко описывает принципы работы сверхпроводнико-

вых кубитов. На сегодняшний день существует множество подробных обзо-

ров [29,53–59], включая русскоязычные диссертационные исследования [60–62],

в которых детально рассмотрены принципы работы квантовых вычислитель-

ных устройств на основе сверхпроводниковых систем. Поэтому в данной ча-

сти основной акцент сделан на обсуждении современных достижений в области

двухкубитных операций с использованием кубитов-флаксониумов.

Наконец, третий подраздел посвящен основам коррекции квантовых оши-

бок. Формулируется постановка задачи, на простом примере поясняются клю-

чевые принципы кодирования логической информации и исправления ошибок,

вводится формализм стабилизаторов [63] и приводятся примеры наиболее из-

вестных кодов коррекции, включая те, которые будут использоваться в данной

работе.
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1.1 Основы квантовых вычислений

1.1.1 Квантовый бит

Классический бит является базовой единицей информации, лежащей в ос-

нове современных вычислительных систем. Он обозначает логическое состоя-

ние, которое может принимать одно из двух возможных значений — 0 или 1.

Эти состояния соответствуют различным физическим реализациям, например,

уровням напряжения в электрических цепях или положениям механических

переключателей. Работа классического компьютера основана на возможности

манипуляции большими наборами таких битов для выполнения вычислений и

обработки данных.

Квантовый бит, или кубит, представляет собой квантовую систему с двумя

энергетическими уровнями, которая расширяет понятие классического бита,

основываясь на принципиально иных квантовых принципах. Кубит может на-

ходиться в одном из двух базисных состояний |0⟩ и |1⟩, однако, в отличие от

классического бита, он также может существовать в их суперпозиции. Состоя-

ние одного кубита может быть описано волновой функцией:

|ψ⟩ = α|0⟩+ β|1⟩, (1.1)

где α и β — комплексные коэффициенты, удовлетворяющие условию нормиров-

ки: |α|2 + |β|2 = 1, а состояния

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(1.2)

образуют базис в двухмерном комплексном гильбертовом пространстве.

Удобно переписать волновую функцию состояния одного кубита (1.1) в па-

раметрическом виде с использованием полярного и азимутального углов:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩. (1.3)

Такое представление позволяет визуализировать состояние кубита на сфере

Блоха, как показано на рисунке 1.1. Кроме того, на рисунке отмечены 6 со-
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Рисунок 1.1: Сфера Блоха, волновая функция ψ и состояния на полюсах.

Рисунок адаптирован из работы [64].

стояний, сонаправленных с осями координат и являющихся собственными со-

стояниями операторов X, Y , Z с собственными значениями +1 и −1.
Система, состоящая из нескольких кубитов, описывается с использованием

тензорного произведения, обозначаемого как ⊗. Иногда этот символ опускается

для сокращения записи, например:

|00 · · · 0⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩. (1.4)

Волновая функция описывает только чистые квантовые состояния. Для опи-

сания смешанных состояний вводится матрица плотности, которая может быть

комбинацией чистых состояний |ψi⟩, каждое из которых имеет вероятность pi:

ρ =
∑
i

pi|ψi⟩⟨ψi|, (1.5)

где ρ — это положительный оператор с условием Tr(ρ) = 1.

1.1.2 Квантовые операции

Распространенным подходом к описанию квантовых алгоритмов является

представление в виде квантовых схем. Это означает, что любое действие над

системой из n кубитов может быть выражено через унитарную матрицу размера
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2n × 2n, обозначаемую U :

ψ → Uψ (1.6)

для волновой функции и

ρ→ UρU † (1.7)

для матрицы плотности.

В некоторых случаях такие операции называют квантовыми вентилями или

гейтам. Последний термин, хоть и является англицизмом, уже прочно вошел в

обиход, поэтому будет часто использоваться в тексте. Ниже приведен перечень

квантовых операций, используемых в данной работе:

1. Операция тождества:

σ0 = I =

(
1 0

0 1

)
. (1.8)

2. Операции вращения вокруг осей x, y и z сферы Блоха:

Rx(θ) =

(
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ) ,
Ry(θ) =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ) ,
Rz(θ) =

(
1 0

0 eiθ

)
.

(1.9)

Операции вращения на угол π соответствуют матрицам Паули:

σ1 = X =

(
0 1

1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0

0 −1

)
. (1.10)

3. Гейт Адамара (H) и операция фазового вращения на угол π/2 (S):

H =
1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
. (1.11)
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4. Многокубитные гейты CZ, CNOT, iSWAP и SWAP:

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

iSWAP =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 , SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

(1.12)

Наконец, в работе используется процедура проективного измерения. Эта

процедура задается набором наблюдаемых операторов Mi, где индекс i соот-

ветствует результату измерения. Для этих операторов выполняется условие:∑
i

M †
iMi = I. (1.13)

Вероятность каждого результата измерения рассчитывается по формуле:

pi = Tr(M †
iMiρ), (1.14)

а состояние системы после измерения, если результат известен, задается выра-

жением:

ρ→ MiρM
†
i

Tr(M †
iMiρ)

. (1.15)

1.1.3 Представление операторной суммой

Формализм унитарных преобразований применяется для описания идеаль-

ных замкнутых квантовых систем. Однако в реальном мире идеально замкну-

тых систем не существует, поскольку любая система взаимодействует с окружа-

ющей средой. Это взаимодействие, называемое шумом, приводит к необходимо-

сти учитывать его влияние. Для этого естественно рассмотреть расширенную

систему, включающую саму квантовую систему и окружающую среду, как по-

казано на рисунке 1.2. Вместе эти две подсистемы образуют замкнутую систему,
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эволюция которой для интересующей нас системы описывается следующим об-

разом:

Λ(ρ) = Trenv
(
U(ρ⊗ ρenv)U

†) , (1.16)

где Λ(ρ) обозначает изменение матрицы плотности квантовой системы под дей-

ствием внешнего окружения, U — унитарный оператор эволюции, действующий

на всю систему, а Trenv — частичный след по подсистеме окружающей среды.

Если |ek⟩ — ортонормированный базис в пространстве окружающей среды,

а начальное состояние окружения задано матрицей плотности ρenv = |e0⟩ ⟨e0|
(такое представление всегда возможно, так как пространство окружения можно

расширить так, чтобы оно описывалось чистым состоянием), то выражение для

эволюции (1.16) можно переписать следующим образом:

Λ(ρ) =
∑
k

⟨ek|
(
U(ρ⊗ |e0⟩ ⟨e0|)U †

)
|ek⟩ =

∑
k

EkρE
†
k. (1.17)

Операторы {Ek}, называемые операторами Крауса, удовлетворяют условию

полноты: ∑
k

E†kEk = I. (1.18)

Выражение (1.17) известно как представление операторной суммой. Этот

подход удобен, так как он позволяет описывать поведение системы, не вдаваясь

в детали свойств окружающей среды. Это упрощает вычисления и способствует

более явному пониманию процессов, происходящих в квантовой системе.

Рисунок 1.2: Модели замкнутой (слева) и открытой (справа) квантовых

систем.
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1.1.4 Матрица переноса Паули

Часто для удобства используют различные представления оператора Λ [65].

Одним из них является матрица переноса Паули (Pauli transfer matrix, PTM)

[66]. Для этого воспользуемся представлением Паули-Лиувилля, в котором мат-

рица плотности n-кубитной системы записывается в виде вектора |ρ⟩⟩ длины

d2, элементами которого являются действительные коэффициенты αi:

ρ =
d2∑
i=1

αiPi, (1.19)

где операторы Pi образуют базис Паули {I,X, Y, Z}⊗n. Тогда действие кванто-

вого канала может быть описано следующей матрицей:

(RΛ)ij =
1

d
Tr{PiΛ(Pj)}, (1.20)

с действительными коэффициентами (RΛ)ij ∈ [−1, 1]. В таком формализме

квантовый канал реализуется как матричное умножение:

Λ(ρ) = RΛ|ρ⟩⟩. (1.21)

Описание данного представления квантового преобразования вынесено в от-

дельную главу, поскольку оно будет часто применяться в этой работе. В част-

ности, оно используется при экспериментальном исследовании двухкубитной

операции методом томографии квантового процесса, а также при моделирова-

нии эволюции матрицы плотности многокубитной системы в кодах коррекции

квантовых ошибок.

1.2 Квантовые вычисления на сверхпроводниковых си-

стемах

1.2.1 Физические основы сверхпроводниковых кубитов

Сверхпроводниковые кубиты представляют собой один из наиболее пер-

спективных подходов к реализации квантовых вычислений, так как они со-

четают возможности масштабирования с высокой степенью внешнего контроля
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над квантовыми состояниями. Идея использования сверхпроводниковых систем

для обработки квантовой информации возникла в конце XX века в связи с от-

крытием макроскопической квантовой когерентности в системах с переходами

Джозефсона. В 1985 году Э. Дж. Леггетт (A. J. Leggett) выдвинул гипотезу о

возможности квантового поведения в сверхпроводящих контурах, аналогично-

го поведению одиночных микроскопических частиц [67]. Позднее, в 1999 году,

группа Я. Накамуры (Y. Nakamura) реализовала первый сверхпроводниковый

кубит, известный как «ящик Куперовских пар», и продемонстрировала коге-

рентные колебания между двумя квантовыми состояниями [30]. Это событие

считается поворотной точкой в развитии сверхпроводниковых квантовых вы-

числений.

В основе сверхпроводникового кубита лежит колебательный LC-контур, со-

стоящий из индуктивности L и емкости C. В квантовом режиме электрический

заряд Q и магнитный поток Φ квантуются и являются канонически сопряжен-

ными переменными, аналогично координате и импульсу. Гамильтониан колеба-

тельного LC-контура имеет вид [68]:

H =
Q2

2C
+

Φ2

2L
, (1.22)

где первый член описывает электростатическую энергию конденсатора, а вто-

рой – энергию магнитного поля в индуктивности. Однако спектр такой системы

является эквидистантным, что существенно затрудняет возможность избира-

тельного управления выбранными переходами.

Чтобы нарушить гармоничность спектра и обеспечить селективное управ-

ление переходами, в колебательный контур добавляют нелинейный элемент –

джозефсоновский переход, состоящий из двух сверхпроводящих контактов, раз-

деленных тонким диэлектрическим слоем. Его нелинейная индуктивность из-

меняет гамильтониан следующим образом:

H =
Q2

2C
− EJ cos

(
2πΦ

Φ0

)
, (1.23)

где EJ – энергия джозефсоновского перехода, а Φ0 – квант магнитного потока.

Наличие джозефсоновского перехода приводит к формированию ангармонично-
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го спектра, что делает возможным точное управление выбранными переходами

квантовой системы.

1.2.2 Кубит-флаксониум

Благодаря вариативности параметров и различному взаимному расположе-

нию элементов электрической цепи было предложено множество разнообразных

типов кубитов, обладающих уникальными свойствами. Именно из-за возмож-

ности проектировать системы с практически любым заранее заданным энерге-

тическим спектром сверхпроводниковые кубиты иногда называют искусствен-

ными атомами. Среди множества известных типов кубитов наибольшее рас-

пространение в современных квантовых вычислениях получили трансмоны и

флаксониумы, которые рассматриваются в данной работе.

Кубит-трансмон, предложенный и реализованный группой Йенса Коха (Jens

Koch) в 2007 году [33], стал важным шагом в развитии сверхпроводниковых

квантовых вычислений. Его ключевая особенность – высокое соотношение джо-

зефсоновской энергии к зарядовой EJ/EC , что значительно снижает чувстви-

тельность к зарядовому шуму и позволяет существенно увеличить время ко-

герентности по сравнению с более ранними типами кубитов. Благодаря этой

особенности, а также относительно простой технологии изготовления, трансмон

стал наиболее широко используемой архитектурой среди сверхпроводниковых

кубитов [69]. Он лежит в основе многокубитных квантовых процессоров, разра-

батываемых ведущими компаниями, такими как IBM [70] и Google [71], а также

научными коллективами Китая и Швейцарии.

Для создания универсального квантового процессора, устойчивого к ошиб-

кам, необходимо дальнейшее совершенствование используемых кубитов, в част-

ности, повышение точности операций и увеличение времен когерентности. Точ-

ность логических операций на трансмонах ограничена их низким ангармониз-

мом (порядка 100 МГц). Кроме того, времена когерентности трансмонов опре-

деляются не только диэлектрическими потерями в подложке, но и потерями

на границах металл–подложка и металл–воздух [72,73], что требует изменения
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Рисунок 1.3: Сравнение энергетических спектров и формы зависимости

потенциальной энергии от фазы для гармонического осциллятора, трансмона

и флаксониума в нуле и половине кванта магнитного потока.

технологии производства чипов. Эти ограничения стимулируют поиск альтер-

нативных типов кубитов.

Одной из наиболее перспективных альтернатив трансмону является кубит-

флаксониум [35], обладающий высокой устойчивостью к потоковому шуму, дли-

тельными временами когерентности [74] и значительным ангармонизмом, до-

стигающим нескольких гигагерц. Кубит-флаксониум представляет собой джо-

зефсоновский контакт, шунтированный емкостью и большой кинетической ин-

дуктивностью. Такая индуктивность может быть реализована, например, с ис-

пользованием массива джозефсоновских контактов [35,75]. В результате форми-

рования сверхпроводящего контура кубит становится восприимчивым к внеш-

нему магнитному полю, что, в свою очередь, существенно влияет на его спек-

тральные характеристики.

Важной особенностью кубита-флаксониума является сильная зависимость

частоты основного перехода и ангармонизма от внешнего магнитного потока.

В его основной рабочей точке, соответствующей половине кванта магнитного

потока, частота кубита обычно составляет несколько сотен мегагерц, а ангар-

монизм достигает нескольких гигагерц. Большой ангармонизм снимает ограни-

чение на скорость выполнения операций, что позволяет выполнять на флаксо-

ниумах сверхбыстрые микроволновые однокубитные операции с высокой точ-
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ностью [48, 76]. Сравнение характерных энергетических спектров и формы за-

висимости потенциальной энергии от фазы для гармонического осциллятора,

трансмона и флаксониума в нуле и половине кванта магнитного потока приведе-

но на рисунке 1.3. В нулевом магнитном поле спектр флаксониума напоминает

слабоангармоничный квантовый осциллятор, его частота составляет несколь-

ко гигагерц, а поведение близко к поведению кубита-трансмона. Это свойство

играет ключевую роль в реализации микроволновых двухкубитных операций,

рассматриваемых в данной работе.

Благодаря уникальным характеристикам, таким как повышенная устойчи-

вость к шумам и высокая точность операций, флаксониум сегодня считается

одним из наиболее перспективных кандидатов для создания масштабируемых

квантовых вычислительных систем. Именно на флаксониумах были продемон-

стрированы рекордные точности как однокубитных (99.998%) [48], так и двухку-

битных операций (99.94%) [49]. Разработка и совершенствование этой топологии

остаются ключевым направлением исследований в области сверхпроводниковых

квантовых вычислений.

1.2.3 Двухкубитные операции на флаксониумах: современные до-

стижения

Высокие времена когерентности и значительный ангармонизм делают флак-

сониумы перспективными кандидатами для реализации высокоточных двухку-

битных операций, необходимых для масштабируемых квантовых процессоров.

В этом параграфе представлен краткий обзор ключевых достижений в области

реализации двухкубитных операций с использованием кубитов-флаксониумов

на основе ряда примечательных исследований последних лет.

В 2021 году группа В. Манучаряна предложила и экспериментально реали-

зовала быструю двухкубитную операцию на емкостно связанных низкочастот-

ных кубитах-флаксониумах с частотами 72.3 МГц и 136.3 МГц соответственно.

Операция CZ была выполнена с помощью микроволнового импульса на часто-

тах переходов |10⟩ − |20⟩ и |11⟩ − |21⟩. Благодаря уникальным спектральным
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свойствам низкочастотных флаксониумов удалось достичь точности 99.2% [77].

В 2022 году коллектив под руководством Ч. Денга представил двухкубит-

ный квантовый процессор на основе флаксониумов с высокой когерентностью,

индивидуальной адресацией и быстрыми операциями. Были продемонстриро-

ваны операции с высокой точностью: 99.97% для однокубитных и 99.72% для

двухкубитных гейтов. Эти результаты показали конкурентоспособность флак-

сониума по сравнению с трансмоном и подтвердили его перспективность для

создания масштабируемых и устойчивых к ошибкам квантовых систем [78].

В 2022 году в группе А. Устинова предложили новый подход к реализации

двухкубитных операций на флаксониумах с использованием перестраиваемого

соединительного элемента, управляемого внешним магнитным потоком, роль

которого также выполнял кубит-флаксониум. Соединительный элемент обеспе-

чил подавление нежелательных статических ZZ- и XX-взаимодействий между

кубитами, а возможность его потоковой перестройки использовалась для акти-

вации полезного взаимодействия между кубитами и выполнения двухкубитных

операций. Достигнутая точность fSim и CZ гейтов составила 99.55% и 99.23%

соответственно [76,79].

В 2023 году группа У. Оливера предложила гибридную архитектуру про-

цессора, где флаксониумы играют роль вычислительных кубитов, а трансмон

— соединительного элемента. Сильная связь между кубитами и соединитель-

ным элементом позволила практически полностью подавить нежелательное ZZ-

взаимодействие, что привело к значительному обособлению частот переходов

между уровнями вычислительного и невычислительного подпространств. Это

позволило реализовать микроволновые операции на трёх разных переходах:

|101⟩ − |111⟩, |101⟩ − |201⟩, |101⟩ − |102⟩ (на первой и третьй позиции ин-

дексов находятся состояния флаксониумов, а на второй позиции — состояния

связующего кубита-трансмона), и достичь точности CZ операций в диапазоне

(99.85− 99.92)% [45].

В 2023 году группа ученых под руководством Й. Коха и Д. Шустера спроек-

тировала перестраиваемый соединительный элемент, индуктивно связывающий

два вычислительных кубита-флаксониума. Такая связь обеспечила низкое ZZ-
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взаимодействие (< 3 кГц) и перестраиваемое XX-взаимодействие в диапазоне

от −35 до 75 МГц, что позволило реализовать операции
√
bSWAP с точностью

99.91% и
√
iSWAP с точностью 99.72%. Эти результаты свидетельствуют о раз-

нообразии и эффективности использования перестраиваемых соединительных

элементов [80,81].

В 2024 году группа В. Манучаряна продемонстрировала CNOT гейт между

двумя индуктивно связанными друг с другом флаксониумами с использовани-

ем избирательного затемнения перехода. Этот метод позволил достичь точности

операции 99.94%. Примечательно, что точность превышала 99.9% в течение 24

дней без перекалибровки, что подчеркивает стабильность и надежность пред-

лагаемого метода [49,82].

Приведенные выше исследования — лишь часть работ, направленных на ис-

пользование флаксониумов в квантовых вычислениях. Стоит отметить предла-

гаемую группой И. Сиддики масштабируемую архитектуру квантового процес-

сора на флаксониумах [83], а также управляемую связь между флаксониумами

посредством резонатора, предложенную нидерландским коллективом [84], и до-

стижения немецких и китайских исследователей [40,85]. Высокий уровень этих

работ демонстрирует значительный интерес к теме, что в свою очередь подчер-

кивает потенциал кубита-флаксониума для квантовых вычислений и мотива-

цию настоящей диссертации.

1.3 Коды коррекции квантовых ошибок

1.3.1 Постановка задачи

Шум и случайные ошибки возникают в любых реальных физических устрой-

ствах, как квантовых, так и классических. В классической теории информации

разработано множество различных кодов коррекции ошибок, которые позволя-

ют обнаруживать и исправлять ошибки в классических битах. Для лучшего

понимания рассмотрим эти методы на примере кода повторений: одного из са-

мых простых и интуитивных кодов коррекции ошибок в классической теории

информации. Его основная идея заключается в многократном копировании ин-
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формационного бита для повышения надежности хранения данных.

Пусть классический бит с вероятностью p изменяет состояние на противо-

положное. Чтобы увеличить вероятность сохранения исходного значения, этот

бит копируется несколько раз, например, трижды, образуя кодовое слово из

трёх бит. Так, если исходный бит равен 0, то кодовое слово будет 000, а если 1

— то 111. При передаче или хранении данных каждый бит может перевернуться

с вероятностью p. Таким образом, код повторений защищает информацию от

произвольной однобитовой ошибки. Декодирование в этом случае осуществля-

ется по принципу большинства: принимается то значение, которое встречается

чаще (например, если получено 010, то решается, что исходный бит был 0). Ве-

роятность логической ошибки Pe складывается из вероятности переворота двух

битов, равной 3p2(1− p), и вероятности переворота всех трёх битов, равной p3,

и в итоге определяется выражением

Pe = 3p2(1− p) + p3 = 3p2 − 2p3. (1.24)

Если p ≪ 1, то вероятность логической ошибки после применения кода

повторений оказывается значительно меньше начальной вероятности ошибки.

Более того, при копировании одного бита логической информации на пять фи-

зических битов вместо трёх код сможет защищать информацию от ошибок на

двух битах, а вероятность ошибки Pe станет пропорциональной p3, что повы-

шает эффективность эффективность защиты от ошибок, как показано на ри-

сунке 1.4.

Основным недостатком кода повторений является его значительная избы-

точность: для хранения или передачи закодированного массива данных требу-

ется в разы большее количество физических битов, чем логических. Однако его

простота и наглядность делают его полезным примером при введении в теорию

коррекции квантовых ошибок. Несмотря на простоту, основная идея остаётся

неизменной: добавление избыточной информации позволяет обнаруживать и

исправлять ошибки.

Идея исправления ошибок в квантовой информатике была заимствована из

области передачи классических данных. Однако специфика квантовой физики
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Рисунок 1.4: Зависимость вероятности логической ошибки от вероятности

ошибки на одном бите p в случаях когда нет коррекции ошибок, используется

код повторений на 3-х кубитах и код повторений на 5-ти кубитах.

создаёт ряд сложностей, которые не позволяют напрямую использовать методы

классической теории ошибок:

1. Квантовую информацию невозможно копировать (теорема о запрете кло-

нирования [86]), что исключает возможность создания резервного дубли-

рующего состояния для проверки.

2. Квантовые ошибки носят непрерывный характер, и их точное определение

требует бесконечной точности и неограниченных физических ресурсов.

3. Квантовые ошибки имеют различные типы, в отличие от классических,

где бит может изменить своё состояние лишь одним способом.

4. Квантовая информация теряется при считывании: измерение квантового

состояния обычно приводит к его проецированию на определённое соб-

ственное значение, что делает невозможным восстановление исходного со-

стояния.

Несмотря на эти сложности, были разработаны методы для эффективного

устранения квантовых ошибок. Одним из первых учёных, предложивших кон-
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Рисунок 1.5: Квантовая схема кода повторений, состоящая из трех

информационных кубитов, хранящих распределенную волновую функцию

логического состояния, и двух вспомогательных кубитов, используемых для

обнаружения X ошибок.

цепцию квантовой коррекции ошибок, стал Питер Шор, который в 1995 году

опубликовал работу [87], описывающую методы эффективной коррекции кван-

товых ошибок. Во-первых, оказалось возможным дискретизировать квантовые

ошибки, описывая их наборами операторов Паули, что превращает их из ана-

логовых в цифровые и позволяет эффективно их обнаруживать и исправлять.

Во-вторых, квантовая информация не копируется на большее число физических

кубитов, а кодируется в запутанном состоянии системы, что позволяет обойти

запрет на клонирование квантовых состояний. Наконец, в-третьих, в таком под-

ходе измеряются только вспомогательные кубиты, которые несут информацию

лишь о произошедших в системе ошибках (а точнее — о чётности произведе-

ния проекций выбранных сочетаний физических кубитов на оси x, y, z), и тем

самым при измерении не разрушается квантовая информация.

1.3.2 Квантовый код повторений

Квантовый код повторений на трёх кубитах представляет собой простейший

пример кода коррекции квантовых ошибок. Его основная идея заключается в

кодировании одного логического кубита в запутанное состояние трёх физиче-
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ских кубитов:

|ψ⟩ = α |0⟩+ β |1⟩ → α |0⟩L + β |1⟩L = α |000⟩+ β |111⟩ , (1.25)

где логические состояния определены как:

|0⟩L = |000⟩ , |1⟩L = |111⟩ . (1.26)

Суперпозиция состояний |0⟩ и |1⟩ кодируется в соответствующую суперпозицию

логических состояний |0⟩L и |1⟩L. Важно отметить, что данное кодирование не

эквивалентно копированию волновой функции:

|ψ⟩L = α |000⟩+ β |111⟩ ̸= (α |0⟩+ β |1⟩)⊗3 . (1.27)

Приготовить такое состояние можно, например, с помощью двух операций CNOT,

как показано на рисунке 1.5 в первой части квантовой схемы.

Процесс выявления ошибок на физических кубитах, хранящих логическое

состояние, требует использования вспомогательных кубитов. Эти кубиты за-

путываются с основными таким образом, чтобы их измерения не разрушали

логическое состояние. Эти кубиты запутываются с основными таким образом,

чтобы их измерения не изменяли логическое состояние системы в случае отсут-

ствия ошибок. Анализируя результаты измерений вспомогательных кубитов,

можно определить факт и тип произошедшей ошибки, после чего применить

соответствующую коррекцию. Таким образом, в отсутствие ошибок результат

измерения вспомогательных кубитов равен 00, а это значит, что схема не из-

меняет логическое состояние. Если, например, на втором физическом кубите

произойдет X ошибка, то она распространится по квантовой схеме и приведет

к перевороту обоих вспомогательных кубитов. В случае ошибки на первом или

третьем кубите результат измерений будет 10 и 01 соответственно. Получается,

что наблюдатель, опираясь на полученные данные, может определить располо-

жение ошибки и выполнить соответствующую операцию коррекции.

Другим словами, описанную выше процедуру можно интерпретировать так:

вспомогательные кубиты служат для измерения четности произведений опера-

торов Z1Z2 и Z2Z3, где Zi — оператор Паули Z, действующий на i-й кубит.
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Поскольку X ошибка, произошедшая на любом из трёх кубитов, антикомму-

тирует с хотя бы с один из операторов Z1Z2 и Z2Z3, в предположении о том,

что число ошибок не превышает единицу, результаты измерений этих операто-

ров позволяют однозначно определить, произошла ли ошибка, и если да, та на

каком из кубитов.

Как уже говорилось ранее, квантовые ошибки являются непрерывными. На-

пример, на k-м физическом кубите может произойти не X ошибка, а поворот

вокруг оси x на некоторый угол φ, описываемый унитарной матрицей

RX (φ) =

(
cos
(
φ
2

)
−i sin

(
φ
2

)
−i sin

(
φ
2

)
cos
(
φ
2

) ) . (1.28)

В этом случае описанный метод также позволяет определить и исправить ошиб-

ку. Если перед измерением вспомогательных кубитов волновая функция всей

системы |ψ⟩ = α |000⟩+ β |111⟩ находится в суперпозиции двух состояний:

|ψ⟩ −→ RX (φ) |ψ⟩ = cos
(φ
2

)
|ψ⟩ − i sin

(φ
2

)
Xk |ψ⟩ . (1.29)

После добавления в систему двух вспомогательных кубитов и выполнения

четырёх операций CNOT, как показано на схеме 1.5, перед измерением получа-

ем следующее состояние пятикубитной системы в зависимости от номера кубита

k: 
k = 1 : cos

(
φ
2

)
|ψ⟩ ⊗ |00⟩ − i sin

(
φ
2

)
X1 |ψ⟩ ⊗ |10⟩,

k = 2 : cos
(
φ
2

)
|ψ⟩ ⊗ |00⟩ − i sin

(
φ
2

)
X2 |ψ⟩ ⊗ |11⟩,

k = 3 : cos
(
φ
2

)
|ψ⟩ ⊗ |00⟩ − i sin

(
φ
2

)
X3 |ψ⟩ ⊗ |01⟩.

(1.30)

Здесь последние два индекса волновой функции отвечают состояниям вспомо-

гательных кубитов. После выполнения процедуры измерения с вероятностью

cos2
(
φ
2

)
может оказаться, что оба вспомогательных кубитам спроецировались

в основное состояние. Тогда состояние информационных кубитов описывается

корректной волновой функцией |ψ⟩, а ошибка исчезла. С вероятностью sin2
(
φ
2

)
после измерения вспомогательных кубитов волновая функция информацион-

ных кубитов стала равной Xk |ψ⟩ и содержит ошибку. По результатам измере-

ний вспомогательных кубитов, ошибка определяется с использованием таблицы
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Результат измерения Наиболее вероятная

вспомогательных кубитов ошибка

(синдром ошибки)

00 Нет

10 X1

11 X2

01 X3

Таблица 1.1: Таблица поиска для трёхкубитного кода повторений.

поиска 1.1. Таким образом, после описанной процедуры непрерывная ошибка

дискретизуется и в дальнейшем исправляется.

Для защиты от фазовых ошибок, описываемых вращением вокруг оси z,

применяется аналогичный код коррекции. Здесь, вместо измерения операторов

Z1Z2 и Z2Z3, проводится измерения операторовX1X2 иX2X3. Изменение базиса

можно произвести с помощью операций Адамара, действующих на физические

кубиты, как показано на рисунке 1.6.

Таким образом, квантовый код повторений на трёх кубитах демонстрирует

основные принципы коррекции квантовых ошибок, а для обнаружения оши-

бок вспомогательные кубиты используются для измерения чётности произведе-

ния проекций информационных. Комбинируя произведения операторов Паули,

можно добиться того, чтобы код исправлял произвольные X, Z и Y ошибки (Y

ошибка отвечает событию одновременного детектирования как X, так Z ошиб-

ки). А так как любая непрерывная ошибка может быть разложена в базисе

Паули, то такой код может справляться с ними. Ниже принципы стабилизатор-

ных кодов коррекции будут изложены математически.

1.3.3 Формализм стабилизаторов

Стабилизаторные коды являются наиболее распространенным методом за-

щиты квантовой информации от ошибок. Эти коды используют математиче-

скую структуру группы Паули и стабилизаторов для обнаружения и исправ-
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Приготовление
состояния

Цикл коррекции Декодирование и
исправление ошибок

Рисунок 1.6: Квантовая схема кода повторений, состоящая из трех

информационных кубитов, хранящих распределенную волновую функцию

логического состояния, и двух вспомогательных кубитов. Благодаря смене

базиса, выполняемой с помощью операторов Адамара, схема позволяет

исправлять Z ошибки.

ления ошибок, тем самым обеспечивая надежную обработку квантовых дан-

ных [5,88].

Группа Паули Pn для n кубитов определяется как множество всевозмож-

ных тензорных произведений степени n однокубитных матриц Паули I, X, Y ,

Z с множителями ±1 и ±i [52]. Стабилизаторный код определяется как абеле-

ва подгруппа S группы Pn, называемая группой стабилизаторов, где каждый

элемент g ∈ S стабилизирует кодовое пространство C:

C(S) = {|ψ⟩ : g|ψ⟩ = |ψ⟩ ∀g ∈ S} . (1.31)

То есть действие стабилизаторов не изменяет состояние внутри кодового про-

странства. Из этой идеи следует, что множество стабилизаторов, во-первых,

образует группу: если операторы gi и gj стабилизируют |ψ⟩, то и их произ-

ведение также стабилизирует |ψ⟩, а во-вторых, эта группа является абелевой,

так как все элементы в ней коммутируют: если gi|ψ⟩ = |ψ⟩ и gj|ψ⟩ = |ψ⟩, то

(gigj − gjgi)|ψ⟩ = gigj|ψ⟩ − gjgi|ψ⟩ = 0⇒ [gi, gj] = 0.

Ошибки в системе удобно раскладывать на операторы Паули, которые могут

не коммутировать с некоторыми из стабилизаторов. Если ошибка E антиком-

мутирует с каким-либо стабилизатором g, то есть {E, g} = 0, то применение
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E к кодовому состоянию |ψ⟩ приводит к изменению знака соответствующего

стабилизатора: g(E|ψ⟩) = −E|ψ⟩. Это изменение знака свидетельствует о на-

личии ошибки и фиксируется при измерении стабилизатора. Данное свойство

антикоммутации позволяет эффективно обнаруживать ошибки, а совокупность

значений измерений всех стабилизаторов кода для некоторой ошибки называ-

ется ее синдромом.

Важным свойством кодов коррекции является возможность выполнения ло-

гических операций. Логические кубиты кодируются в кодовом пространстве C,
а логические операции соответствуют унитарным преобразованиям, сохраняю-

щим C. Эти операции описываются элементами нормализатора N (S) группы

стабилизаторов в Pn, определяемого как N (S) = {P ∈ Pn | Pg = gP, ∀g ∈ S}.
Логические операторы коммутируют со всеми стабилизаторами, благодаря че-

му они переводят одно кодовое состояние в другое, не изменяя стабилизаторы.

Множество логических операторов Z i, X i, Y i, действующих на i-й логический

кубит и рассматриваемых с точностью до элементов стабилизаторной группы,

образует группу, изоморфную группе Паули на k кубитах, где k соответствует

числу закодированных логических кубитов:

[Z i, Zj] = 0,

[X i, Xj] = 0,

[Z i, Xj] = 0 (i ̸= j),

{Z i, X i} = 0.

(1.32)

Стабилизаторный код часто характеризуется параметрами [n, k, d], где n —

число физических кубитов, k — число закодированных логических кубитов, а d

— дистанция кода, определяемая как минимальный вес (число нетривиальных

операторов в тензорном произведении) среди всех операторов из группы Pn,

переводящих одно кодовое состояние в другое. Дистанция d определяет спо-

собность кода корректировать ошибки, позволяя исправить до t = ⌊(d − 1)/2⌋
ошибок.

Стандартная схема стабилизаторного кода представлена на рисунке 1.7 и

включает следующие этапы:
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Рисунок 1.7: Принципиальная схема работы стабилизаторного кода коррекции

квантовых ошибок. Логический кубит образуется физическими кубитами двух

типов: информационными, которые хранят закодированную информацию, и

вспомогательными, которые запутываются с информационными в ходе

повторяющегося цикла коррекции и измеряют синдромы ошибок.

1. Кодирование. Начальные k логических кубитов и n− k дополнительных

кубитов (инициализированных в состоянии |0⟩) преобразуются в запутан-

ное состояние, принадлежащее кодовому пространству C.
2. Измерение синдромов. Вспомогательные кубиты запутываются с инфор-

мационными таким образом, чтобы можно было эффективно измерить

собственные значения генераторов стабилизаторов. Результаты измере-

ний (синдромы) указывают на наличие и характер ошибок.

3. Декодирование и исправление ошибок. На основе наблюдаемых синдро-

мов с помощью некоторого алгоритма декодирования определяется, какие
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ошибки могли произойти в системе, и выбирается процедура их исправ-

ления.

1.3.4 Пятикубитный код

Естественным вопросом, возникающим при изучении стабилизаторных ко-

дов, является определение минимального числа кубитов n, необходимых для

защиты k логических кубитов от воздействия t независимых однокубитных

ошибок. Ответ на эту задачу дает квантовый аналог границы Хэмминга, ко-

торый формулируется следующим образом [89]:

n− k ≥ 2(d− 1). (1.33)

Эта граница учитывает, что в квантовых системах ошибки могут быть не только

битовыми (X ошибки), но и фазовыми (Z) или комбинированными (Y ), поэтому

для исправления ошибки требуется не только обнаружить, на каком кубите она

произошла, но и определить её тип.

В случае кодирования одного логического кубита (k = 1) с возможностью

коррекции произвольной одиночной ошибки (t = 1, d = 3) из приведённого

соотношения (1.33) следует, что число кубитов данных должно удовлетворять

неравенству n ≥ 5. Такой пятикубитный код действительно существует и был

предложен Лафламмом в 1996 году [90]. Его стабилизаторы имеют следующий

вид:
g0 = ZXXZI,

g1 = IZXXZ,

g2 = ZIZXX,

g3 = XZIZX.

(1.34)

Логические операторы, действующие на кодируемый кубит, выражаются через

тензорные произведения операторов Паули:

X = X⊗5, Y = Y ⊗5, Z = Z⊗5. (1.35)

Эти операторы коммутируют со стабилизаторами, но не выражаются через них,



35

Информационные 
кубиты

Вспомогательные
кубиты

Извлечение синдромов

Рисунок 1.8: Схема пятикубитного кода.

что позволяет с их помощью корректно реализовывать логические операции на

логическом кубите.

Оригинальная схема реализации пятикубитного кода представлена на ри-

сунке 1.8. Она содержит 9 физических кубитов: 5 информационных, на кото-

рых хранится информация об одном логическом кубите, и 4 вспомогательных,

необходимых для измерения синдромов. Несмотря на относительно сложную

структуру, пятикубитный код занимает важное место в теории квантовой кор-

рекции ошибок, являясь минимальным по числу физических кубитов кодом,

способным исправлять произвольные одиночные ошибки.

1.3.5 Поверхностный код

В настоящее время одним из наиболее перспективных направлений приме-

нения на практике стабилизаторных кодов в масштабируемых квантовых си-

стемах являются поверхностные коды. Их теория была сформулирована А. Ки-

таевым в 1997 году [91–93]. Топологически код представляет собой двумерную

квадратную решётку, где узлы соответствуют физическим кубитам: информа-

ционным и вспомогательным, расположенным в шахматном порядке [94]. Каж-

дый вспомогательный кубит, за исключением тех, что находятся на границах ре-

шётки, измеряет стабилизаторы в виде произведений операторов Паули ZZZZ

или XXXX на четырёх соседних информационных кубитах, что необходимо

для обнаружения ошибок.
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Ключевым преимуществом поверхностных кодов является их масштабируе-

мость и локальность синдромов. Увеличение линейных размеров решётки при-

водит к экспоненциальному подавлению вероятности неисправленной ошибки

при сохранении локального характера взаимодействий. Например, код с рас-

стоянием d = 3, способный исправлять одну ошибку, требует 17 физических

кубитов, а код с d = 5 — уже 49 кубитов. При этом число кубитов в решёт-

ке растёт квадратично с расстоянием (n ∼ d2), но время выполнения цикла

коррекции остаётся постоянным. Это обусловлено тем, что каждый вспомога-

тельный кубит взаимодействует только с четырьмя ближайшими информаци-

онными кубитами.

Указанные свойства делают поверхностные коды основным кандидатом для

реализации отказоустойчивых квантовых вычислений в современных архитек-

турах, в первую очередь на сверхпроводниковых процессорах, где локальность

взаимодействий играет ключевую роль. Именно с использованием этого ко-

да было экспериментально продемонстрировано экспоненциальное подавление

ошибки при масштабировании кода [11], а также реализован логический кубит с

временем жизни, превышающим время жизни физических кубитов, на которых

он закодирован [16].

1.4 Выводы по главе

В данной главе изложены основные теоретические аспекты, необходимые

для последующих разделов работы. Рассмотрены базовые принципы квантовых

вычислений, включая математический формализм и основные операции над ку-

битами. Особое внимание уделено сверхпроводниковым кубитам как одному из

ключевых объектов исследования данной работы, а также представлен обзор

современных достижений в области двухкубитных операций с использовани-

ем кубитов-флаксониумов. Кроме того, описаны основы коррекции квантовых

ошибок, включая основные принципы кодирования информации, формализм

стабилизаторов и примеры наиболее значимых кодов. Таким образом, данная

глава формирует необходимую теоретическую основу для рассмотрения экспе-
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риментальной части работы, посвящённой разработке новых методов реализа-

ции двухкубитных операций, а также исследованию новых кодов коррекции

квантовых ошибок.
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2 Микроволновая двухкубитная операция CZ на

флаксониумах

Реализация высокоточных двухкубитных операций является приоритетной

задачей для прикладных квантовых вычислений. В данной главе рассматрива-

ется новый микроволновый метод реализации гейта CZ на кубитах-флаксониумах,

связанных через дополнительный кубит-флаксониум, частота которого зави-

сит от вычислительного состояния системы [95,96]. Такая дисперсионная зави-

симость частоты соединительного кубита позволяет управляемо накапливать

фазу непосредственно на выбранном вычислительном состоянии, фактически

сводя двухкубитную операцию к однокубитному гейту на соединительном ку-

бите.

Глава включает три раздела. В первом разделе изложена концепция микро-

волновой операции CZ, описаны её основные принципы и различные подходы

к реализации, а также представлены результаты численного исследования точ-

ности гейта с экспериментально полученными параметрами системы. Второй

раздел посвящён экспериментальной реализации гейта: рассматривается экспе-

риментальная схема, приводятся параметры используемого образца и методы

калибровки операции. Наконец, в третьем разделе проводится оценка точности

реализованной квантовой операции методами перекрестно-энтропийного тести-

рования и томографии квантового процесса, а также приведен анализ ошибок,

влияющих на точность выполненного гейта.

Предложенный метод открывает новые возможности для выполнения вы-

сокоточных двухкубитных операций на флаксониумных процессорах, сочетая

в себе простоту, скорость и низкий уровень шума благодаря тому, что все эле-

менты схемы остаются в своих оптимальных точках по магнитному потоку, так

называемых сладких точках, на протяжении всего гейта.
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2.1 Концепция микроволновой операции CZ

2.1.1 Зависимость частоты соединительного элемента от состояния

вычислительных кубитов

Рассмотрим систему, состоящую из двух кубитов-флаксониумов, емкостно

связанных друг с другом через элемент связи. В рабочей точке вычислитель-

ные кубиты расположены в точке вырождения по потоку 0.5Φ0. Элемент связи

также является кубитом-флаксониумом, его рабочее положение, соответствует

нулевому потоку в контуре кубита. Схематическое расположение кубитов по-

казано на рисунке 2.1(а). При заданном взаимном положении взаимодействие

между вычислительными кубитами выключено. Гамильтониан такой системы

записывается следующим образом:

Hsys =
∑

i=Q1,Q2,C

Hi +
∑

i,j∈{Q1,Q2,C}
i̸=j

gijninj, (2.1)

где gij — коэффициент связи, Hi — гамильтонианы соответствующих кубитов-

флаксониумов, выполняющих вычислительную (Q1,Q2) или связующую (C)

роль, а ni — зарядовые операторы соответствующего элемента.

В данной конфигурации частота перехода 0 − 1 соединительного элемента

зависит от состояния вычислительных кубитов. На рисунке 2.1(б) показаны ха-

рактерные частотные характеристики кубитов-флаксониумов, расположенных

в нуле и половине кванта магнитного потока. Числа, приведённые на графике,

получены экспериментально на образце, описанном далее в разделе 2.2.1; здесь

они приведены для наглядного понимания характерных масштабов. Отдельно

следует отметить, что частотная ось на рисунке имеет неравномерный масштаб.

Таким образом, для такой конфигурации типично, что частота перехода 0−1
соединительного флаксониума, находящегося в нуле магнитного потока, лежит

между частотами переходов 1− 2 и 0− 3 вычислительных флаксониумов. Так

как кубиты связаны емкостно, то в соответствии с теорией возмущений уров-

ни энергии испытывают взаимное отталкивание, вследствие чего переход 1− 2

смещает вверх частоту соединительного кубита, связанную с возбуждённым
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Рисунок 2.1: (а) Схематичное изображение двух вычислительных

кубитов-флаксониумов Q1,Q2, выставленных в половину кванта магнитного

потока, и емкостно связанных через элемент связи, который также

представляет собой кубит-флаксониум, однако расположенный в нуле

магнитного потока. (б) Диаграмма энергетических уровней кубитов.

Пунктирными стрелками показано взаимодействие между переходом 0− 1

соединительного элемента и переходами 1− 2 и 0− 3 вычислительных

кубитов. Это взаимодействие приводит к дисперсионному сдвигу частоты

перехода 0− 1 соединительного элемента в зависимости от состояния

вычислительной подсистемы, как показано в выделенной черным пунктиром

области синим (ω00), зеленым (ω01), оранжевым (ω10) и красным (ω11) цветами.
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состоянием вычислительного кубита, а переход 0 − 3 сдвигает вниз частоту

соединительного кубита, связанную с основным вычислительного кубита со-

стоянием. Таким образом, взаимодействие приводит к дисперсионному сдвигу

частоты соединительного кубита: частота его перехода 0− 1 зависит от того, в

каком состоянии находятся связанные с ним вычислительные кубиты. Именно

эта селективность частоты перехода соединительного элемента по состоянию

вычислительной подсистемы лежит в основе предлагаемого метода двухкубит-

ной операции.

2.1.2 Резонансная микроволновая двухкубитная операция

В данном параграфе коротко описан основной физический принцип выпол-

нения микроволновой операции. На рисунке 2.2(а) представлен спектр частоты

перехода 0 − 1 соединительного элемента в зависимости от состояния вычис-

лительных кубитов. Если на соединительный элемент подать внешний микро-

волновый импульс, вызывающий одну полную осцилляцию Раби на переходе,

связанном с вычислительным состоянием |11⟩, и не влияющий на остальные

переходы системы, то эффективно выполнится операция CZ.

Принцип работы такой операции аналогичен параметрической реализации

CZ гейта, основанной на переходе между состояниями |11⟩− |20⟩ вычислитель-

ных кубитов [97]. Однако в данном случае в качестве вспомогательного энерге-

тического уровня, выходящего за пределы вычислительного подпространства,

используется первый возбуждённый уровень соединительного элемента, что

позволяет обеспечить накопление условной фазы.

Действительно, рассмотрим двухуровневую подсистему, соответствующую

переходу |110⟩ − |111⟩ (первые два индекса отвечают за вычислительное состо-

яние, а последний за состояние связующего элемента), под действием внешнего

сигнала. В приближении вращающейся волны ее гамильтониан принимает вид:

H = ℏ

(
0 Ω(t)

Ω∗(t) ∆

)
. (2.2)

Здесь ∆ — отстройка, а Ω(t) — огибающая колебательного сигнала. Решение
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Рисунок 2.2: (а) Идея резонансной микроволновой операции. Зависимость

частоты перехода 0− 1 соединительного элемента от вычислительного

состояния системы. Микроволновый 2π-импульс вызывает одну осцилляцию

Раби соединительного элемента на переходе 0− 1, связанном с

вычислительным состоянием |11⟩, и накручивает на этом состоянии фазу π

относительно остальных вычислительных уровней системы (б) График

зависимости общей фазы, накапливаемой в двухуровневой подсистеме под

воздействием микроволнового 2π-импульса относительно других состояний

системы, от отстройки по частоте возбуждающего сигнала.

уравнения Шрёдингера для сигнала прямоугольной формы и начального усло-

вия ψ(0) = |0⟩ записывается как:

ψ(t) = e−
i∆t
2

(
i∆
ΩR

sin
(
ΩRt
2

)
+ cos

(
ΩRt
2

)
−2ig

ΩR
sin
(
ΩRt
2

) )
, (2.3)

где ΩR =
√
∆2 + 4Ω2 — обобщённая частота Раби.

Общая фаза, накопившаяся в рассматриваемой подсистеме по отношению к

остальным переходам всей системы, определяется выражением ∆ · t/2. График

зависимости этой фазы от отстройки сигнала по частоте показан на рисун-

ке 2.2(б). Видно, что в резонансе накопленная фаза равна π, что соответствует

CZ гейту. Более того, отстраивая сигнал по частоте от резонанса подобным об-

разом можно выполнить операцию CPhase с переменной управляемой фазой в
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широком диапазоне.

Главным ограничением рассматриваемой операции является то, что сигнал

не должен затрагивать оставшиеся переходы системы. Это означает, что сиг-

нал должен быть небольшой амплитуды, а значит большой длительности. Так

согласно численному расчету для полученных экспериментальных параметров

системы длительность микроволновой операции точности 99.9% должна состав-

лять порядка 300 нс. При этом не учитываются процессы затухания и дефа-

зировки системы. Чтобы сократить время операции целесообразно использо-

вать импульс с огибающей гауссовой формы, обладающий более узким фурье-

образом по сравнению с прямоугольным импульсом. Выполнив численную си-

муляцию уравнения Шредингера, взяв в качестве огибающей возбуждающего

сигнала функцию Гаусса, был получен двухкубитный гейт с точностью 99.9%,

имеющий длительность всего 104 нс.

2.1.3 Околорезонансная микроволновая двухкубитная операция

Прежде чем перейти к описанию околорезонансной микроволновой двух-

кубитной операции сформулируем два условия, характеризующие корректное

выполнение гейта CZ. Во-первых, после завершения выполнения операции на-

селённость соединительного элемента должна оказаться в основном состоянии,

так как это необходимо для корректных последующих операций. Вторым усло-

вием является эффективное накопление условной фазы θ равной π, которое,

строго говоря, записывается в виде:

θ = φ00 − φ10 − φ01 + φ11 = π + 2πk, k ∈ Z. (2.4)

Для упрощения рассуждений допустим, что частоты переходов 0 − 1 со-

единительного элемента, связанные с состояниями |01⟩ и |10⟩ вычислительных

кубитов равны: ω10 = ω01 = (ω11 + ω00)/2. В таком случае оба вышеупомяну-

тых условия можно выполнить точно, и операция CZ может быть эффективно

выполнена с помощью прямоугольного импульса на полусумме частот ω00 и ω10

как это показано на рисунке 2.3(a). При этом частота сигнала ωd = (ω10+ω00)/2,
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Рисунок 2.3: Околорезонансная микроволновая операция CZ. (а)

Схематическое изображение переходов 0− 1 соединительного элемента в

зависимости от вычислительного состояния системы. Микроволновый импульс

подается на полусумме частот соединительного элемента, связанного с

состояниями |00⟩ и |01⟩ вычислительных кубитов Q1, Q2 и возбуждает по

одной осцилляции Раби соединительного элемента на переходе 0− 1,

связанным с вычислительными состояниями |00⟩, |01⟩ и |10⟩, и две осцилляции

на переходе, связанном с состоянием |11⟩, как показано на графике на панели

(б). Накопление фазы со временем изображено на нижнем графике, а

эффективная фаза двухкубитной операции показана пунктирной линией.

амплитуда Ω =
√

5
12(ω10−ω00) и длительность τ =

√
6π

ω10−ω00
полностью определя-

ются частотными характеристиками системы. Такой сигнал обеспечивает одну

осцилляцию Раби для вычислительных состояний |00⟩, |01⟩ и |10⟩ и две осцил-

ляции для состояния |11⟩. При этом полностью выполняется соотношение (2.4)

для накопленных на каждом из четырех состояний фаз. Временная эволюция

населённостей четырёх вычислительных состояний и накопленных на них фаз

под действием описанного сигнала представлена на рисунке 2.3(б).

Экспериментально частоты ω10 и ω01 могут отличаться. Было выполнено
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Рисунок 2.4: Численное моделирование околорезонансной двухкубитной

операции. (а) Зависимость точности F гейта CZ, от разности частот

соединительного элемента ω10, ω01 и ω11, ω00. Оранжевый треугольник

соответствует идеальному случаю ω10 = ω01, при этом траектории системы

показаны на рисунке 2.3(б). Бирюзовая звезда соответствует частотам,

наблюдаемым в эксперименте (см. Таблицу 2.2). На вставке справа показана

эволюция населенностей и фаз четырех вычислительных состояний. Серая

линия отображает эффективную фазу CZ гейта, вычисленную по формуле

θ = φ00 − φ10 − φ01 + φ11. Для полученных в эксперименте частот точность

исследуемой операции CZ составила 0.992. (б) Средняя населенность

log10(1− p) и эффективная фаза θ гейта CZ в зависимости от разности частот

переходов соединительного элемента.
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численное моделирование двухкубитной операции в системе при различных зна-

чениях разности частот |ω11 − ω00| и |ω10 − ω01| под действием управляющего

сигнала с частотой ωd = ω11+3ω00

4 , амплитудой Ω =
√
5

4
√
3
(ω11 − ω00) и длительно-

стью τ = 2
√
6π

ω11−ω00
. На рисунке 2.4(а) показана полученная точность двухкубитной

операции в зависимости от выбранных частотных параметров. Оранжевым тре-

угольником выделена точка, соответствующая идеальному случаю с точностью

операции 1. Траектории населенности и фазы каждого состояния показаны на

рисунке 2.3(б). Бирюзовая звезда на графике указывает точку, отвечающую

экспериментальным данным, соответствующие траектории населенностей и фаз

каждого вычислительного состояния представлены на вставке справа. Точность

операции CZ при экспериментальных частотах составила 0.992, а длительность

— всего 43 нс.

Кроме того на рисунке 2.4(б) показаны средняя населенность четырёх на-

чальных состояний и накопленная фаза θ, рассчитанная для вычислительных

состояний |000⟩, |100⟩, |010⟩, |110⟩. Эти данные позволяют оценить ошибку утеч-

ки из вычислительного подпространства (по окончании операции соединитель-

ный элемент остается возбужденным — первое условие выполнения двухкубит-

ной операции) и фазовую ошибку (условие (2.4) не выполняется).

2.2 Экспериментальная реализация

2.2.1 Описание двухкубитного образца

Исследуемый экспериментальный образец был первоначально разработан

для демонстрации двухкубитного взаимодействия между кубитами-флаксони-

умами с использованием перестраиваемой связи [79]. В рамках этого проекта

было одновременно изготовлено несколько образцов в одном производственном

цикле. На одном из них в 2021 году была успешно реализована изначальная

концепция, и продемонстрирован двухкубитный CZ-гейт с точностью 99.22%

и длительностью 183 нс [76]. На другом образце впоследствии был поставлен

новый эксперимент, который описывается в рамках данной диссертационной

работы.
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Параметр Кубит Q1 Кубит Q2 Элемент связи C

EC (ГГц) 0.55 0.55 0.584

EL (ГГц) 0.7507 0.7507 0.817

EJ (ГГц) 1.8 1.9 2.457

f01 (ГГц) 0.6696 0.6944 3.4098

T1 (мкс) 15.8 22.0 –

T2 (мкс) 4.5 5.8 –

ωr/2π (ГГц) 7.1699 7.3813 –

κr/2π (ГГц) 8.656 6.954 –

χr/2π (ГГц) 0.131 0.162 –

Таблица 2.1: Сводная таблица параметров исследуемого образца.

Чертеж двухкубитного образца был сделан Ильей Москаленко и Ильей Бе-

сединым. Изготовление осуществлялось сотрудниками технологического цен-

тра НОЦ ФМН при МГТУ им. Баумана Дмитрием Москалевым, Анастасией

Пищимовой, Никитой Смирновым и Евгением Зикий под руководством Ильи

Родионова.

Идея реализации двухкубитной операции через подачу микроволнового воз-

буждения на соединительный элемент возникла в 2022 году. Было решено ис-

пользовать уже существующий образец, параметры которого оказались подхо-

дящими для данной реализации. Поэтому в этой диссертации не будет деталь-

ного описания архитектуры и технологии изготовления квантового процессора;

акцент будет сделан на характеристиках, важных для обсуждения микровол-

нового гейта.

Исследуемый двухкубитный квантовый процессор изображен на рисунке 2.5.

Он состоит из трех емкостно связанных кубитов-флаксониумов, два из которых

являются вычислительными кубитами (Q1, Q2), а третий используется в каче-

стве соединительного элемента (C). Вычислительные кубиты Q1 и Q2 емкостно

связаны с индивидуальными считывающими резонаторами R1 и R2, которые в

свою очередь соединены со считывающей линей. Оба кубита емкостно связаны
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Рисунок 2.5: Изображение двухкубитного квантового устройства на основе

кубитов-флаксониумов, полученное методом сканирующей электронной

микроскопии. Вычислительные кубиты Q1 и Q2 емкостно связаны с

индивидуальными считывающими резонаторами R1 и R2, которые, в свою

очередь, подключены к считывающей линии. Оба кубита также емкостно

связаны с центральным кубитом-флаксониумом C, который выполняет роль

соединительного элемента. Его увеличенное изображение показано в верхнем

левом углу. Каждый флаксониум имеет индивидуальную линию управления

потока.

с соединительным кубитом (C), увеличенное изображение которого приведено

в левом верхнем углу рисунка 2.5.

С использованием данных, полученных в ходе анализа другого образца,

определяются значения параметров EC , EL, EJ вычислительных кубитов и со-

единительного элемента. Параметры устройства представлены в таблице 2.1.

Приведены основные частоты переходов f01 для каждого элемента, а также

времена когерентности, измеренные с помощью стандартных экспериментов по

затуханию и Рамзи, частоты считывающих резонаторов и соответствующие зна-

чения дисперсионного сдвига χr и коэффициента затухания κr. [61]
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В исходном положении вычислительные кубиты находятся в точке вырож-

дения по потоку, соответствующей половине кванта магнитного потока, в то

время как соединительный кубит расположен в нуле по потоку. В рабочей точ-

ке частоты вычислительных кубитов составляют 669,6 МГц и 694,4 МГц, тогда

как частота соединительного элемента примерно равна 3,4 ГГц. При таком вза-

имном расположении остаточные эффективные ZZ- и XX-взаимодействия меж-

ду вычислительными кубитами являются слабыми и составляют -10 кГц и 500

кГц соответственно.

Сильное поперечное взаимодействие между вычислительными флаксониу-

мами и соединительным кубитом приводит к дисперсионному изменению частот

всех элементов. В частности, наблюдается гибридизация первого возбужден-

ного состояния соединительного элемента с высокоэнергетическими уровнями

флаксониумов. Схематично итоговый спектр перехода 0 − 1 соединительного

элемента в зависимости от состояния вычислительных кубитов представлен на

рисунке 2.1.

Эффективный гамильтониан такой системы, учитывающий первые два энер-

гетических уровня каждого кубита, в присутствии микроволнового возмущения

на частоте близкой к переходу между основным и возбужденным состояниями

связующего кубита может быть записан следующим образом:
H
ℏ

= −
∑

i=1,2,c

ωi

2
σzi −

∑
i=1,2

ζic
4
σziσzc + Ωσxc cosωdt, (2.5)

где ωi/2π – эффективная частота i-го кубита, ζic — сила связи между вычис-

лительными кубитами и соединительным элементом, σxi и σzi — это операторы

Паули, действующие на двух нижних уровнях i-го флаксониума, а Ω — ампли-

туда возбуждающего сигнала на частоте ωd. Нижними индексами 1, 2 обозна-

чены переменные, относящиеся к кубитам, а индексом c – к соединительному

элементу.

2.2.2 Экспериментальная установка

Схема экспериментальной установки представлена на рисунке 2.6. Экспери-

мент проводился в криостате растворения BlueFors LD-250 с базовой темпера-
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Рисунок 2.6: Схема экспериментальной установки.
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турой 10 мК. Чип был подключен к управляющей системе с помощью шести

линий: линии считывания, двух линий возбуждения и управления потоком (для

контроля однокубитных вращений), двух линий, соединенных со ступенью 10

мК и заканчивающихся нагрузкой 50 Ом, используемой для инициализации

кубитов, а также линии возбуждения и управления потоком соединительного

элемента.

Генерация импульсов и управление потоком на вычислительных кубитах

выполняется с помощью генератора сигналов произвольной формы Zurich In-

struments HDAWG8. Для повышения частоты управляющего микроволнового

сигнала на элементе связи и считывающих импульсов использовался квадра-

турный смеситель Marki IQ0318L. После отражения считываемый микровол-

новый сигнал обрабатывается специально разработанным аналого-цифровым

преобразователем для импульсных измерений или векторным анализатором це-

пей R&S ZVB20 для спектроскопии. Для калибровки смесителей используется

спектральный анализатор Agilent N9030A.

Микроволновые аттенюаторы применяются для подавления теплового и при-

борного шума от генераторов сигнала, работающих при комнатной температу-

ре. Линия считывания проходит через параметрический усилитель IMPA, за

которым установлен изолятор Quinstar CWJ1019KS414. Для накачки парамет-

рического усилителя используется генератор сигналов Agilent E8257D. Три цир-

кулятора Raditec RADC-4.0-8.0-Cryo и набор фильтров нижних и верхних ча-

стот, установленные после образца, предотвращают нежелательное воздействие

накачки IMPA и отраженного сигнала на элементы схемы. На ступени PT2

(3 К) криостата установлен усилитель на основе транзистора с высокой подвиж-

ностью электронов (HEMT) LNF-LNC0.3-14A. Линия на выходе из криостата

дополнительно усиливается с помощью двух усилителей Mini-Circuits ZVA-183-

S+.

В линиях управления кубитами используются фильтры нижних частот Mini

Circuits VLF-630+ в сочетании с порошковыми фильтрами с аттенюацией 15 дБ,

соответствующими частотам кубитов, а в линии управления соединительным

элементом применяется только порошковый фильтр.
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2.2.3 Базовые однокубтиные операции

В этом параграфе кратко изложены методы выполнения базовых одноку-

битных операций: инициализации, однокубитных гейтов и считывания [96]. Эти

процедуры не представляют собой новшество непосредственно данной работы,

но их описание необходимо для понимания оригинальных методов калибровки

и исследования предлагаемой двухкубитной операции.

Один из наиболее распространенных способов инициализации сверхпровод-

никовых кубитов является пассивная инициализация. Перед началом работы

с кубитом следует выдержать паузу, значительно превышающую время жиз-

ни T1 кубита, чтобы кубит релаксировал в термическое состояние. Такой метод

подходит для высокочастотных кубитов, у которых частота перехода 0−1 соот-

ветствует температуре в несколько кельвин, а их время релаксации сопоставимо

с длительностью одиночного эксперимента.

Для низкочастотных кубитов, таких как флаксониумы, пассивная инициа-

лизация оказывается неэффективной. В рабочей точке низкая частота соответ-

ствует температуре около 40 мК (ℏω01 ∼ kBT ), что лишь ненамного превышает

температуру окружения. В таких условиях равновесное термализированное со-

стояние обладает сравнительно большой заселенностью и не может рассматри-

ваться как чистое. Таким образом, ожидание релаксации кубита до теплового

равновесия с окружением оказывается недостаточным для качественной ини-

циализации.

Используемый в рассматриваемом эксперименте механизм инициализации

основан на применении быстроперестраиваемых потоковых импульсов, подава-

емых в линию контроля потока с помощью генератора импульсов произволь-

ной формы. Для этого каждый кубит помимо индивидуальной линии контроля

обладает емкостно связанной антенной – дополнительной линией, заканчиваю-

щейся нагрузкой 50 Ω, релаксация в которую описывается золотым правилом

Ферми и пропорциональна частоте кубита и квадрату матричного элемента

зарядового оператора |⟨0|n̂|1⟩|2. Характерные для кубита-флаксониума зависи-

мости частоты и зарядового элемента от потока приведены на рисунке 2.7(а,
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Рисунок 2.7: Механизм инициализации флаксониума. Характерная для

кубитов-флаксониумов зависимость (а) частоты перехода 0− 1 и (б)

матричного элемента зарядового оператора |⟨0|n̂|1⟩|2 от внешнего магнитного

потока. (в) Вид инициализирующего импульса, подаваемого на

кубит-флаксониум.
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б). Поэтому для инициализации состояния можно перестроить частоту куби-

та в гигагерцовый диапазон, где тепловой населенностью можно пренебречь,

а скорость релаксации существенно увеличена. Таким образом, для пассивной

инициализации кубитов могут быть использованы быстрые адиабатические им-

пульсы, которые переводят кубит из точки вырождения в верхнюю рабочую

точку, как показано на рисунке 2.7(в).

Базовым однокубитным гейтом является вращение на угол π/2 вокруг вы-

бранной оси в экваториальной плоскости сферы Блоха, реализуемое путем по-

дачи гауссового импульса на частоте перехода 0 − 1 соответствующего кубита

длительностью 13.3 нс. Импульсы возбуждения подаются через индивидуаль-

ную потоковую линию управления кубитом. Из-за большой амплитуды этих

импульсов мы применяем компенсацию фазовой ошибки виртуальным враще-

нием вокруг оси z после каждого импульса π/2 [61]. С помощью произвольных

вращений вокруг оси z и π/2 импульса можно выполнить произвольную одно-

кубитную операцию [52].

Дисперсионное считывание кубитов-флаксониумов осуществляется с исполь-

зованием индивидуальных планарных резонаторов [31, 32]. Точности сичтыва-

ния для используемого обрацза равны 0.67 и 0.62 для первого и второго кубитов

соответственно. Такие относительно низкие точности считывания объясняют-

ся слабой силой связи между кубитами и считывающими резонаторами, что

является врожденной особенностью схемы.

2.2.4 Метод считывания соединительного элемента

Перед тем как перейти непосредственно к реализации гейта CZ, важно опи-

сать метод считывания состояний соединительного элемента. В отличие от вы-

числительных кубитов, соединительный кубит не имеет индивидуального ре-

зонатора для считывания, что делает эту задачу более сложной. Для решения

этой проблемы мы используем тот факт, что частота вычислительных кубитов

зависит от состояния соединительного элемента. По сути, это то же эффект,

который используется для реализации микроволновой двухкубитной операции.
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Рисунок 2.8: Динамики вычислительного кубита Q1 под действием импульса,

откалиброванного при невозбужденном соединительном элементе, для двух

различных состояниях соединительного элемента: основного (синяя кривая) и

возбужденного (оранжевая кривая).

Действительно, сильное взаимодействие между соединительным элементом

и вычислительным кубитом приводит к значительному дисперсионному сме-

щению частоты кубита, обусловленному состоянием соединительного элемента,

которое, согласно численным расчетам, составляет порядка 26 МГц. Это означа-

ет, что сигнал, настроенный на частоту кубита, когда соединительный элемент

находится в основном состоянии, будет по-разному воздействовать на динамику

кубита в зависимости от состояния соединительного элемента. Особенно замет-

но это различие при использовании сигналов с низкой амплитудой.

В качестве такого импульса был выбран π-импульс гауссовой формы с дли-

тельностью 120 нс. На рисунке 2.8 представлено численное моделирование ди-

намики вычислительного кубита под действием этого импульса при двух со-

стояниях соединительного элемента: основном (синяя кривая) и возбужденном

(оранжевая кривая). Как видно, длинный импульс практически не влияет на

кубит, когда соединительный элемент возбужден, в то время как для невозбуж-

денного соединительного элемента он действует как гейт X.
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Таким образом, для считывания состояния соединительного элемента на

первый вычислительный кубит подавался длинный π-импульс, и если населен-

ность кубита под его воздействием не изменялась, то это означает, что соеди-

нительный элемент возбужден.

2.2.5 Измерение частотных характеристик соединительного элемен-

та

Калибровка гейта CZ начинается с определения частот переходов ωmn со-

единительного элемента для четырех различных состояний вычислительных

кубитов |mn⟩ ∈ {|00⟩, |01⟩, |10⟩, |11⟩}. Для этого используется измерительный

протокол, представленный на рисунке 2.9. Сначала кубиты подготавливаются

в одном из этих четырех состояний, затем на соединительный элемент подает-

ся возбуждающий импульс с варьируемой амплитудой и длительностью. Перед

считыванием состояния первого вычислительного кубита выполняется опера-

ция X длительностью 120 нс, позволяющая определить состояние соединитель-

ного элемента.

Зависимость населенности считываемого кубита от начального состояния

вычислительных кубитов и параметров возбуждающего сигнала, подаваемо-

го на соединительный элемент, представлена на рисунке 2.9. Частоты осцил-

ляций, полученные для каждого значения частоты сигнала, аппроксимирова-

ны зависимостью
√

Ω2 +∆2
mn, где Ω — частота возбуждающего импульса, а

∆mn = Ω − ωmn — его отстройка от частоты соответствующего перехода со-

единительного элемента. График зависимости периода осцилляций Раби от ча-

стоты сигнала показан на рисунке 2.9. На этом графике период для состояния

|11⟩ удвоен. Итоговые частоты переходов соединительного элемента приведены

в таблице 2.2.

2.2.6 Калибровка двухкубитной операции

Зная частоты переходов ωmn соединительного элемента для различных со-

стояний вычислительных кубитов |mn⟩ ∈ {|00⟩, |01⟩, |10⟩, |11⟩}, можно предва-
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Рисунок 2.9: Осцилляции раби соединительного кубита для различных

вычислительных состояний. (а) Последовательность импульсов возбуждения.

Первые два однокубитных гейта подготавливают вычислительные кубиты в

одном из четырех вычислительных состояний. Затем подается прямоугольный

импульс на соединительный кубит заданной длительности, после чего

выполняется выделенный цветом «считывающий» X гейт на первом кубите. В

результате на первом кубите наблюдаются осцилляции Раби соединительного

элемента, показанные на рисунке (б) для различных начальных состояний. (в)

Период осцилляций Раби соединительного элемента в зависимости от частоты

сигнала, полученный из осцилляционных картин. Обозначение |11⟩ · 2 в

надписи означает, что период осцилляций умножен на 2.
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ω00/2π ω10/2π ω01/2π ω11/2π

Значение 3.4098 3.44009 3.43605 3.4660 ГГц

Погрешность 0.1 0.07 0.08 0.2 МГц

Таблица 2.2: Экспериментально определенные частоты переходов между

основным и возбужденным состояниями соединительного элемента ω00, ω01,

ω10 и ω11 для четырех логических состояний вычислительных кубитов |00⟩,
|01⟩, |10⟩ и |11⟩. Погрешность оценена через стандартное отклонение метода

наименьших квадратов.

рительно оценить частоту, длительность и амплитуду управляющего импульса.

Для уточнения этих параметров использовалась процедура калибровки, схема-

тично изображенная на рисунке 2.10(а). Эту калибровку можно назвать услов-

ными осцилляциями Рамзея, а идея и схема взяты из работы [98].

В эксперименте для фиксированных параметров двухкубитного импульса

измеряется населенность второго кубита в зависимости от однокубитного угла

вращения φ, выделенного оранжевым цветом, в случаях, когда первый (управ-

ляющий) кубит был либо не был возбужден. Полученные результаты представ-

лены на рисунке 2.10(в) и аппроксимированы функциями:

pI(φ) =
1

2
(1− cos(φ+ φ2)) ,

pX(φ) =
1

2
(1− cos(φ+ φ2 + θ)) ,

(2.6)

где угол θ – фаза исследуемого двухкубитного гейта, которая определяется

разностью фаз двух синусоид.

Повторяя эксперимент для прямоугольных импульсов разных амплитуд, бы-

ла найдена оптимальная амплитуда, соответствующая фазе π, при заданной ча-

стоте сигнала. Полученная зависимость представлена на рисунке 2.10(в). Затем

снова были измерены зависимости частот осцилляций Раби от частоты возбуж-

дающего сигнала, уточнены частота и длительность импульса, после чего была

откалибрована амплитуда сигнала при новых значениях частоты и длительно-

сти.
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В общей сложности такая ступенчатая калибровочная процедура была про-

ведена три раза, пока изменение амплитуды импульса не стало сравнимо с по-

грешностью ее определения. В результате длительность импульса составила

44 нс, а частота 3.438 ГГц.

2.3 Оценка точности квантовой операции

2.3.1 Методы оценки точности квантовых операций

Для реализации квантового процессора необходим метод оценки точности

выполнения базовых одно- и многокубитных гейтов. На сегодняшний день наи-

более распространены методы квантовой томографии и случайного тестиро-

вания (randomized benchmarking, RB). Каждый из этих подходов имеет свои

преимущества и недостатки.

Идея квантовой томографии заключается в экспериментальном определе-

нии конечного состояния системы, полученного в результате воздействия ис-

следуемого гейта на заданное начальное состояние. Повторив это действие для

нескольких начальных состояний, можно восстановить матрицу соответствую-

щего процесса. Главными достоинствами такого метода являются возможность

определить, какой именно процесс происходит в системе, а также его интуитив-

ная понятность. Однако данный подход имеет существенную чувствительность

к ошибкам приготовления начального состояния и измерения (state preparation

and measurement, SPAM), что существенно снижает его точность. Кроме того,

квантовая томография обладает крайне плохой масштабируемостью, что за-

трудняет ее применение для характеристики шума в многокубитных системах.

Другим методом оценки точности квантовых операций является случайное

тестирование. Этот метод включает в себя генерацию большого числа случай-

ных последовательностей клиффордовских гейтов, которые воздействуют на

начальное состояние системы. Затем применяется обратная операция, и экспе-

риментально определяется, насколько система изменилась относительно перво-

начального состояния. Если необходимо оценить точность выполнения конкрет-

ного гейта, процедуру модифицируют: изучаемая операция помещается меж-
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Двухкубитная операция
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Рисунок 2.10: Калибровка двухкубитной операции CZ. (а) Последовательность

импульсов, подаваемая в процессе калибровки. Первый кубит

подготавливается в одном из двух состояний |0⟩ (гейт I) или |1⟩ (гейт X), а

второй кубит – в суперпозиции состояний |0⟩ и |1⟩. Затем применяется

двухкубитная управляемая фазовая операция, реализуемая с помощью

микроволнового импульса, а также выполняется виртуальное вращение фазы

на втором кубите, после чего на второй кубит действует операция вращения

вокруг оси X на π/2 и происходит его измерение. (б) Населенности pI и pX
второго кубита в зависимости от фазы φ выделенного оранжевым цветом

однокубитного гейта. Сплошная линия представляет аппроксимацию

экспериментальных точек функцией 2.6. (в) Зависимость условной фазы θ от

амплитуды возбуждающего импульса. Пунктирной линией показано целевое

значение фазы.
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ду элементами случайной клиффордовской последовательности. Такой подход

называется чередующимся случайным тестированием (interleaved randomized

benchmarking, IRB). Важно отметить, что данный метод определяет среднюю

точность операций и не предоставляет информации о матричном представле-

нии гейта. Тем не менее, в отличие от квантовой томографии, он позволяет эф-

фективно масштабировать количество кубитов и менее чувствителен к SPAM

ошибкам.

Если известен общий вид исследуемого гейта и необходимо уточнение его

параметров, применяют перекрестно-энтропийное тестирование (cross entropy

benchmarking, XEB). Этот метод имеет схожий с IRB протокол выполнения, но

в конце процедуры нет обратной операции, возвращающей систему в первона-

чальное состояние. Вместо этого измеряется итоговое распределение амплитуд

вероятностей по вычислительным состояниям. Параллельно выполняется чис-

ленное моделирование этого же эксперимента на классическом компьютере для

определения теоретического распределения конечных состояний. Затем вычис-

ляется перекрестная энтропия (функция потерь) между экспериментальным

и теоретическим распределениями. Изменяя параметры модели, можно опти-

мизировать функцию потерь и тем самым определить параметры исследуемой

операции. Этот метод по сравнению с квантовой томографией обладает лучшей

масштабируемостью и точностью, поскольку менее подвержен влиянию SPAM

ошибок и, в отличие от традиционного случайного тестирования, позволяет не

только оценить среднюю точность выполнения исследуемого гейта, но и полу-

чить его матричное представление.

2.3.2 Квантовая томография процесса

Метод квантовой томографии позволяет полностью восстановить матрицу,

описывающую повторяемую квантовую операцию. В рамках этого процесса осу-

ществляется подготовка набора входных состояний, после чего производится ис-

следуемая операция и выполняется измерение результатов в наборах базисов,

позволяющих восстановить матрицу плотности конечного состояния.
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Рассмотрим систему, состоящую из n кубитов, в гильбертовом простран-

стве размерности d = 2n. Состояние данной системы полностью описывается её

матрицей плотности ρ размером d×d. Тогда, как описывалось в 1.1.4, действие

сохраняющего след квантового канала Λ : ρ→ Λ(ρ) может быть математически

описано в представлении Паули-Лиувилля следующим образом:

Λ(ρ) = RΛ|ρ⟩⟩, (2.7)

где

(RΛ)ij =
1

d
Tr{PiΛ(Pj)}, (2.8)

|ρ⟩⟩ – векторизованная матрица плотности, а операторы Pi образуют базис Па-

ули {I,X, Y, Z}⊗n.
Применяя квантовый канал к набору чистых состояний (обычно выбираются

собственные состояния Pi) и измеряя выходное состояние в различных базисах

Pk, можно получить достаточное количество линейных уравнений для опре-

деления действительных коэффициентов (RΛ)ij. Следует также отметить, что

в случае однокубитного процесса необходимо определить 12 параметров, для

двухкубитного — уже 256, а для n-кубитного процесса количество параметров

составляет 2n(2n − 1). Это указывает на то, что сложность данной задачи рас-

тет экспоненциально с увеличением числа кубитов, что, в свою очередь, требует

экспоненциально большего времени для проведения измерений.

2.3.3 Эксперимент по квантовой томографии процесса

Теперь от теоретических соображений следует перейти к описанию экспе-

риментальной последовательности действий для измерения матрицы переноса

паули исследуемого процесса. Сначала будет рассмотрен однокубитный случай,

а затем более сложный – двухкубитный.

Для исследований однокубитного процесса следует инициализировать си-

стему в одном из четырех начальных состояний {Z+, Z−, X+, Y+}. Такая за-

пись обозначает, что состояние является собственным вектором оператора X,

Y , Z с собственным числом +1 или −1. Так, например, обозначениям Z− и
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X+ соответствуют состояния |1⟩ и |+⟩. Инициализация этих состояний про-

исходит посредством применения однокубитных операторов вращения вокруг

осей X и Z к начальному состоянию |0⟩. После этого выполняется исследуемый

процесс и происходит измерение системы в базисах {X, Y, Z}. При дисперси-

онном считывании происходит проективное измерение кубита в состояния |0⟩
и |1⟩, то есть на ось Z. Для выполнения проективного измерения в базисах

X и Y предварительно на кубит подаются однокубитные вращения
√
XS и

√
X, соответственно. Таким образом, процедура повторяется для каждого на-

чального состояния и для каждого измерительного базиса и в итоге получается

12 экспериментальных последовательностей. Результатом выполнения каждой

последовательности являются 12 вероятностей, по которым можно определить

коэффициенты матрицы переноса паули (RΛ)ij.

В двухкубитном случае можно использовать 16 начальных состояний:

{Z + Z+, Z + Z−, Z − Z+, Z − Z−, X +X+, X +X−, X −X+, Y + Y+,

Y + Y−, Y − Y+, X + Y+, X + Z+, Y +X+, Y + Z+, Z +X+, Z + Y+}

и 9 измерительных базисов

{XX,XY,XZ, Y X, Y Y, Y Z, ZX,ZY, ZZ}.

Квантовая схема для эксперимента по томографии двухкубитного процесса

приведена на рисунке 2.11. Однокубитные операторы вращения Vi, Vj использу-

ются для инициализации нужного начального состояния кубитов, а вращения

Vk, Vl – для считывания в требуемом базисе. Результатом работы такого алго-

ритма будет 16 · 9 · 3 = 432 вещественных чисел, соответствующих вероятности

измерить систему в состояниях |00⟩, |01⟩, |10⟩. Вероятность p(|11⟩) рассчиты-

вается из соображений нормировки суммарной вероятности.

Итак, для исследуемой системы было экспериментально выполнено три раз-

личных эксперимента по томографии квантового процесса. Были восстановле-

ны, с учетом коррекции ошибок считывания, матрицы переноса паули единич-

ного гейта I нулевой длительности, операции CZ, реализованной посредством

микроволнового импульса на соединительном элементе, и двух идущих подряд
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Рисунок 2.11: Квантовая цепь эксперимента по томографии двухкубитного

процесса Λ. Однокубитные операторы вращения Vi и Vj используются для

инициализации начальных состояний кубитов, а вращения Vk и Vl — для

считывания в требуемом базисе.

CZ гейтов. Полученные точности процессов I, CZ и CZ2 составили 98.3%,

98.9% и 96.4% соответственно. Полученные матрицы переноса представлены на

рисунке 2.12.

Как было упомянуто выше, основным недостатком метода квантовой то-

мографии является сильное влияние ошибок инициализации и считывания на

итоговый результат. Таким образом, учитывая невысокую точность считыва-

ния (параграф 2.2.3), точность операции CZ оказалась выше, чем у единичного

гейта. Значительная разница в точности гейтов CZ и CZ2 свидетельствует о

наличии остаточной популяции соединительного элемента после первого гей-

та CZ, что ожидаемо для текущих параметров системы. Действительно, если

соединительный элемент не полностью возвращается в основное состояние по-

сле выполнения гейта, это не снижает точность текущего гейта, но влияет на

последующие операции.

2.3.4 Перекрестно-энтропийное тестирование

Эволюция матрицы плотности системы под действием случайной последо-

вательности преобразований U , состоящей из m операций, записывается следу-

ющим образом:

ρU = εm |ψU⟩ ⟨ψU |+ (1− εm)χU , (2.9)

где |ψU⟩ = U |ψ0⟩ – конечное состояние системы в идеальном случае, а χU –

оператор, который вместе с числом εm описывает эффект шума. В приближении

деполяризующего канала χU = I/d, где I – единичная матрица. В этом случае
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Рисунок 2.12: Экспериментальные матрицы переноса Паули, полученные для

единичного гейта I нулевой длительности, CZ операции, реализованной

посредством микроволнового импульса на соединительный элемент, и двух

выполненных подряд CZ гейтов. Полученные точности процессов I, CZ, CZ2

составили 98.3%, 98.9% и 96.4%, соответственно.

εm – вероятность того, что система остается неизменной после m операций, а с

вероятностью (1− εm) она переходит в полностью смешанное состояние.

Тем не менее, в общем случае оператор χU может содержать недиагональ-

ные элементы, отличные от нуля. Однако, если не рассматривать результаты

эволюции каждой случайной последовательности по отдельности, а усреднить

их действие по ансамблю случайных состояний, то вклад таких перекрестных

членов будет равен нулю:

(U †χUU) =
I

d
, (2.10)

где горизонтальная черта обозначает усреднение по многим случайным кван-

товым цепям. Таким образом, получается следующее выражение:

(U †ρUU) = εm |ψU⟩ ⟨ψU |+ (1− εm)
I

d
. (2.11)

Свяжем вероятность деполяризации (1− εm) со станданой точностью, кото-

рая определяется по формуле:

F =
Tr(R†idealR) + d

d(d+ 1)
, (2.12)

где Rideal и R — матрицы переноса сравниваемых операций в базисе Паули. То-

гда в случае деполяризующего канала получаем R = RdepRideal, а сама матрица
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деполяризации Rdep в этом представлении имеет диагональный вид:

Rdep =



1 0 0 . . . 0 0

0 εm 0 . . . 0 0

0 0 εm . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . εm 0

0 0 0 . . . 0 εm


. (2.13)

После преобразований получаем:

F =
Tr(Rdep) + d

d(d+ 1)
=

1 + (d2 − 1)(εm) + d

d(d+ 1)
= εm +

1− εm
d

. (2.14)

Теперь следует перейти от сугубо теоретических рассуждений к практи-

ческой реализации протокола перекрестно-энтропийного тестирования. Пусть

OU – диагональный оператор наблюдаемых величин в вычислительном бази-

се. Тогда математическое ожидание действия данного оператора на матрицу

плотности ρU определяется по формуле:

Tr(ρUOU) = εm⟨ψU |OU |ψU⟩+ (1− εm)Tr
(
OU

d

)
. (2.15)

Член mU = Tr(ρUOU) может быть получен из экспериментальных данных, а

eU = ⟨ψU |OU |ψU⟩ и uU = Tr (OU/d) — вычислены на классическом процессоре.

В новых обозначениях предыдущее уравнение переписывается как:

mU = εmeU + (1− εm)uU . (2.16)

Отсюда следует:

mU − uU = εm(eU − uU). (2.17)

Применив метод наименьших квадратов, получаем следующее выражение для

вероятности εm того, что система не перешла в полностью смешанное состояние:

εm =

∑
U(mU − uU)(eU − uU)∑

U(eU − uU)2
. (2.18)



67

Здесь сумма берется по различным случайным последовательностям операций.

Оптимизируя полученную линейную перекрестную энтропию между экспери-

ментальными и расчетными данными, в зависимости от параметров модели

можно получить матричное представление исследуемого гейта и его точность.

2.3.5 Экспериментальная реализация перекрестно-энтропийного те-

стирования

Для тестирования точности квантового гейта методом XEB необходимо в

первую очередь научиться получать вспомогательные опорные последователь-

ности квантовых операций, так, чтобы усредненный шум по ним эффективно

описывался деполяризационным квантовым каналом. Обычно для создания та-

ких опорных последовательностей используются случайные наборы гейтов из

группы Клиффорда; в данной работе использовались операции из однокубит-

ной группы Клиффорда.

С экспериментальной точки зрения задача заключается в выполнении про-

извольного клиффордовского гейта с наименьшим количеством предваритель-

ных калибровок. На сверхпроводниковых квантовых процессорах чаще всего

калибруются однокубитные вращения вокруг оси x на угол π/2 (гейт
√
X).

Эти гейты реализуются путем подачи микроволнового импульса на частоте ку-

бита с гауссовой огибающей. Процесс калибровки π/2-импульсов, использован-

ный в текущем эксперименте, подробно описан в работах [61, 76]. Вращения

вокруг оси z на сверхпроводниковых кубитах выполняются виртуально: фаза

управляющего сигнала изменяется непосредственно на генераторе импульсов,

благодаря чему такие вращения не занимают времени и могут быть выполнены

на произвольный угол.

На основе описанных базовых гейтов предлагается метод реализации произ-

вольной операции из однокубитной группы Клиффорда. Формируются четыре
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набора, каждый из которых содержит 24 однокубитных гейта:

1 :
{
I, S, S2, S3, I, S, S2, S3, I, S, S2, S3,

I, S, S2, S3, I, S, S2, S3, I, S, S2, S3
}

2 :
{√

X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,

√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X

√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X
}

3 :
{
I, I, I, I, S, S, S, S, S2, S2, S2, S2,

S3, S3, S3, S3, I, I, I, I, S2, S2, S2, S2
}

4 :
{
I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X,
√
X
}
.

(2.19)

Затем случайным образом генерируется целое число i от 1 до 24, после чего

последовательно выполняется i-й гейт из каждого набора. В результате получа-

ется 24 различных операции Клиффорда. Гейты из первого и третьего наборов

являются виртуальными, тогда как операции из второго и четвертого набо-

ров требуют времени, не превышающего длительности операции
√
X (13.3 нс).

Таким образом, выполнение произвольного однокубитного гейта Клиффорда

занимает фиксированное время, равное 26.6 нс.

Итак, для определения точности исследуемой двухкубитной операции ме-

тодом XEB были использованы случайные последовательности однокубитных

гейтов с и без вставленного между ними двухкубитного гейта CZ. Принципи-

альная последовательность операций представлена на рисунке 2.13(а). В экспе-

рименте были реализованы квантовые схемы с глубиной до m = 100 операций.

Для каждой глубины было сгенерировано 150 наборов двух случайных неза-

висимых последовательностей однокубитных клиффордовских гейтов, обозна-

ченных как {C11, . . . , C1m} для первого кубита и {C21, . . . , C2m} для второго.

Результаты считывания были усреднены по 10 000 повторений для каждого

набора операций.

Основная идея метода перекрестно-энтропийного тестирования заключает-

ся в сравнении экспериментальных данных с теоретическими. Для этого на
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классическом компьютере выполняется бесшумная симуляция тех же последо-

вательностей операций. Исследуемый двухкубитный гейт описывается следую-

щей матрицей:

G = CPhase(θ) ·RZ(φ1)⊗RZ(φ2) =

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ


(
1 0

0 eiφ1

)
⊗

(
1 0

0 eiφ2

)
.

(2.20)

Для вычисления перекрестной энтропии между экспериментальными и тео-

ретическими данными были подобраны два параметра: φ1 и φ2. Оптимизация

проводилась с помощью алгоритмов Нелдера-Мида и имитации отжига. Пара-

метр θ был установлен равным π, так как оценивалась точность операции CZ.

Полученные зависимости средней деполяризационной точности Fdep от глуби-

ны исследуемой последовательности, представлены на рисунке 2.13(б). Синие

точки отражают экспоненциальное затухание деполяризационной точности для

опорных последовательностей однокубитных гейтов Клиффорда, выполняемых

одновременно на двух кубитах. Оранжевые точки показывают аналогичные

данные со вставленным CZ гейтом.

Экспериментальные данные были аппроксимированы функцией apm, где

p — это средняя деполяризационная точность операций за цикл, а коэффи-

циент a учитывает ошибки считывания и инициализации. С помощью мето-

да наименьших квадратов были получены значения p1 = 0.9900 ± 0.0005 и

p2 = 0.956 ± 0.004, где p1 и p2 обозначают деполяризационные точности за

цикл для последовательностей без и с гейтом CZ соответственно. Средняя де-

поляризационная точность гейта CZ определяется из отношения pCZ = p2/p1

[6, 76]. По формуле (2.14) были рассчитаны точность операции CZ, реализо-

ванной посредством микроволнового импульса на соединительный элемент, и

средняя точность однокубитных клиффордовских гейтов, которые составили

FCZ = (97.6± 0.4)% и F1Q = (99.28± 0.03)% соответственно.
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1 m(а)

(в)

(б)

ε1Q εdec εc εΘ

F
de

c

Глубина последовательности операций, m

Деполяризационная ошибка

Средняя точность однокубитных операций
F=(99,28±0.03)%

Точность двухкубитной операции CZ
F=(97,6±0.4)%

ε1Q

Рисунок 2.13: Перекрестно-энтропийное тестирование. (а) Квантовая схема

эксперимента по XEB. Синим цветом обозначены случайные однокубитные

операции Клиффорда, а оранжевым — тестируемая двухкубитная операция

CZ. (б) Средняя деполяризационная точность последовательностей XEB с и

без исследуемого CZ гейта. (в) Оценка вкладов различных ошибок в общую

ошибку деполяризации реализованной операции: ошибки ε1Q (синий) и εdec
(оранжевый) соответствуют декогеренции на вычислительных кубитах во

время одно- и двухкубитных операций; ошибка εθ (красный) связана с

неточностью контролируемой фазы π гейта CZ; εc (зеленый) — остаточная

ошибка, учитывающая эффекты декогеренции и остаточной населенности

соединительного элемента.
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2.3.6 Анализ ошибок, влияющих на точность операции

В этом разделе проведена оценка вкладов различных источников ошибок в

общую деполяризационную ошибку ε = 1− p = 0.034 гейта CZ. Оценка выпол-

нена двумя методами: путем анализа экспериментальных данных, полученных

при перекрестно-энтропийном тестировании, и с помощью численного модели-

рования динамики системы.

При определении точности операции методом XEB на классическом ком-

пьютере рассчитываются вероятности считывания квантового состояния для

случайных последовательностей, реализованных в эксперименте. Это позволя-

ет находить параметры исследуемых операций. Например, таким способом были

определены фазы однокубитных Z вращений. В формуле (2.20) присутствуют

три параметра, из которых оптимизировались лишь два. При оптимизации всех

трех параметров был получен угол условного вращения θ ≃ 0.963π, что соот-

ветствует вкладу в общую деполяризационную ошибку εθ ≃ 0.003.

Следующий источник ошибок — декогеренция вычислительных кубитов.Этот

вклад был оценен путем экстраполяции средней ошибки однокубитных гейтов

ε1 = 1 − p1 = 0.01 с длительностью операции 26.6 нс на длительность двухку-

битного гейта CZ 44 нс, что дало ошибку εdec ≃ 0.016.

Оставшаяся часть ошибки εc ≃ 0.015 включает в себя, в том числе процес-

сы декогеренции и остаточную населенность соединительного элемнента. Вклад

различных источников ошибок в общую деполяризацонную ошибку представ-

лен на итоговой гистограмме, показанной на рисунке 2.13(в).

Далее приведем численную оценку когерентной ошибки исследуемой опера-

ции, основываясь на экспериментально определенных временах когерентности

вычислительных кубитов: T1 равные 15.8 и 22.0 мкс; T2 равные 4.5 и 5.8 мкс.

Для этого была выполнена симуляция эволюции системы путем решения урав-

нения Линдблада:

ρ̇ = −i[H, ρ] +
1

2

∑
i

(
2LiρL

†
i − ρL

†
iLi − L†iLiρ

)
, (2.21)

где операторы Li описывают диссипативную динамику системы. Для кубитов
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такие операторы, соответствующие энергетической релаксации и чистой дефа-

зировки, определяются как:

L1 =
1

2
√
T1

(σx + iσy),

Lφ =
1√
2Tφ

σz.
(2.22)

Здесь σx, σy, σz – операторы Паули, а времена релаксации T1, когерентности T2
и чистой дефазировки Tφ связаны следующим соотношением

1

T2
=

1

2T1
+

1

Tφ
. (2.23)

В результате численного моделирования деполяризацонная ошибка одноку-

битных гейтов Клиффорда длительности 26 нс составила 0.64%, а двухкубитной

операции CZ длительности 44 нс – 1.05%.

Из-за отсутствия индивидуального считывающего резонатора у соедини-

тельного элемента измерения его времен релаксации и когерентности не прово-

дились. Однако, как и вычислительные кубиты, он является флаксониумом, по-

этому для численной оценки возьмем значения характерные для вычислитель-

ных кубитов: T1 = 18 мкс и T2 = 5 мкс. Итоговая деполяризацонная ошибка

двухкубитной операции, полученная численным решением уравнения Линдб-

лада с шумом, действующим на связующий элемент, и идеальными кубитами,

составила 0.28%. Сравнение этой величины с ошибкой, полученной вследствие

затухания кубитов, позволяет заключить, что когерентность соединительного

кубита значительно меньше влияет на точность операции, чем когерентность

вычислительных кубитов. Несоответствие с экспериментальной точностью, по-

лученной методом перекрестно-энтропийного тестирования операции, может

быть объяснено, во-первых, более коротким временем когерентности соедини-

тельного элемента, так как он находится в верхней рабочей точке по потоку, а

во-вторых, когерентными ошибками, связанными с остаточной населенностью

соединительного элемента.

Остаточная населенность соединительного элемента влияет на достовер-

ность однокубитных гейтов, выполняемых после двухкубитного гейта CZ. Оста-
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точная населенность соединительного элемента для каждого вычислительно-

го состояния была рассчитана с использованием уравнения (4). Она составила

2.0% и 1.4% для вычислительных состояний |01⟩ и |10⟩. Остаточная населен-

ность соединительного элемента для вычислительных состояний |00⟩ и |11⟩ бы-

ла значительно меньше из-за калибровки (см. правый вставной график на рис.

2). Эти населенности значительно превышали равновесную тепловую населен-

ность возбуждённого состояния соединителя, равную 0.07% для частоты пере-

хода 3 ГГц при температуре 20 мК. Согласно численной оценке, если остаточная

населенность соединительного элемента составляет 2%, что соответствует мак-

симальному значению после операции CZ, достоверность однокубитного гейта

X длительности 26 нс снижается до 98.7%.

Следует отметить, что ошибки для последовательностей c операцией CZ

значительно больше, чем для последовательностей, содержащих только одно-

кубитные операции. Это связано с большем разбросом достоверностей для раз-

личных случайных последовательностей, что указывает на значительную долю

когерентных ошибок в реализованных двухкубитных гейтах.

2.4 Выводы по главе

В данной главе был предложен и экспериментально реализован метод вы-

полнения двухкубитной операции CZ на флаксониумах с помощью микроволно-

вого возбуждения соединительного кубита. Показано, что благодаря сильному

взаимодействию между соединительным и вычислительными флаксониумами

частота перехода соединительного кубита сильно зависит от состояния вычис-

лительных кубитов. Это позволяет подобрать частоту микроволнового возбуж-

дения так, чтобы скорость накопления фазы различалась для различных вы-

числительных состояний, что приводит к эффективной реализации операции

CZ. В эксперименте продемонстрирован гейт с точностью 97.6% и длительно-

стью 44 нс, оцененной методом перекрестно-энтропийного тестирования. Ана-

лиз ошибок показал, что основными ограничивающими факторами точности

являются процессы декогеренции и остаточная населенность соединительного
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элемента. Результаты теоретических и экспериментальных исследований отра-

жены в публикациях [95,96].

Полученные результаты открывают новые возможности для дальнейшего

развития квантовых процессоров на основе флаксониумов. В первую очередь

речь идет о дальнейшем масштабировании устройства и исследовании тополо-

гических особенностей системы для увеличения времен когерентности кубитов

и точности управления устройством. Предложенный метод управления двухку-

битным взаимодействием на основе микроволновой активации соединительного

элемента демонстрирует высокую эффективность и может быть применен не

только для двухкубитных гейтов, но для выполнения многокубитных опера-

ций [51].

Следует отметить, что схожий подход был независимо реализован иссле-

дователями Массачусетского технологического института в это же время [45]

(предварительная версия публикации появилась на интернет-ресурсе arXiv по-

сле публикации результатов, описанных в данной главе). В их работе также

использовалась идея микроволновой операции между двумя флаксониумами

связанными через кубит-трансмон посредством микроволнового импульса. Экс-

перимент показал рекордную точность такой операции, что подтверждает эф-

фективность и актуальность предложенного метода для дальнейшего развития

квантовых вычислений. Совокупность этих результатов подчеркивает потенци-

ал микроволновых методов управления для построения высокоточных двухку-

битных операций в флаксониумных процессорах.
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3 Коды коррекции квантовых ошибок цикличе-

ской архитектуры

Экспериментальная реализация кодов коррекции квантовых ошибок требует

большого числа кубитов и высокой точности операций. При этом важно учи-

тывать топологию вычислительного устройства, чтобы минимизировать число

необходимых гейтов. В сверхпроводниковых системах двухкубитные операции

обычно возможны только между соседними кубитами, что существенно огра-

ничивает выбор кода. Также важным аспектом кодов коррекции является их

масштабируемость — способность исправлять больше ошибок по мере роста

числа используемых кубитов.

В данной работе исследуется семейство кодов коррекции, стабилизаторы ко-

торых формируются по принципу циклических перестановок, аналогично пяти-

кубитному коду. Их отличительная особенность — линейная зависимость числа

физических кубитов от расстояния кода, хотя это сопровождается увеличением

веса стабилизаторов. Предлагаемая схема основана на чередующихся вспомога-

тельных и информационных кубитах, геометрически соединенных в кольцо, где

между соседними кубитами можно реализовывать операции iSWAP и SWAP.

Кроме того, разработан алгоритм декодирования квантовых ошибок на ос-

нове рекуррентных нейронных сетей. Он использует не только измерения вспо-

могательных кубитов, но и результаты простого табличного декодера. Такой

подход позволяет успешно справляться с многокубитными ошибками в кодах

коррекции со смешанными X и Z синдромами.

Таким образом, в данной главе рассматриваются разработка и анализ ко-

дов коррекции для квантовых процессоров циклической архитектуры, включая

построение квантовой схемы, алгоритм декодирования и оценку его эффектив-

ности.
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3.1 Построение циклических кодов коррекции

3.1.1 Концепция переадресуемого вспомогательного кубита

При разработке кодов коррекции ошибок важно учитывать архитектурные

особенности физической платформы. Для сверхпроводниковых процессоров клю-

чевой особенностью является то, что запутывающие операции осуществляются

преимущественно между кубитами, расположенными рядом друг с другом. В

ходе цикла коррекции вспомогательные кубиты взаимодействуют с нескольки-

ми информационными кубитами, поэтому необходимо принимать во внимание

их физическое расположение на процессоре. Это существенно ограничивает вы-

бор кодов коррекции, которые можно эффективно реализовать на сверхпровод-

никовых платформах, поскольку они зависят от топологии устройства.

Одним из способов создать запутанность между кубитами, которые не явля-

ются соседними, является «перемещение» посредством последовательных опе-

раций SWAP. Однако такие гейты не являются естественными для большинства

сверхпроводниковых процессоров и реализуются с помощью нескольких после-

довательно выполняемых двухкубитных операций. Это существенно увеличи-

вает глубину схемы, что, в свою очередь, ведет к накоплению большего числа

ошибок за время выполнения цикла коррекции. В результате эффективность

работы кода коррекции заметно снижается.

Интересно, что если рассматривать гейт SWAP в сочетании с операцией

CNOT или CZ, которые обычно применяются для создания запутанности в

большинстве стабилизирующих кодов коррекции, то оба действия можно вы-

полнить одновременно с помощью всего одной операции iSWAP [99]. Опера-

ция iSWAP позволяет одновременно запутать два кубита и поменять их со-

стояния местами, что устраняет необходимость во множестве последователь-

ных гейтов, характерных для реализации SWAP. При этом iSWAP является

естественным гейтом для многих архитектур сверхпроводниковых процессо-

ров [43,68,100–102]. На рисунке 3.1(а) показаны эквивалентные квантовые схе-

мы, реализующие запутанность двух кубитов с последующим изменением их

адресации.
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Рисунок 3.1: (а) Реализация последовательных гейтов CNOT и SWAP с

использованием одной двухкубитной операции iSWAP и однокубитных

вращений. (б) Преобразование стандартных квантовых схем для измерения

стабилизаторов ZZ (сверху) и XX (снизу) в схемы, основанные на

использовании операции iSWAP и концепции переадресуемых

вспомогательных кубитов.

Эта идея послужила основой для концепции переадресуемого вспомогатель-

ного кубита. На рисунке 3.1(б) слева показаны стандартные квантовые схе-

мы для извлечения синдромов ZZ и XX. Они используют один вспомогатель-

ный кубит, выделенный бирюзовым цветом, который запутывается с двумя ин-

формационными кубитами (отмеченными красным цветом) посредством двух

CNOT-гейтов. Такой подход упрощает реализацию запутанности между куби-

тами, включая те, которые физически не являются соседними на физической

топологии процессора.

3.1.2 Квантовая схема пятикубитного кода на iSWAP гейтах

Используя концепцию переадресуемых кубитов, можно решить топологиче-

скую проблему, связанную с извлечением синдромов идеального пятикубитного

кода, описанную в 1.3.4. Эти синдромы могут быть эффективно извлечены с

использованием кольцевой архитектуры, состоящей из 10 последовательно со-
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единённых кубитов, из которых пять являются информационными, а остальные

пять — вспомогательными.

Предполагается, что для каждого кубита откалиброваны произвольные од-

нокубитные вращения, а также доступны операции инициализации и однократ-

ного считывания. Для выполнения цикла коррекции ошибок предложена кван-

товая схема, состоящая исключительно из двухкубитных гейтов iSWAP, при-

меняемых между соседними кубитами. Графическое представление схемы по-

казано на рисунке 3.2. На схеме информационные кубиты выделены красным

цветом, а вспомогательные кубиты — зеленым. Слева изображено их кольцевое

расположение.

Опишем подробно цикл коррекции ошибок. Каждый цикл начинается с ини-

циализации вспомогательных кубитов. Наиболее важными частями цикла яв-

ляются четыре серии гейтов iSWAP, которые создают запутанность между со-

седними кубитами. Действие операции iSWAP, как упоминалось ранее, можно

разложить на применение CZ гейта, обмен их вычислительными состояниями

и выполнение однокубитных гейтов S на обоих кубитах. Поэтому для компен-

сации набега фазы, возникающего после выполнения iSWAP гейта, в схему до-

бавлены дополнительные S и Z вращения. Операции Адамара используются

для смены базиса, что позволяет извлекать как X-, так и Z-синдромы.

Таким образом, информационные кубиты как бы «движутся» по кольцу по

часовой стрелке, а вспомогательные кубиты — против часовой стрелки. Зелё-

ным цветом на рисунке 3.2 показано «перемещение» первого вспомогательного

кубита, а красным цветом выделен «путь» информационных кубитов, запуты-

вающихся с ним. В итоге мы наблюдаем сдвиг или переадресацию вспомога-

тельных и информационных кубитов относительно друг друга. В конце описы-

ваемого цикла выполняется однократное проективное измерение всех вспомо-

гательных кубитов.

Следует отметить, что схема включает избыточный вспомогательный кубит,

соответствующий синдрому g4 = XXZIZ, который не является независимым

и представляет собой произведение других синдромов.
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Рисунок 3.2: Реализация идеального пятикубитного кода на циклической

архитектуре сверхпроводникового процессора. Слева представлена топология

связей между кубитами: красным цветом обозначены информационные

кубиты, хранящие информацию о состоянии логического кубита, а зеленым —

вспомогательные кубиты. Справа показана квантовая схема, выполняющая

запутывание между информационными и вспомогательными кубитами.

Цветовое обозначение иллюстрирует процесс запутывания между

топологически не соседними кубитами.
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3.1.3 Масштабирование для малых дистанций

Одним из важных аспектов при разработке кодов коррекции ошибок явля-

ется их масштабируемость, то есть способность исправлять экспоненциально

большее число ошибок при увеличении числа кубитов. Напомним, что код кор-

рекции ошибок обозначается как [n, k, d], где n — количество физических ку-

битов, хранящих информацию о k логических кубитах, а d — дистанция кода.

Этот параметр определяет количество ошибок, которое может быть исправлено,

и связан с количеством корректируемых ошибок t по формуле d = 2t+ 1.

В данной работе предлагается способ масштабирования пятикубитного кода,

при котором число кубитов растет линейно, но сопровождается увеличением

веса синдромов. Итак, код коррекции ошибок, кодирующий один логический

кубит в n физических кубитов, может быть описан n − 1 стабилизаторами.

Ниже приведены базовые стабилизаторы для линейных циклических кодов с

дистанциями d = 3, d = 5, d = 7 и d = 9:

d = 3, n = 5 : g0 = ZXXZI,

d = 5, n = 13 : g0 = ZIXXIZ I...I︸︷︷︸
7

,

d = 7, n = 21 : g0 = ZIIXXXXIIZ I...I︸︷︷︸
11

,

d = 9, n = 29 : g0 = ZXXIIXIIXIIXXZ I...I︸︷︷︸
15

,

(3.1)

где X, Y , Z, I — операторы Паули. В выражении подразумевается тензорное

произведение ⊗ между операторами. Оставшиеся n − 2 стабилизатора могут

быть получены из g0 циклической перестановкой индексов кубитов. Логические

операторы кодов определяются как произведение операторов, действующих на

всех n кубитах:

XL = X⊗n, YL = Y ⊗n, ZL = Z⊗n. (3.2)

Код с d = 3 известен как идеальный пятикубитный код. Его реализация

на кольцевой топологии из 10 последовательно соединённых сверхпроводни-

ковых кубитов с использованием iSWAP-операций подробно рассматривалась в
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предыдущем разделе. В данном разделе рассматривается масштабирование это-

го подхода для кодов с большими дистанциями на примере 13-кубитного кода

с d = 5. Для остальных кодов схемы строятся по аналогичным принципам.

Квантовая схема для выполнения цикла коррекции ошибок 13-кубитного

кода представлена на рисунке 3.3. Она содержит 26 физических кубитов, из

которых половина используется для хранения закодированного логического со-

стояния, а другая половина – для извлечения синдромов ошибок. Каждый цикл

коррекции начинается с инициализации всех вспомогательных кубитов в ос-

новном состоянии и завершается однократным проективным измерением этих

кубитов. В ходе выполнения цикла коррекции каждый вспомогательный ку-

бит взаимодействует с шестью информационными кубитами и запутывается с

четырьмя из них. На рисунке 3.3 зелёным цветом показана траектория «пе-

ремещения» первого вспомогательного кубита, а красным — информационных

кубитов, которые запутываются с ним.

Важное отличие 13-кубитного кода от пятикубитного заключается в исполь-

зовании SWAP гейтов, которые позволяют обменивать состояния между сосед-

ними кубитами без создания запутанности. Эти операции не являются есте-

ственными для многих квантовых процессоров, но могут быть реализованы с

помощью трех CZ или CNOT гейтов, или трех
√
iSWAP гейтов (по времен-

ным затратам эквивалентно примерно полутора длительностям одной iSWAP

операции), или одним fSIM(π/2, π) гейтом с дополнительными однокубитными

вращениями [43]. Последний вариант поддерживается, например, на квантовых

процессорах Sycamore и Willow компании Google и китайской линейки процес-

соров Zuchongzhi [7, 9].

Как бы то ни было, увеличение веса синдромов и наличие дополнительных

SWAP операций приводит к существенному увеличению длительности цикла

коррекции при росте числа кубитов. По этой причине данный код нельзя счи-

тать в полном смысле масштабируемым. Именно поэтому в данной работе рас-

сматривается его масштабирование только на малых дистанциях, так как даль-

нейшее увеличение числа кубитов приводит к удлинению цикла коррекции, что

делает код неэффективным. Тем не менее, для малых дистанций, в услови-
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Рисунок 3.3: Схематичное расположение кубитов в виде замкнутой цепочки и

часть квантовой схемы 13-кубитного кода. Зеленым и красным цветом

обозначены вспомогательные и вычислительные кубиты соответственно.

Полная схема кода может быть воспроизведена путем трансляционного

преобразования показанной части на остальные кубиты. Основу алгоритма

составляют шесть серий двухкубитных операций, применяемых к соседним

кубитам. Цветами показаны траектории вычислительного состояния первого

вспомогательного кубита и взаимодействующих с ним во время цикла

коррекции вычислительных кубитов.
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Дистанция 3 5 7 9

iSWAP 20 52 126 232

SWAP 0 26 84 174

H 20 52 84 116

Таблица 3.1: Количество квантовых операций, выполняемых в ходе одного

цикла коррекции предложенного циклического кода.

ях, когда экспериментально доступны высокоточные двухкубитные операции,

но есть ограничения с количеством кубитов, такой подход к масштабированию

может оказаться действенным. Ниже приведено сравнение технических требо-

ваний данного кода и некоторых других распространенных кодов коррекции

квантовых ошибок.

3.1.4 Количество требуемых кубитов и двухкубитных операций

Сформулируем требования к физическому устройству для реализации пред-

ложенного циклического кода. В первую очередь это количество физических

кубитов и связей между ними, что для сверхпроводниковых кубитов обычно

подразумевает наличие соединительных элементов с индивидуальным управ-

лением при помощи внешних приборов. Количество физических кубитов для

кода с расстоянием d ∈ {3, 5, 7, 9} определяется выражениемN = 8d−14. Число

элементов связи в циклическом коде также задаётся формулой N2Q = 8d− 14.

Таким образом, предложенный циклический код масштабируется линейно по

требуемыми ресурсами, определяемыми числом физических кубитов и элемен-

тов связи. В таблице 3.1 приведено общее количество квантовых операций, необ-

ходимых для одного цикла коррекции предложенного кода.

Кроме того, выполнено сравнение требований к ресурсам, необходимым для

реализации предложенного циклического кода, с наиболее известными поверх-

ностными [103], цветными [104] и торическим циклическим [105, 106] кодами.

Сравнительный анализ представлен на рисунке 3.4. Для реализации поверх-

ностного кода требуется N surface физических кубитов и N surface
2Q двухкубитных
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Рисунок 3.4: Сравнение требований к ресурсам предложенного кода с

некоторыми перспективными кодами коррекции квантовых ошибок. Под

ресурсами понимается общее число физических кубитов (верхний график) и

двухкубитных операций, реализуемых между различными парами кубитов

(нижний график). Требования предложенного циклического кода (синие

круги) масштабируются линейно, тогда как требования циклического

торического кода (оранжевые кресты), треугольного цветного кода (зеленые

треугольники) и повернутого поверхностного кода (красные квадраты)

демонстрируют квадратичную зависимость. Пунктирные линии указывают на

характер каждой зависимости.

операций, связанных с дистанцией d следующими соотношениями

N surface = 2d2 − 1,

N surface
2Q = 4d(d− 1).

(3.3)

Цветной треугольный код характеризуется количеством кубитов N color и двух-

кубитных операций N color
2Q :

N color = (3d2 − 1)/2

N color
2Q = 3(7d2 − 8d+ 1)/8.

(3.4)

Торический циклический код задаётся циклической перестановкой операторов



85

базового синдрома

ZI⊗(t−1)XXI⊗(t−1)ZI⊗(n−2t−2), (3.5)

где t = (d−1)/2. Реализация этого кода возможна на архитектуре, аналогичной

той, что используется для предложенного кода, с применением гейтов iSWAP

и SWAP. В данном случае требуется

N toric = N toric
2Q = d2 + 1 (3.6)

физических кубитов и двухкубитных операций. Заметим, что для дистанций

d = 3 и d = 5 торический циклический код и предложенный код являются

идентичными. Различия начинают проявляться при d = 7.

Как видно, все рассматриваемые коды, за исключением предложенного цик-

лического кода, характеризуются квадратичной зависимостью числа физиче-

ских кубитов и элементов связи от расстояния кода, что приводит к увеличе-

нию требований к управляющей электронике. В то же время, предложенный

код, несмотря на линейную масштабируемость, требует большее количество

двухкубитных операций (при меньшем числе элементов связи). Это связано

с возрастающими весами синдромов, используемых в данной архитектуре.

3.1.5 Квантовая схема 17-кубитного поверхностного кода

Схема моделирования эксперимента по хранению квантового состояния для

кода поверхности аналогична процедуре, использованной для пятикубитного

кода. Она включает три этапа: подготовка информационных кубитов, коррек-

тирующие циклы и измерение этих кубитов. Первый и третий этапы идентичны

этапам пятикубитного кода, за исключением количества информационных ку-

битов.

Квантовая схема для цикла коррекции 17-кубитного поверхностного кода

представлена на рисунке 3.5 [107]. Она включает вращения кубитов вокруг оси

y и четыре серии одновременных двухкубитных CZ гейтов (по три гейта в каж-

дой серии). Стабилизаторы 17-кубитного поверхностного кода определяются
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Измерение Z синдромов

Измерение X синдромов

Z синдромы

X синдромы
Время

Вспомогатльные

Информационные

кубиты

кубиты

CZ операция

Вращение Ryπ/2

Вращение Ry-π/2

Измерение

Рисунок 3.5: Квантовая схема цикла коррекции ошибок 17-кубитного

поверхностного кода, состоящая из однокубитных вращений вокруг оси y и

восьми серий одновременных CZ-гейтов [107].

следующим образом:

X-стабилизаторы Z-стабилизаторы

SA0 = X1X2 SA1 = Z0Z3

SA2 = X0X1X3X4 SA3 = Z1Z2Z4Z5

SA5 = X4X5X7X8 SA4 = Z3Z4Z6Z7

SA7 = X6X7 SA6 = Z5Z8

где индексы у операторов Паули X и Z соответствуют номерам информацион-

ных кубитов.

Особенно примечательно, что измерение операторов чётности X операторов

информационных кубитов начинается сразу после выполнения гейтов Rπ/2
y на

кубитах {A0, A2, A5, A7}, а измерение вспомогательных кубитов Z синдромов

продолжается во время выполнения первых четырёх серий CZ-гейтов, как пока-
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зано на временной шкале рисунка 3.5. Таким образом, полный цикл коррекции

включает 4 двухкубитных гейта, 2 однокубитных вращения и одну процедуру

измерения с последующим сбросом, что в сумме составляет 800 нс.

Схема моделировалась с использованием тех же моделей шума, что и для

пятикубитного кода.

3.2 Модели ошибок

3.2.1 Число корректируемых ошибок

Перед тем как перейти к численному эксперименту, необходимо понять, ка-

кие результаты ожидаются и как их следует интерпретировать. Для этого рас-

смотрим простую модель ошибок, которая, несмотря на свою упрощённость,

позволяет понять принципиальную зависимость логической ошибки от физиче-

ской в зависимости от дистанции кода. Такая модель обычно используется для

оценки того, сколько ошибок может исправить предложенная схема.

Пусть N — число физических кубитов, используемых для хранения инфор-

мации о логическом кубите в рамках выбранного кода коррекции квантовых

ошибок. Обозначим L как максимальное количество ошибок, которые код спо-

собен исправить, а p — вероятность ошибки одного кубита за цикл (считается,

что ошибки кубитов независимы). Вероятность того, что за цикл случится ров-

но k ошибок, определяется формулой биномиального распределения:

pk = Ck
Np

k (1− p)N−k , (3.7)

где Ck
N — число сочетаний. Чтобы код мог исправить ошибку, должно произойти

не более L ошибок. Вероятность успешной коррекции ошибок выражается в

виде суммы вероятностей для всех случаев, когда k ≤ L:

pL =
L∑

k=0

Ck
Np

k (1− p)N−k . (3.8)

Соответственно, вероятность некорректируемой ошибки (логической ошибки)
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равна:

ϵ = 1− pL =
N∑

k=L+1

Ck
Np

k (1− p)N−k . (3.9)

Анализ этой суммы показывает, что ведущий член, а значит, и вероятность

некорректируемой логической ошибки ϵ, пропорционален pL+1. Вспоминая, что

дистанция кода d связана с числом корректируемых ошибок L как d = 2L+ 1,

получаем ключевую зависимость для оценки масштабируемости кодов коррек-

ции ошибок:

ϵ ∼ p(d+1)/2. (3.10)

Такая показательная зависимость логической ошибки от дистанции харак-

теризует эффективность кодов коррекции ошибок, не только для рассматрива-

емой упрощенной модели ошибок, но и для более сложных шумовых процессов.

Именно она демонстрирует способность кода справляться с различными видами

ошибок и является критерием его качества.

3.2.2 Модель ошибок при численном расчете временной эволюции

матрицы плотности

Численное моделирование кодов коррекции квантовых ошибок представля-

ет собой важный инструмент анализа и разработки квантовых алгоритмов. При

использовании матрицы плотности для моделирования временной эволюции

квантовой системы достигается более полное описание всех значимых процессов

в реальных экспериментах. В отличие от других подходов, таких как симуля-

ция волновой функции, данный метод позволяет учитывать взаимодействие с

окружающей средой и, следовательно, все связанные процессы декогеренции

и диссипации. Это особенно важно для исследования устойчивости квантовых

операций к шумам, характерным для современных сверхпроводящих систем.

В модели, используемой в данной работе, учитываются амплитудная релакса-

ция, дефазировка, деполяризация и ошибки измерений кубитов, что позволяет

правдоподобно приблизить симуляцию к реальному физическому устройству.
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Для описания ошибок, возникающих во время выполнения гейтов или без-

действия использовалась модель «сэндвича»: до и после операции на каждый

из участвующих в ней кубитов действовал канал амплитудного или фазового

затухания с параметром затухания, соответствующим половине длительности

операции. Этот канал бездействия в терминах матрицы переноса Паули описы-

вается следующим образом:

Ridle(t) = RAD(t)RPD(t), (3.11)

где RAD и RPD стандартные каналы затухания и дефазировки

RAD =


1 0 0 0

0
√
1− γ1 0 0

0 0
√
1− γ1 0

γ1 0 0 1− γ1

 , (3.12)

RPD =


1 0 0 0

0
√
1− γϕ 0 0

0 0
√

1− γϕ 0

0 0 0 1

 . (3.13)

Здесь параметры γ1 и γϕ зависят от времени действия канала и определяются

выражениями γ1 = 1− e−t/T1, γϕ = 1− e−2t/Tϕ, где 1
T2

= 1
2T1

+ 1
Tϕ

.

Кроме того, при выполнении нетривиальных операций для лучшего соответ-

ствия с результатами томографии квантовых процессов учитывалась асиммет-

ричная деполяризации. Так так реальным вращением, выполняемым на про-

цессоре, является вращение вокруг оси Y (или X, с точностью до выбора на-

правления вращения), то к однокубитной ошибке поворота добавляется депо-

ляризующая ошибка сжатия в плоскости вращения XZ и вдоль оси вращения

Y [107,108]:

Rdep =


1 0 0 0

0 1− pplane 0 0

0 0 1− paxis 0

0 0 0 1− pplane

 . (3.14)
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Параметр Обозначение Значение

Время релаксации кубита T1 30 µs

Время декогеренции кубита T2 40 µs

Длительность однокубитных операций τ1 20 ns

Длительность двухкубитный операций τ2 40 ns

Время измерения и инициализации tm 600 ns

Деполяризация вдоль оси вращения paxis 10−4

Деполяризация в плоскости вращения pplane 5 · 10−4

Таблица 3.2: Параметры используемой модели шума, описывающие ошибки,

происходящее во время операций и бездействия кубитов [108–111].

Таким образом, ошибка при бездействии задается матрицей переноса (3.11),

а при реальном выполнении гейтов (операция вращения вокруг оси Z является

виртуальной), описывается выражением

Rerror(G) = Ridle(τ/2)RdepRideal(G)Ridle(τ/2). (3.15)

Тут Rideal(G) и Rerror(G) матрицы Паули описывающие действие унитарного

оператора G в идеальном и зашумленном случае, а τ – длительность операции.

Параметры шумовой модели представлены в таблице 3.2.

Ошибка происходящая в процессе проективного измерения кубитов модели-

ровалась с помощью вероятностной модели [109,112]. Она состоит из двух эта-

пов и заключается в следующем. Сначала по матрице плотности вычисляются

проекции кубита на состояния |0⟩ и |1⟩, а затем случайным образом, в соответ-

ствии с полученными вероятностями, определяется состояние i ∈ {|0⟩, |1⟩}, в

которое кубит спроецировался бы в идеальном случае. На втором этапе опре-

деляется наблюдаемый результат считывания m ∈ {+1,−1} и конечное состо-

яние o ∈ {|0⟩, |1⟩} кубита после процедуры шумного измерения. Идеальное и

наблюдаемое конечные состояния связаны друг с другом в соответствии с экс-

периментально полученными вероятностями ϵo,mi , приведёнными в таблице 3.3.

Метод численного моделирования на основе матрицы плотности обладает
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Вероятность Значение Вероятность Значение

ϵ+1,0
0 0.9985 ϵ+1,0

1 0.0050

ϵ+1,1
0 0.0000 ϵ+1,1

1 0.0015

ϵ−1,00 0.0015 ϵ−1,01 0.0149

ϵ−1,10 0.0000 ϵ−1,11 0.9786

Таблица 3.3: Вероятности ошибок чтения состояния [107,109].

высокой вычислительной сложностью из-за экспоненциального роста размер-

ности вычислительного пространства при увеличении числа кубитов. Это на-

кладывает серьёзные ограничения на симуляцию больших квантовых систем.

Однако данный подход остаётся приоритетным для анализа влияния шума в

небольших квантовых системах.

3.2.3 Феноменологическая модель ошибок

Для численного моделирования матрицы плотности требуется значитель-

ный объем вычислительных ресурсов, что делает такие подходы практически

нереализуемыми при изучении больших квантовых систем. С целью снижения

вычислительной сложности и ускорения моделирования предложены различ-

ные приближённые модели, которые, хотя и упрощают физическую природу

системы, позволяют воспроизвести ключевые аспекты динамики ошибок. Эти

модели находят широкое применение в исследованиях квантовых кодов коррек-

ции ошибок и разработке алгоритмов декодирования.

Одна из самых простых из них – это модель, при которой ошибки происходят

с некоторой вероятностью между циклами коррекции. Такое описание подобно

тому, что было приведено в разделе 3.2.1, но при этом проводится исправление

квантовых ошибок, вывод о возникновении которых делается, опираясь на из-

мерение синдромов. Такая модель является чрезмерно упрощенной, однако она

дает возможность понять является ли код коррекции в принципе работоспо-

собным, и применяется при изучении кодов коррекции на системах с сотнями
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кубитов.

Более реалистичная модель ошибок включает вероятность возникновения

ошибок в ходе цикла коррекции при извлечении синдромов. Эта модель, из-

вестная как феноменологическая шумовая модель [113–116], представляет со-

бой абстрактное упрощение более сложной модели шумов на уровне квантовой

схемы, в которой каждая операция потенциально может содержать ошибки.

Несмотря на свою абстрактность, феноменологическая модель интуитивно по-

нятна и эффективно отражает основные проблемы, возникающие в процессе

реализации отказоустойчивых вычислений. Подобный подход позволяет соеди-

нить ключевые аспекты реальных шумов и теоретического анализа, что делает

феноменологическую модель важным инструментом для начальных этапов ис-

следований в области квантовой коррекции ошибок. В этой модели выделяются

два основных типа ошибок.

Первый тип – это ошибки, возникающие на физических кубитах между цик-

лами коррекции ошибок. Эти ошибки проявляются только на изменениях син-

дромов в ближайшем цикле коррекции и называются пространственноподоб-

ными, так как именно по расположению кубитов, синдром которых изменился,

определяют тип ошибки. Такие ошибки принято описывать стандартным де-

поляризационным каналом, действующим независимо и одинаково на каждом

кубите. Математически этот процесс записывается как:

E(ρ) = (1− p)ρ+ pxXρX + pyY ρY + pzZρZ, (3.16)

где p = px + py + pz — общая вероятность ошибки, а px, py, pz — вероятности

возникновения ошибок X, Y , Z соответственно.

Второй тип ошибок — это ошибки измерения синдромов. Они обусловле-

ны ошибками, которые произошли в процессе цикла коррекции, включая ини-

циализацию вспомогательных кубитов, шумные квантовые операции и ошиб-

ки измерений вспомогательных кубитов. Их принято считать времеподобными

ошибками, так как они искажают синдромы конкретного цикла, однако не ска-

зываются на измерения синдромов в последующих циклах коррекции. Они про-

исходят на вспомогательных кубитах перед измерением их состояния в базисе
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Z. Эти ошибки описываются каналом битовой ошибки:

Ebit(ρ) = (1− q)ρ+ qXρX, (3.17)

где q — вероятность ошибки. В отличие от деполяризационных, такие ошибки

не влияют напрямую на логическое состояние квантовой системы, однако они

искажают измеряемые синдромы и существенно усложняют задачу декодиро-

вания ошибок.

Важной особенностью феноменологической модели является её сравнитель-

но высокая вычислительная эффективность. Она позволяет избегать трудоём-

кого моделирования матрицы плотности. Вместо этого синдромы и ошибки мо-

гут быть сгенерированы методом Монте-Карло, что может значительно уско-

рить вычисления. Тем не менее, основное внимание в данной работе уделяется

анализу квантовых схем, сложность которых увеличивается с ростом дистан-

ции. Для такого подхода важно учитывать влияние последовательностей опе-

раций, с помощью которых происходит переадресация кубитов. Для эффектив-

ного моделирования квантовых схем, содержащих клиффордовские операции

и проективные измерения, можно эффективно использовать формализм стаби-

лизаторов, описанный в работе [117].

Оригинальная реализация данного подхода обладает вычислительной слож-

ностью O(ng + n2d+ n2r), где n — общее число кубитов, g — количество кван-

товых операций, d — число детерминированных измерений, а r — количество

измерений с вероятностным исходом. В настоящем исследовании используется

улучшенная реализация метода, доступная в библиотеке Stim [118]. Она облада-

ет оптимизированной сложностью O(ng+nd+n2r), что позволяет эффективно

моделировать системы повышенной сложности.

В данной работе модель ошибок описывается симметричным деполяризаци-

онным каналом (3.16): px = py = pz = p/3. Вероятность времеподобных ошибок

(3.17) q выбрана равной вероятности деполяризационных ошибок p, что делает

параметры ошибок модели удобными для практических расчётов, так как все

они характеризуются одним параметром p.



94

3.3 Алгоритмы декодирования кодов коррекции ошибок

3.3.1 Постановка задачи и оценка верхней границы точности работы

кодов коррекции

Декодер представляет собой алгоритм, который обрабатывает результаты

измерений вспомогательных кубитов и вычисляет унитарный оператор R. Этот

оператор применяется к конечному состоянию квантовой системы для восста-

новления исходного состояния логического кубита. Качество декодирования

определяется способностью алгоритма минимизировать ошибки восстановле-

ния для заданной модели ошибок или параметров квантового устройства.

Идеальный декодер всегда возвращает такой оператор R, который обеспе-

чивает максимально возможную величину точности итогового состояния от-

носительно начального состояния. Однако эта точность не может превышать

наибольшее собственное значение матрицы плотности конечного состояния, ко-

торое и определяет независимый от алгоритма декодирования предел точности

алгоритма для конкретной реализации кодов коррекции ошибок.

Используя матрицу плотности конечного состояния информационных куби-

тов ρ, можно построить матрицу плотности логического кубита ρL по следую-

щей формуле:

ρL =
I + Tr(XLρ)X + Tr(YLρ)Y + Tr(ZLρ)Z

2
. (3.18)

Здесь XL, YL, ZL — операторы Паули, относящиеся к логическому кубиту. Эта

формула позволяет извлечь информацию о логическом кубите из коллективно-

го состояния физических кубитов, лежащего в подсистеме логического подпро-

странства.

Важно отметить, что верхняя граница точности декодирования определяет-

ся исключительно матрицей плотности финального состояния и не зависит от

конкретных измерений синдромов ошибок.
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3.3.2 Подходы к реализации процесса декодирования

Создание надежного и быстрого декодера является одной из сложнейших

задач в теории кодов коррекции квантовых ошибок. Цель декодирования за-

ключается в определении наиболее вероятных ошибок, повлиявших на состо-

яние квантовой системы и и вызвавших изменения наблюдаемых синдромов.

Эффективность декодирования напрямую определяет точность восстановления

логического состояния, а следовательно, и качество работы всего кода коррек-

ции.

Одним из наиболее популярных подходов к декодированию синдромов в слу-

чае поверхностных кодов является метод поиска паросочетаний во взвешенном

графе. При условии, что независимые ошибки возбуждают не более двух эле-

ментов синдрома, процесс декодирования можно представить как задачу на-

хождения оптимального соединения вершин в графе, где каждая вершина со-

ответствует синдрому, а ребра – ошибкам. В рамках такого подхода наиболее

вероятная последовательность ошибок определяется с использованием алгорит-

ма поиска паросочетания минимального веса (minimum weight perfect matching,

MWPM) [113].

Однако данный метод не подходит для сложных ошибок, например, тех,

которые возбуждают более двух синдромов одновременно или изменяют син-

дромы смешанных типов, так как требует построения графа, сопоставляющего

синдромы и ошибки. В таких ситуациях используются другие подходы, напри-

мер, основанные на принципе максимального правдоподобия распространения

ошибок (belief matching) [119]. Тем не менее, применение подобных методов в

кодах большой дистанции сталкивается с вычислительными трудностями, обу-

словленными необходимостью обработки высокоразмерных графовых моделей

и большим объёмом данных [120].

Перспективным направлением в декодировании является использование ме-

тодов машинного обучения, в частности нейронных сетей [121–128]. Основная

задача декодирования в данном случае заключается в анализе периодических

измерений вспомогательных кубитов и предсказании логических ошибок. Это
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сводится к распознаванию закономерностей в числовых последовательностях,

что делает искусственные нейронные сети естественным выбором для подоб-

ных задач. Поскольку данные, собираемые в ходе экспериментов по коррекции

квантовых ошибок, представляют собой временные ряды, рекуррентные ней-

ронные сети (RNN) рассматриваются как наиболее подходящие кандидаты для

процедур декодирования.

В данной работе используется архитектура сети с долгой краткосрочной па-

мятью (long short-term memory, LSTM) [129], которая является разновидностью

RNN. Она обладает способностью сохранять долгосрочные зависимости и учи-

тывать временной характер входных данных. В последние годы архитектура

LSTM успешно применялась в задачах декодирования, демонстрируя высокую

эффективность [130,131].

Особенностью подхода, предлагаемого в данном исследовании, является обу-

чение LSTM-сети на комбинированных данных. Помимо анализа измерений

синдромов, сеть тренируется с использованием предсказаний других, более про-

стых алгоритмов декодирования, специализирующихся на различных сценари-

ях проявления ошибок. Такой подход позволяет эффективно сочетать сильные

стороны разных методов декодирования: специализированные декодеры быстро

и относительно хорошо справляются с конкретными типами ошибок, в то вре-

мя как нейронная сеть обучается различать случаи их появления и, в конечном

итоге, улучшает общий результат декодирования. Такая стратегия позволила

повысить эффективность декодирования в сложных случаях ошибок высокого

веса и смешанного типа.

3.3.3 Модифицированный алгоритм декодирования на основе таб-

лицы поиска

В качестве предварительного алгоритма декодирования в данной работе ис-

пользуется модификация декодера, основанного на поиске по таблице истинно-

сти, обозначаемого как LUT-декодер. Базовый LUT-декодер представляет собой

таблицу, которая хранит соответствие между логическими ошибками и синдро-
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мами, возникающими из-за ошибок на информационных кубитах. Такой подход

эффективен в устранении пространственноподобных ошибок, но не способен

справляться с времеподобными ошибками. Для устранения этой проблемы вве-

дено понятие «глубина памяти»

Идея заключается в следующем: при декодировании k-го цикла коррекции,

если синдромы в этом цикле не изменились, предполагается, что ошибка не

произошла, и алгоритм переходит к следующему циклу. Если же в k-м цикле

имеют место нетривиальные детекторы (измерения синдромов), алгоритм ана-

лизирует на следующие D циклов. Если в этих D циклах не обнаружено новых

нетривиальных детекторов, ошибка в k-м цикле корректируется согласно таб-

лице поиска. В противном случае синдром k-го цикла добавляется к детекторам

(k + 1)-го цикла, а исправление откладывается на следующий цикл.

Параметр D называется «глубиной памяти». Так, при D = 0 память от-

сутствует, что соответствует базовому LUT-декодеру. При D = 1 декодер эф-

фективно корректирует ошибки измерений, а при D = 2 — с ситуациями, ко-

гда две последовательные ошибки измерений приводят к занулению синдрома.

Основной недостаток этого метода состоит в том, что накопление синдромов

может увеличивать вероятность пространственноподобных ошибок, снижая эф-

фективность таблицы поиска. Однако это компенсируется возможностью созда-

ния нескольких быстрых декодеров, способных обрабатывать различные сцена-

рии ошибок, что упрощает процесс принятия решений нейронной сетью. Для

обозначения глубины памяти LUT-декодера используется запись D в скобках,

например, LUT(1), что соответствует D=1.

Математически концепция глубины памяти LUT-декодера D формализует-

ся как техника предобработки данных. Изменения синдромов sij определяются

следующим образом:

sij =

0, если j = 1,

mi
j −mi

j−1 mod 2, иначе,
(3.19)

гдеmi
j — результаты измерений вспомогательных кубитов с номером i = 1, . . . , n

после цикла с номером j = 1, . . . , k, принимающие значения 0 или 1. Соот-
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ветственно, процесс предобработки синдромов может быть описан следующим

алгоритмом:

for j ≤ k do

if
∑

i s
i
j ̸= 0 and

∑D
k=1

∑
i s

i
j+k ̸= 0 then

for i ≤ n do

sij+1 ←
(
sij + sij+1

)
mod 2

sij ← 0

end for

end if

end for

3.3.4 Архитектура нейронного декодера

Итак, теперь в качестве входных данных для нейронной сети используют-

ся не только необработанные результаты измерений стабилизаторов, но также

предсказания двух LUT декодеров с различными значениями глубины памяти,

D = 1 и D = 2.

Архитектура нейронной сети включает L слоев LSTM, каждый из которых

имеет скрытую размерность S1. Эти слои обеспечивают способность модели

учитывать временные зависимости в данных. После LSTM слоев следуют два

линейных слоя с размерностями S1 → S2 и S2 → S2, между которыми использу-

ется функция активации ReLU для добавления нелинейности. Заключительный

линейный слой преобразует данные из размерности S2 в слой размерности 4, что

соответствует четырем возможным исправлениям состояния логического куби-

та с помощью операторов Паули: X, Y , Z или I (соответствующего отсутствию

ошибки).

Для преобразования выходных данных нейронной сети в вероятности ис-

пользуется многопеременная логистическая функция (softmax). Функция по-

терь определяется как отрицательный логарифм правдоподобия, сравниваю-

щий предсказанное исправление ошибки с текущим логическим состоянием ку-

бита.
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Рисунок 3.6: Алгоритм декодирования с использованием рекуррентной

нейронной сети. Необработанные результаты измерений вспомогательных

кубитов, полученные в процессе эксперимента с квантовой памятью,

преобразуются в детектирующие события. Далее эти события проходят

обработку двумя декодерами на основе таблицы поиска с глубинами памяти

D = 0 и D = 1. После этого сформированные данные подаются на вход

нейронной сети, которая рассчитывает вероятности различных ошибок и

определяет наиболее вероятное исправление логического состояния.
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Полный процесс декодирования, включая использование предсказаний LUT-

декодеров и архитектуру нейронной сети, представлен на рисунке 3.6.

3.4 Результаты численного моделирования

3.4.1 Анализ эффективности пятикубитного кода

Численное исследование эффективности циклического кода начнем с мо-

делирования работы пятикубитного кода в модели ошибок, действующих на

матрицу плотности. Для этого была проведена численная симуляция экспери-

мента по хранению квантового состояния. Для каждого из шести начальных

состояний (|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩) было сгенерировано 10 000 независимых

траекторий с различными результатами измерений вспомогательных кубитов.

На основе этих данных были рассчитаны матрицы плотности, описывающие

состояние логического кубита, и определена верхняя граница точности восста-

новления начального состояния.

Зависимость полученной точности от числа циклов коррекции или от вре-

мени, что по сути то же самое, аппроксимирована выражением [107]:

F (t) =
1

2
+

1

2
(1− 2ϵ)t−t0, (3.20)

где F (t) — средняя точность восстановленных состояний, ϵ — вероятность воз-

никновения ошибок за 1 мкс, а t — время в мкс. Параметры аппроксимации ϵ

и t0 были найдены методом наименьших квадратов. Численные значения ско-

рости затухания логического кубита ϵ приведены в таблице 3.4.

Результаты моделирования демонстрируют, что точность восстановления

квантового состояния для всех шести конфигураций различается незначитель-

но, что соответствует ожидаемым свойствам пятикубитного кода. Усредненные

результаты по шести начальным состояниям в эксперименте по хранению кван-

товой информации приведены на рисунке 3.7.

Кроме того, выполнено сравнение точности восстановления состояния ло-

гического кубита с динамикой одиночного кубита, подверженного затуханию с

временами релаксации и когерентности T1 и T2. В этом случае средняя точность
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Вероятность логической ошибки ϵ за 1 мкс

Начальное состояние Циклический

5-кубитный

Поверхностный

17-кубитный

|0⟩ 0.644± 0.006 0.604± 0.005

|1⟩ 0.629± 0.006 0.621± 0.005

|+⟩ 0.675± 0.002 0.466± 0.007

|−⟩ 0.665± 0.004 0.442± 0.004

|i+⟩ 0.638± 0.003 1.143± 0.020

|i−⟩ 0.623± 0.005 1.123± 0.015

Среднее значение 0.646± 0.005 0.703± 0.009

Таблица 3.4: Верхняя граница вероятности логической ошибки ϵ, для шести

начальных состояний в 5-кубитном циклическом коде коррекции ошибок и

коде 17-кубитном порвехностном коде.

по шести начальным состояниям определяется выражением:

Fsingle(t) =
1

6

(
1 + e−t/T1

)
+

1

3

(
1 + e−t/T2

)
. (3.21)

Для сравнения эффективности пятикубитного кода с другими методами

коррекции ошибок выполнена симуляция 17-кубитного поверхностного кода в

этой же модели ошибок. Зависимость верхней границы точности восстановле-

ния логического состояния от времени для 17-кубитного кода, усреднённая по

шести начальным состояниям, представлена на рисунке 3.7. В Таблице 3.4 так-

же приведены скорости затухания для каждого из шести состояний. В отличие

от пятикубитного кода, у 17-кубитного поверхностного кода наблюдается суще-

ственное различие в скорости затухания логического кубита, инициализирован-

ного в разных начальных состояниях. Наибольшее отклонение демонстрируют

состояния, ориентированные вдоль оси Y , поскольку их стабилизация в поверх-

ностном коде требует участия вспомогательных кубитов обоих типов.

Исследуя коды коррекции квантовых ошибок ключевой интерес представ-

ляет поведение вероятности логической ошибки в зависимости от уровня фи-

зических ошибок. Именно по этой зависимости можно определить какое коли-
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чество ошибок за цикл коррекции код способен исправлять. Для выполнения

подобного исследования модель ошибок была упрощена до релаксации и декоге-

ренции, описываемыми временами T1 и T2. При этом учитывалось, что кубиты

подвергаются процессам релаксации и дефазировки не только между циклами

коррекции при измерении вспомогательных кубитов, но и в течение всего цикла

коррекции. Выполненный численный эксперимент по хранению квантового со-

стояния для различных значений T1 (при допущении T2 = T1) позволил оценить

сверху величину характеризующую скорость накопления логических ошибок ϵ.

При исследовании кодов коррекции квантовых ошибок ключевой интерес

представляет анализ зависимости вероятности логической ошибки от уровня

физических ошибок. Эта зависимость позволяет определить, какое количество

ошибок за цикл коррекции код способен исправлять. Для проведения такого

анализа использовалась модель ошибок, учитывающая процессы релаксации и

декогеренции, характиризующихся временами T1 и T2. При этом учитывалось,

что квантовые состояния подвергаются релаксации и дефазировке не только

в промежутках между циклами коррекции, когда измеряются вспомогатель-

ные кубиты, но и в течение всего цикла коррекции. Численный эксперимент

по хранению квантового состояния для различных значений T1 ( для просто-

ты представления данных было выбрано T2 = T1) позволил оценить верхнюю

границу скорости накопления логических ошибок ϵ.

Полученные результаты представлены на рисунке 3.8. Для аппроксимации

данных использовалась модель, описанная в разделе 3.2.1. В случае кода кор-

рекции, исправляющего не более одной ошибки за цикл, выражение для веро-

ятности логической ошибки (3.9) принимает вид:

ϵ = 1−
[
(1− p)N +Np(1− p)N−1

]
, (3.22)

где p — вероятность возникновения ошибки на физическом уровне, а N — число

кубитов в коде. При малых значениях p это выражение можно разложить в ряд:

ϵ =
(N − 1)N

2
p2 +O(p3). (3.23)

Поскольку пятикубитный код исправляет не более одной ошибки за цикл,



103

0 5 10 15 20
5-qubit cycle number

0 5 10 15

Time (µs)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
id

el
it

y

ε
single =

1.17%

ε = 0.64(6)%

ε = 0.70(3)%

Single qubit

5-qubit

Surface-17

Рисунок 3.7: Верхние границы точности восстановления логического

состояния для кодов коррекции ошибок: пятикубитного (синий) и

17-кубитного (зеленый), усредненные по шести начальным состояниям

|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩, рассчитанные методом численного моделирования

эволюции матрицы плотности. Серая кривая соответствует средней точности

сохранения состояния одного физического кубита.

зависимость вероятности логической ошибки следует аппроксимировать квад-

ратичной зависимостью (3.23), принимая p пропорциональным exp(−t/T1) с

некоторым коэффициентом β. Полученное значение параметра β равно 0.44.

Видно, что теоретическая кривая хорошо согласуется с численными данными

при T1 ≥ 20 мкс. При меньших значениях T1 наблюдаются расхождения, что

объясняется ограниченной применимостью модели при больших значениях p.

Кроме того, сравнение выражений (3.20) и (3.21) при T1 = T2 показывает, что

вероятность логической ошибки за 1 мкс определяется как ϵ = 0.5 exp(−1/T1),
где T1 выражается в микросекундах. Таким образом, полученное значение ко-

эффициента β оказывается близким к этой теоретической оценке.
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Рисунок 3.8: Зависимость логической ошибки ϵ для пятикубитного кода от

времен релаксации и дефазировки (T1 = T2) физических кубитов, усредненная

по трем начальным состояниям |0⟩, |+⟩, |i+⟩. Синие точки представляют

данные, рассчитанные с помощью численного моделирования эволюции

матрицы плотности; синяя кривая — их аппроксимация уравнением 3.22;

оранжевая линия соответствует уровню физической ошибки физического

кубита.

3.4.2 Исправление ошибок для произвольного начального состояния

В предыдущем разделе была проведена численная оценка верхней грани-

цы эффективности произвольного алгоритма декодирования в рамках задан-

ной модели ошибок. Однако для полной оценки эффективности кода коррек-

ции ошибок необходимо продемонстрировать, что коррекция ошибок может осу-

ществляться непосредственно на основе измерений вспомогательных кубитов.

Для этого требуется реализовать конкретный декодирующий алгоритм.

Для пятикубитного кода в данной работе разработан декодер, основанный

на рекуррентных нейронных сетях. Обучающий набор данных включает ре-

зультаты измерений вспомогательных кубитов, полученные в ходе численной
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симуляции, а также результаты считывания итоговых состояний информацион-

ных кубитов. Нейронная сеть обучается одновременно на трех наборах данных,

соответствующих трем начальным состояниям {|+⟩, |i+⟩, |0⟩}; каждый набор

содержит 1 200 000 результатов считывания. Эффективность декодера тестиру-

ется на 450 000 траекториях, для тех же начальных состояний, что использова-

лись при обучении. В отличие от процесса обучения, при тестировании конечное

логическое состояние не измеряется, а рассчитывается из матрицы плотности

информационных кубитов по формуле (3.18). Точность восстановления состоя-

ния, достигнутая с помощью нейронного декодера, представлена на рисунке. 3.9

(фиолетовая кривая), а полученная скорость накопления логических ошибок

приведена в Таблице 3.5.

Тем не менее, цель коррекции квантовых ошибок заключается не только в

восстановлении состояний, сонаправленных с координатными осями на сфере

Блоха, но и произвольных квантовых состояний. Для оценки работы декоде-

ра в этом сценарии была исследована его эффективность при восстановлении

произвольного чистого состояния логического кубита вида α|0⟩L + β|1⟩L. Это

состояние кодируется в α|00000⟩+ β|11111⟩ с использованием схемы, представ-

ленной на рисунке 3.10, при этом предполагается, что процесс кодирования не

содержит ошибок. После инициализации выполняется численный эксперимент

по сохранению начального квантового состояния, а восстановленная матрица

плотности логического кубита сравнивается с предсказанием нейронного деко-

дера.

Этот процесс был выполнен для 17 000 различных начальных состояний,

равномерно распределённых по сфере Блоха. Средняя вероятность верного вос-

становленного логического состояния представлена на рисунке 3.9 (розовая кри-

вая). Полученные результаты демонстрируют, что значение ϵ практически сов-

падает с соответствующим значением для состояний, сонаправленных с коор-

динатными осями (см. таблицу 3.5), тем самым подтверждая эффективность

нейронного декодера.
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Вероятность ошибки ϵ за 1 мкс

Начальное состояние Нейронный декодер

|0⟩ 0.88± 0.01

|+⟩ 1.03± 0.01

|i+⟩ 1.05± 0.01

Среднее по состояниям |0⟩, |+⟩, |i+⟩ 0.99± 0.01

Произвольное состояние 0.993± 0.003

Таблица 3.5: Вероятности логической ошибки ϵ для нейросетевого декодера,

представленного на рисунке 3.9, для различных начальных состояний.

Ошибка оценена методом k-кратной кросс-валидации при k = 5

Количество циклов коррекции

То
чн
ос
ть

Верхняя граница

Нейронный декодер

состояния
Нейронный декодер

произвол. состояния

Время (мкс)

Рисунок 3.9: Сравнение точности восстановленного состояния логического

кубита в пятикубитном коде коррекции ошибок для идеального декодера

(верхняя граница) и нейросетевого декодера, примененного к трем начальным

состояниям |0⟩, |+⟩, |i+⟩ и произвольным равномерно распределенным чистым

состояниям.
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Рисунок 3.10: Квантовая схема приготовления произвольного начального

логического состояния, состоящая из четырех операций CNOT, которая

кодирует состояние α|0⟩L + β|1⟩L в α|00000⟩+ β|11111⟩.

3.4.3 Подавление ошибок при масштабировании

После подробного исследования работоспособности пятикубитного кода ло-

гично перейти к анализу его свойств при масштабировании. Для этого было

выполнено численное моделирование экспериментов по хранению квантового

состояния, аналогичное описанному в предыдущих подразделах, но с учетом из-

менения, заключающегося в использовании феноменологической модели оши-

бок. Так как в моделировании рассматривается эволюция чистого состояния,

определить границу точности кода методом вычисления наибольшего собствен-

ного значения матрицы плотности логического кубита невозможно. Вместо это-

го необходимо корректировать ошибку с помощью алгоритма декодирования и

определять точность восстановленного состояния.

В работе используется алгоритм декодирования на основе нейронной сети,

описанный в подразделе 3.3.4. В качестве обучающего набора данных для де-

кодера было сгенерировано 1.5 · 106 траекторий эволюции логического кубита

при вероятности ошибки p = 0.01. Логический кубит инициализировался в трех

различных базисах: Z, X и Y . Оптимизированные методом поиска по сетке ги-

перпараметры нейронной сети L, S1 и S2 для каждого значения дистанции кода

представлены в таблице 3.6.

Для тестирования эффективности циклических кодов эксперимент по хра-

нению квантового состояния был проведен 3 · 106 раз при различных вероятно-

стях ошибки p на физических кубитах. Логический кубит инициализировался
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Дистация кода Слои LSTM Размер S1 Размер S2

3 2 256 128

5 3 256 128

7 4 256 128

9 5 512 256

Таблица 3.6: Параметры нейронной сети (рисунок 3.6), используемые в данной

работе.

в трех различных базисах (Z, X, Y ) и хранился в течение 50 циклов коррекции

ошибок. Полученные данные были аппроксимированы функцией [10,107]:

F (n) =
1

2
+

1

2
(1− 2ϵ)n−n0, (3.24)

где n — количество циклов коррекции, ϵ — вероятность логической ошибки за

один цикл коррекции, а точность восстановления состояния логического кубита

F (n) определяется как доля правильно восстановленных состояний. Параметры

ϵ и n0 вычислены по методу наименьших квадратов.

Описанным методом была получена вероятность логической ошибки ϵ для

различных расстояний предложенного кода в зависимости от вероятности фи-

зической ошибки p, что иллюстрируется на рисунке 3.11. Поскольку код кван-

товой коррекции ошибок с дистанцией d способен исправлять до (d−1)/2 неза-

висимых ошибок на физических кубитах, связь между этими параметрами опи-

сывается степенным законом:

ϵ ∼ p(d+1)/2. (3.25)

Наклон графика совпадает с ожидаемым значением (d+1)/2. Это подтвер-

ждает способность кода исправлять требуемое число ошибок, соответствующее

заявленной дистанции, в рамках выбранной модели ошибок и применяемого

алгоритма декодирования.
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Рисунок 3.11: Вероятность логической ошибки циклического кода в

зависимости от вероятности физической ошибки p. Линии показывают

аппроксимацию результатов моделирования при логической ошибке ниже 10−4

с использованием формулы (3.25).

3.4.4 Эффективность нейронного декодера

В завершение исследования следует остановиться на вопросе эффективно-

сти нейронного декодера и оценить, насколько его результаты улучшаются бла-

годаря данным, полученным от других алгоритмов декодирования. Наиболее

наглядно анализировать это для кодов большой дистанции, где проявляется

сложность задачи: требуется обрабатывать синдромы значительного веса, и от-

вечающие ошибкам различной чётности по X и Z, что делает их декодирование

более трудоёмким.

Для количественной оценки выполнено сравнение нейронного декодера, ра-

ботающего с LUT декодерами с разной глубиной памяти и классическим деко-

дером на примере циклического кода с d = 7. На рисунке 3.12 представлены

зависимости вероятности логической ошибки ϵ от физической ошибки p для

следующих методов:

◦ Нейронный декодер, обученный только на измерениях детекторов без ис-

пользования дополнительных декодеров (закрашенные ромбы);
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Рисунок 3.12: Вероятность логической ошибки циклического кода дистанции 7

в зависимости от вероятности физической ошибки p для различных

алгоритмов декодирования. Закрашенные кружки соответствуют результатам,

полученным с помощью нейронной сети, обученной на измерениях детекторов

и предсказаниях двух таблиц поиска (LUT) с глубиной памяти D = {1, 2},
закрашенные звезды – на измерениях детекторов и предсказания таблицы

поиска с глубиной памяти 1, а закрашенные ромбы – только на детекторах.

Пустые квадраты показывают лучший результат работы декодера на основе

таблицы поиска среди разных глубин памяти. Линии показывают линейную

аппроксимацию результатов моделирования в логарифмическом масштабе.

◦ Нейронный декодер, обученный на измерениях детекторов и предсказа-

ниях одного LUT декодера (D = 1) (закрашенные звезды);

◦ Нейронный декодер, обученный на измерениях детекторов и предсказа-

ниях двух LUT-декодеров (D = 1, 2) (закрашенные круги);

◦ Лучший результат для LUT декодера, оптимизированного по параметру

глубины памяти (D = 1) (пустые красные квадраты).

Видно, что нейронная сеть, не использующая дополнительные данные, де-

монстрирует более высокую вероятность логической ошибки по сравнению даже
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с LUT декодером. Нейронная сеть, работающая с необработанными данными и

исключительно с результатами LUT(1), показывает лишь незначительное улуч-

шение по сравнению с самим LUT(1). Однако сочетание нейронной сети с дву-

мя различными LUT декодерами демонстрирует существенно более высокую

эффективность, значительно превосходя производительность метода, исполь-

зующего только один LUT декодер. Преимущество этого подхода проявляется

в том, что только он из представленных на рисунке методов декодирования

обеспечивает необходимый коэффициент наклона зависимости, равный 4, что

соответствует заявленной дистанции кода d = 7.

Объяснить различия в работе нейронных декодеров можно следующим обра-

зом: если учитывать только те исправления, для которых предсказания LUT(1)

и LUT(2) совпадают, а все остальные данные отбрасывать, то коэффициент уг-

ла наклона прямой в логарифмическом масштабе также окажется равным 4. То

есть совместно два декодера могут обнаружить заявленное число ошибок. Од-

нако нейронная сеть справляется с данной задачей более эффективно, так как

обрабатывает даже те случаи, в которых предсказания декодеров расходятся.

Это подтверждает высокую адаптивность нейронной сети и ее способность учи-

тывать сложные зависимости, что делает её важным инструментом для работы

с кодами коррекции ошибок большой дистанции.

Описанные результаты демонстрируют, что гибридный подход, сочетающий

предсказания LUT-декодеров с нейронной сетью, обеспечивает заметное сниже-

ние вероятности логической ошибки ϵ по сравнению с методами, использующи-

ми только измерения синдромов или отдельные LUT-алгоритмы. Это подтвер-

ждает, что интеграция разных декодеров позволяет нейронной сети эффективно

выявлять сложные корреляции между времеподобнми и пространственноподоб-

ными ошибками, даже при наличии сложных синдромов.

3.5 Выводы по главе

В данной главе предложен эффективный с точки зрения количества куби-

тов способ масштабирования пятикубитного кода на небольших дистанциях для
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реалистичной архитектуры сверхпроводникового процессора. Квантовая схема

кода может быть реализована при последовательном соединении кубитов в за-

мкнутую цепочку с возможностью выполнения двухкубитных операций iSWAP

и SWAP между соседними кубитами. Общее число физических кубитов, необхо-

димое для реализации кода, линейно масштабируется с ростом его дистанции,

что делает его одним из наиболее компактных среди известных квантовых ко-

дов. Для современных квантовых процессоров, содержащих несколько десятков

кубитов, это свойство является важным преимуществом, позволяющим экспе-

риментально реализовать методы коррекции ошибок. Однако предложенный

код не является масштабируемым в традиционном смысле, поскольку увели-

чение его расстояния сопровождается увеличением веса стабилизаторов, что

ограничивает его эффективность при больших дистанциях.

Кроме того, разработан алгоритм декодирования квантовых ошибок, осно-

ванный на архитектуре рекуррентной нейронной сети. Его ключевая особен-

ность заключается в комбинированной предварительной обработке данных с

использованием табличного декодера. Проведенный анализ точности логиче-

ских операций в предположении феноменологической модели ошибок показал

экспоненциальное снижение вероятности логической ошибки с увеличением рас-

стояния кода при использовании предложенного декодера. Также продемон-

стрирована его эффективность в условиях наличия неразделимых синдромов

ошибок X и Z и увеличенного веса стабилизаторов.

Одним из ключевых направлений дальнейшего развития циклических кодов

является оптимизация квантовой схемы за счет добавления флаговых кубитов,

которые позволяют детектировать ошибки цепного типа, возникающие в про-

цессе коррекции. Кроме того, важным аспектом является экспериментальное

исследование доминирующих каналов ошибок, возникающих при выполнении

операций iSWAP. Работа в этих направлениях позволит повысить устойчивость

предложенного кода и улучшить его практическую применимость. Полученные

результаты изложены в публикациях [132,133].

В более широком контексте предложенный код интересен возможностью ис-

пользования переадресуемых вспомогательных кубитов, которые фактически
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перемещаются по квантовой схеме и запутываются не только с соседними, но и

с удаленными информационными кубитами. Подходы, основанные на динами-

ческой перенастройке схемы, уже продемонстрировали свою эффективность: в

конце 2024 года исследователи Google реализовали несколько версий динамиче-

ского поверхностного кода, в которых кубиты перемещались по схеме, обеспе-

чивая коррекцию ошибок [134]. Эта работа показала, что динамические схемы

могут удовлетворять требованиям к отказоустойчивости и открывают новые

перспективы для масштабируемых квантовых вычислений. В этом контексте

предложенный в данной работе подход к построению циклических кодов пред-

ставляет собой перспективное направление, объединяющее адаптируемость к

связности квантового процессора с эффективностью коррекции ошибок при

сравнительно небольшом числе физических кубитов.
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Заключение

Основные результаты диссертационной работы можно сформулировать сле-

дующим образом:

1. Впервые предложен метод реализации двухкубитной квантовой операции

на сверхпроводниковых кубитах-флаксониумах с помощью микроволно-

вого возбуждения дополнительного связующего кубита, частота которого

зависит от вычислительного состояния системы. Выполнены аналитиче-

ский расчёт и численное моделирование двух вариантов выполнения опе-

рации: резонансного и околорезонансного. Преимуществами данного под-

хода являются:

◦ простота реализации, так как фактически двухкубитная операция

сводится к однокубитному гейту на соединительном кубите;

◦ сохранение кубитов в оптимальных по потоку точках в течение всей

операции, что обеспечивает высокие времена когерентности;

◦ возможность масштабирования подхода для выполнения многоку-

битных операций, например трёхкубитной операции CCZ.

2. Экспериментально реализована предложенная двухкубитная операция на

кубитах-флаксониумах с точностью 97,6 % и длительностью 44 нс. Для

оценки её качества применены методы перекрёстно-энтропийного тести-

рования и томографии квантового процесса.

3. Предложен метод коррекции квантовых ошибок, использующий динами-

ческую переадресацию физических кубитов, что позволило эффективно

масштабировать пятикубитный код на архитектуре с циклической связ-

ностью.

4. Разработан и исследован алгоритм декодирования квантовых ошибок на

основе искусственных нейронных сетей. Его основные преимущества:

◦ способность исправлять ошибки в кодах коррекции со стабилизато-

рами высокого веса и смешанного типа, отвечающими одновременно

битовым и фазовым ошибкам;

◦ возможность обучения на данных, полученных непосредственно с
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конкретного устройства, что важно в случае отклонения реального

характера ошибок от теоретических моделей;

◦ независимость от конкретного кода коррекции, что делает алгоритм

универсальным для различных типов квантовых кодов и архитектур

процессоров.

В заключение автор выражает искреннюю благодарность Алексею Вален-
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