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Аннотация

Настоящая работа посвящена исследованию электронных свойств тун-
нельной системы, состоящей из сверхпроводящего образца и нормальной
металлической иглы, покрытой тонким слоем сверхпроводника. Такая кон-
фигурация представляет собой одну из реализаций метода сканирующей
туннельной спектроскопии (Scanning Tunneling Spectroscopy, STS). Сверх-
проводящие свойства иглы не были известны заранее, поэтому основной
задачей работы являлось разделение сверхпроводящих вкладов иглы и ис-
следуемого образца, необходимое для корректного извлечения информации
об образце. В результате работы был разработан алгоритм восстановления
параметров иглы и образца, продемонстрированы его устойчивость к шумам,
применимость в широком температурном диапазоне, а также подтверждена
его работоспособность на экспериментальных данных при восстановлении
распределения энергетической щели в гранулированной ниобиевой плёнке.
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Введение

Актуальность и степень разработанности темы исследования.
Чаще всего сканирующая туннельная спектроскопия (STS) сверхпровод-
ников проводится с использованием нормальной металлической иглы
([1], [2], [3], [4], [5]). Такой подход позволяет получать информацию о плотно-
сти электронных состояний образца, но имеет ограничения по спектральному
разрешению. Для его повышения в ряде работ ([6], [7], [8], [9]) применяются
сверхпроводящие иглы — за счёт особенностей плотности состояний они
дают более узкие и высокие пики когерентности. Такие иглы могут быть
изготовлены либо полностью из сверхпроводящего металла, либо представ-
лять собой нормальную иглу, покрытую сверхпроводящим слоем. Во втором
случае свойства иглы не определяются заранее из-за влияния эффекта
близости, когда сверхпроводящие свойства слоя зависят от нормальной
металлической основы иглы. Задача восстановления плотностей состояний
иглы, покрытой сверхпроводником, представляет научный и методический
интерес. Универсального подхода к решению этой обратной задачи не суще-
ствует, так как результат чувствителен к исходным допущениям и уровню
шумов в эксперименте. Основная задача данной работы — разработать и
применить алгоритмы восстановления плотностей состояний в туннельном
контакте «сверхпроводник–изолятор–сверхпроводник» (S-I-S) для случая
иглы с неизвестными сверхпроводящими свойствами.

Цели и задачи работы. Целью данной работы является извлечение
достоверной информации о сверхпроводящих свойствах образца и иглы
на основе экспериментальных данных STS, полученных с использованием
иглы с неизвестной плотностью состояний. Для достижения этой цели были
поставлены следующие задачи:

1. разработать алгоритмы решения обратной задачи восстановления
плотностей состояний в S-I-S контакте;

2. провести сравнительный анализ различных моделей плотности состо-
яний (БКШ, Дайнса, Абрикосова–Горькова);

3. исследовать устойчивость предложенных алгоритмов к шумам и
неопределённости исходных допущений;
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4. применить методы к экспериментальным данным, полученным на
гранулированной ниобиевой плёнке.

Научная новизна. Впервые для задачи анализа данных STS с иглой c
неизвестными сверхпроводящими свойствами были предложены два метода
восстановления энергетической щели:

1. решение обратной задачи на заданном классе функций (модели Дайнса
и Абрикосова-Горькова);

2. альтернативный способ оценки щели по полуширине провала в наблю-
даемых спектрах.

Оба подхода были исследованы на устойчивость к шумам, подтверждена
их применимость на реальных экспериментальных данных.

Методология и методы исследования. Для проведения исследований
использовались методы сканирующей туннельной микроскопии и спектро-
скопии, а также методы работы с большими массивами экспериментальных
данных с использованием программного обеспечения Python. Путём свёрт-
ки плотностей состояний и последующего фиттинга были восстановлены
параметры иглы и образца.

Теоретическая и практическая значимость. Разработанные методы
восстановления плотностей состояний в S-I-S контактах с неизвестными
параметрами иглы применимы к анализу экспериментальных данных и
могут использоваться при обработке спектров STS.

Степень достоверности и апробация результатов. Предложенные
методы протестированы на экспериментальных данных при различных
температурах, полученные результаты согласуются с физическими ожи-
даниями. Работа была представлена на семинаре центра перспективных
методов мезофизики и нанотехнологий МФТИ и на трёх конференциях
(67-я Всероссийская научная конференция МФТИ, студенческая научная
конференция 80-х Дней науки МИСИС и конференция Ломоносов-2025
на базе МГУ им. М.В. Ломоносова). Выступления на студенческих кон-
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ференциях получили высокую оценку жюри (дипломы первой и второй
степени).

Личный вклад автора. Автор реализовал программный код для обработ-
ки экспериментальных данных, участвовал в разработке и реализации двух
алгоритмов восстановления щели, выполнил численные расчёты, анализ
моделей, а также восстановление пространственного распределения щели в
рамках тестирования применимости разработанных методов.

Структура и объем ВКР. Работа состоит из введения, трёх глав, заклю-
чения и библиографии. Общий объём ВКР составляет 56 страниц, включая
30 иллюстраций и список литературы из 30 наименований. Первая глава
посвящена обзору литературных данных, вторая описывает эксперименталь-
ную установку и образцы, в третьей главе подробно изложены обработка
данных эксперимента и решение обратной задачи.
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1 Литературный обзор

1.1 Сверхпроводимость. Основные понятия

1.1.1 Природа сверхпроводимости

Сверхпроводимость – квантовое явление, возникающее при температурах
ниже критической (T < Tc). Сверхпроводящее состояние характеризуется
отсутствием электрического сопротивления и вытеснением магнитного поля
из объёма сверхпроводника. Микроскопическим механизмом сверхпроводи-
мости является образование связанных пар электронов — куперовских пар,
которые конденсируются в общее квантовое состояние и могут двигаться
без рассеяния. Сверхпроводимость может быть разрушена при наличии
сильных магнитных полей (H > Hc, где Hc(T ) — критическое поле, зави-
сящее от температуры) или при протекании больших токов (j > jc, где
jc(T ) — критическая плотность тока, также зависящая от температуры).
Для описания макроскопических проявлений сверхпроводимости была раз-
работана феноменологическая теория Гинзбурга-Ландау, а для объяснения
микроскопической природы сверхпроводящего состояния была предложена
теория Бардина-Купера-Шриффера (БКШ).

1.1.2 Теория Гинзбурга-Ландау

В основе теории Гинзбурга-Ландау лежит разработанная Л.Д.Ландау
теория фазовых переходов второго рода. В качестве параметра порядка
рассматривается волновая функция сверхпроводящих электронов Ψ(r),
нормированная так, чтобы |Ψ(r)|2 = ns(r)/2, где ns(r) – плотность элек-
тронных куперовских пар.

Рассмотрим однородный сверхпроводник в отсутствие магнитного поля.
Разложение свободной энергии по степеням параметра порядка вблизи Tc
имеет вид:

Fs0 = Fn + α|Ψ|2 + β

2
|Ψ|4, (1.1.1)

где Fs0 – плотность свободной энергии сверхпроводника в отсутствие магнит-
ного поля, Fn – плотность свободной энергии тела в нормальном состоянии,
α и β – феноменологические коэффициенты разложения.
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Минимуму свободной энергии однородного сверхпроводника отвечает
значение

|Ψ0|2 = −α/β, (1.1.2)

откуда разность
Fn − Fs0 = α2/2β. (1.1.3)

Поскольку Fn − Fs0 = H2
cm/8π (здесь Hcm – термодинамическое кри-

тическое поле, при котором происходит разрушение сверхпроводимости),
получаем

H2
cm = 4πα2/β, (1.1.4)

где α = A(T − Tc), A > 0 и не зависит от T ; β > 0, константа в первом по
(Tc − T ) приближении.

Для неоднородного сверхпроводника, находящегося во внешнем маг-
нитном поле, разложение необходимо записывать для свободной энергии
Гиббса, учитывая плотность кинетической энергии носителей. Для всего
сверхпроводника:

GsH = Gn +

∫ [
α|Ψ|2 + β

2
|Ψ|4 + 1

4m

∣∣∣∣−iℏ∇Ψ− 2e

c
AΨ

∣∣∣∣2+
+

(rotA)2

8π
− rotA ·H0

4π

]
dV.

(1.1.5)

Здесь H0 — напряжённость внешнего однородного магнитного поля,
B = rotA – точное микроскопическое поле в данной точке сверхпроводника,
интегрирование ведётся по всему объёму сверхпроводника.

Минимизацией функционала энергии Гиббса по Ψ выводится первое
уравнение Гинзбурга-Ландау и граничное условие к нему:

αΨ+ βΨ|Ψ|2 + 1

4m

(
iℏ∇+

2e

c
A

)2

Ψ = 0,(
iℏ∇Ψ+

2e

c
AΨ

)
n = 0,

(1.1.6)

где n – вектор единичной нормали к поверхности сверхпроводника.
Путём минимизации функционала энергии Гиббса по A выводится вто-

8



рое уравнение Гинзбурга-Ландау:

js = − iℏc
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2e2

mc
|Ψ|2A, (1.1.7)

где js = c
4π rot rotA, B = rotA.

Введем обозначения:

ξ2 =
ℏ2

4m|α|
, (1.1.8)

λ2 =
mc2

4πnse2
=

mc2β

8πe2|α|
. (1.1.9)

Принимая во внимание температурную зависимость коэффициента
α = A(T − Tc), A > 0, получаем температурные зависимости для парамет-
ров λ и ξ вблизи критической температуры сверхпроводящего перехода
(T ≲ Tc):

λ =
λ0√

1− T/Tc
и ξ =

ξ0√
1− T/Tc

, (1.1.10)

где λ0 и ξ0 — глубина проникновения магнитного поля и длина когерентности
при T = 0, соответственно.

Переходя к безразмерной волновой функции ψ(r) и обозначая
ψ(r) = Ψ(r)/Ψ0, где Ψ2

0 = ns(r)/2 = |α|/β, запишем уравнения Гинзбурга-
Ландау:

ξ2
(
i∇+

2π

Φ0
A

)2

ψ − ψ + ψ|ψ|2 = 0, (1.1.11)

rot rotA = −i Φ0

4πλ2
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2

λ2
A. (1.1.12)

Здесь Φ0 = πℏc/e — сверхпроводящий квант магнитного потока.
Введённый параметр ξ называется длиной когерентности – это харак-

терный масштаб, на котором происходит изменение параметра порядка ψ.
Параметр λ – глубина проникновения слабого магнитного поля в сверхпро-
водник – показывает характерный масштаб, на котором затухает магнитное
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поле в сверхпроводнике.
Параметр теории Гинзбурга-Ландау κ определяется как

κ = λ/ξ. (1.1.13)

Подставляя значения λ и ξ, с учётом (1.1.14), (1.1.8), (1.1.9) и (1.1.10)
получим выражение для термодинамического критического поля:

Hcm =
Φ0

2
√
2πλξ

=
Φ0

2
√
2πλ0ξ0

(
1− T

Tc

)
.

(1.1.14)

Определим также понятия нижнего и верхнего критических полей для
сверхпроводника.

Первым (или нижним) критическим полем Hc1 называется внешнее
магнитное поле, при котором полная энергия сверхпроводника (1.1.5) в
безвихревом (или мейсснеровском) состоянии, для которого rot∇θ = 0, будет
превышать энергию состояния со сверхпроводящими вихрями (rot∇θ ≠ 0).
Для массивного сверхпроводника в параллельном магнитном поле [10]

Hc1 ≃
Φ0

4πλ2
(lnκ + 0.08). (1.1.15)

Вторым (или верхним) критическим полемHc2 называется максимальная
величина магнитного поля, при котором в массивном сверхпроводнике ещё
может существовать сверхпроводимость, пусть и в виде неоднородного
вихревого состояния. Выражение для Hc2 можно получить, рассматривая
линеаризованное уравнение Гинзбурга-Ландау (при |ψ|2 ≪ 1), которое
сводится к задаче о квантовом гармоническом осцилляторе [11]. Решение
этой задачи определяет

Hc2 = H
(0)
c2 ·

(
1− T

Tc

)
, (1.1.16)

где H(0)
c2 = Φ0/2πξ

2
0 – второе критическое поле при нулевой температуре,

Tc – критическая температура сверхпроводника в отсутствие внешнего
магнитного поля.
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1.1.3 Микроскопическая теория сверхпроводимости

Феноменологическая теория Гинзбурга — Ландау описывает сверхпро-
водящие свойства на макроскопическом уровне, но не объясняет природу
самой сверхпроводимости, появление критической температуры и возник-
новение щели в спектре возбуждений. Эти вопросы были разрешены в
микроскопической теории сверхпроводимости Бардина – Купера – Шриф-
фера (БКШ).

Пусть электрон с волновым вектором k1 испускает фонон q и переходит
в состояние k′

1. Другой электрон k2 поглощает этот фонон, переходя в k′
2.

По закону сохранения импульса:

k1 = k′
1 + q, (1.1.17)

k1 + k2 = k′
1 + k′

2 (1.1.18)

В результате возникает эффективное взаимодействие между электрона-
ми через фонон. Такое взаимодействие создаёт эффективное притяжение
между электронами. Локальное увеличение электронной плотности вызы-
вает притяжение ионов решётки, обладающих большой инерцией и потому
продолжающих движение даже после компенсации избытка электронов. Воз-
никает перекомпенсация – область с избыточным положительным зарядом.
Это приводит к притяжению второго электрона к данной области. Условие
притяжения записывается как ω = (εk1

− εk′
1
)/ℏ < ωD, где ωD — дебаевская

частота. В модели БКШ притягиваются лишь электроны, лежащие в узком
сферическом слое толщиной 2∆k около поверхности Ферми:

∆k

kF
∼ ℏωD

εF
, εF =

ℏ2k2F
2m

. (1.1.19)

Матричный элемент взаимодействия электронов в модели БКШ есть

Vkk′ =

−V, |εk − εF | ≤ ℏωD,

0, |εk − εF | > ℏωD.
(1.1.20)

Возникающее при электрон-фононном взаимодействии эффективное
притяжение между электронами приводит к перестройке основного состоя-
ния: в отличие от нормального металла, при T = 0 минимальной энергии
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теперь соответствует конфигурация с «размазанной» поверхностью Ферми,
где некоторые состояния выше εF заполнены, а ниже – свободны. Наибо-
лее выгодным оказывается спаривание электронов с противоположными
импульсами и спинами (k ↑, −k ↓).

Волновая функция основного состояния описывается суперпозицией кон-
фигураций с различным распределением куперовских пар. Полная энергия
сверхпроводника выражается как:

Es =
∑
k

2εkv
2
k +

∑
k,k′

Vkk′vkukvk′uk′ (1.1.21)

где v2k – вероятность заполнения состояния (k ↑, −k ↓); u2k = 1− v2k;
εk = ℏ2k2/2m − εF есть энергия электрона в состоянии k относительно
уровня Ферми.

Минимизация энергии приводит к уравнению:

v2k =
1

2

(
1− εk√

ε2k +∆2

)
, (1.1.22)

∆ = V
∑
k

′vkuk, (1.1.23)

где штрих при знаке суммы означает, что суммирование ведется только по
тем состояниям k, которые лежат в сферическом слое около поверхности
Ферми. Подставляя vk в выражение для ∆, получаем уравнение:

1 =
V

2

∑
k

(ε2k +∆2)−1/2, (1.1.24)

где V — потенциал взаимодействия, εk — энергия электрона относительно
уровня Ферми. Перейдём от суммирования к интегрированию в пределах
±ℏωD (где ωD — дебаевская частота):

1 = ρ(0)V

ℏωD∫
0

(ε2 +∆2)−1/2dε. (1.1.25)

Здесь ρ(0) – плотность состояний около уровня Ферми, определяемая как
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число состояний в единичном интервале энергий. Интегрирование дает:

1

ρ(0)V
= Arsh

(
ℏωD

∆

)
. (1.1.26)

Для большинства сверхпроводников ρ(0)V имеет величину не более 0.3,
поэтому приближённо:

∆ ≈ 2ℏωD exp

(
− 1

ρ(0)V

)
. (1.1.27)

Вычислим теперь энергию основного состояния сверхпроводника. Энер-
гия нормального состояния En:

En =
∑
k<kF

2εk. (1.1.28)

Энергию основного состояния будем отсчитывать от энергии нормально-
го состояния. Разность энергий W = Es − En выражается как:

W = 2
∑
k>kF

εk

(
1− εk

Ek

)
− ∆2

V
, (1.1.29)

где Ek =
√
ε2k +∆2.

После интегрирования и упрощений приходим к выражению [10]:

W = −1

2
ρ(0)∆2, (1.1.30)

что подтверждает энергетическую выгодность сверхпроводящего состояния.
Критическое термодинамическое поле Hcm при T = 0 связано с ∆ как

H2
cm(0)

8π
=

1

2
ρ(0)∆2

0, (1.1.31)

откуда:
Hcm(0) = ∆0

√
4πρ(0). (1.1.32)

Обсудим появление энергетической щели в спектре элементарных воз-
буждений сверхпроводника. Рассмотрим пару состояний (q ↑, −q ↓) в
импульсном пространстве сверхпроводника. Вклад этой пары в полную
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энергию системы, как следует из уравнения (1.1.21), описывается выраже-
нием:

wq = 2εqv
2
q − 2V vquq

∑
k

vkuk,

где первое слагаемое соответствует кинетической энергии пары, а второе —
вкладу в энергию основного состояния за счёт взаимодействия с другими
парами (k ↑, −k ↓).

Используя соотношения для параметров uq и vq, а также определение
величины ∆, получаем:

wq = εq − Eq, где Eq =
√
ε2q +∆2.

Энергия системы при добавлении одного электрона в состояние q (элемен-
тарного возбуждения) равна:

Wq = W + Eq,

где W — энергия основного состояния. Минимальное значение Eq = ∆ (при
εq = 0) свидетельствует о наличии энергетической щели между основным
состоянием и спектром возбуждений. Разрыв пары электронов требует
энергии не менее 2∆, поскольку оба электрона переходят в возбуждённое
состояние.

Рассмотрим выражение для элементарного возбуждения Ek в сверхпро-
воднике:

Ek =
√
ε2k +∆2 =

√(
ℏ2k2

2m
− ℏ2k2

F

2m

)2

+∆2,

где εk — энергия электрона с импульсом ℏk относительно уровня Ферми, а
∆ — параметр энергетической щели.

Плотность состояний ρ(E), определяемая как число энергетических
уровней на единичный интервал энергии в единице объема, вычисляется по
формуле:

ρ(E) =
dN

dE
,

где dN — число состояний в интервале dE. Для металла в нормальном
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состоянии:
dN

dε
= ρ(0) (1.1.33)

Поэтому для сверхпроводника

ρ(E) =
dN

dε

dε

dE
= ρ(0)

E√
E2 −∆2

(1.1.34)

Из формулы (1.1.34) видно, что при E → ∆ плотность состояний
ρ(E) → ∞. Это характерная особенность спектра возбуждений в сверх-
проводнике в модели БКШ.

Температурная зависимость энергетической щели ∆ определяется реше-
нием интегрального уравнения [10]

1

N(0)V
=

ℏωD∫
0

dε√
ε2 +∆2(T )

th

√
ε2 +∆2(T )

2kBT
, (1.1.35)

результат его решения в нормированном виде представлен на рис. 1.

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc

0.00
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T c
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Рис. 1: Зависимость энергетической щели от температуры согласно теории БКШ.

15



1.1.4 Сверхпроводники I и II рода

По поведению во внешнем магнитном поле сверхпроводники делятся на
два типа – сверхпроводники первого и второго рода. Это различие опреде-
ляется соотношением между параметрами ξ и λ – длиной когерентности и
лондоновской глубиной проникновения.

Сверхпроводниками первого рода называются сверхпроводящие матери-
алы, для которых параметр Гинзбурга-Ландау κ = λ/ξ < 1/

√
2. С учётом

определений термодинамического критического поляHcm (1.1.14) и верхнего
критического поля Hc2 (1.1.16) определяем, что

Hc2

Hcm
=

√
2
λ

ξ
. (1.1.36)

Таким образом, для сверхпроводников первого рода Hc2 < Hcm при
любых температурах, то есть формирование (или разрушение) зароды-
шей неоднородной сверхпроводимости происходит при меньших полях, чем
формирование (разрушение) однородной сверхпроводимости в однородном
магнитном поле. В сверхпроводниках первого рода переход между сверхпро-
водящим и нормальным состояниями происходит при пересечении кривой
Hcm(T ) при увеличении внешнего магнитного поля или температуры и
является фазовым переходом I рода.

К сверхпроводникам второго рода относятся сверхпроводящие мате-
риалы с параметром κ = λ/ξ > 1/

√
2. Для сверхпроводников второго

рода справедливо неравенство Hc1 < Hcm < Hc2. Следовательно, при
монотонном увеличении амплитуды внешнего магнитного поля H сверх-
проводник второго рода, помещённый в магнитное поле, параллельное
поверхности, последовательно проходит следующие состояния: безвих-
ревое (мейсснеровское) состояние при H < Hc1, вихревое (смешанное)
состояние с гексагональной решёткой вихрей при Hc1 < H < Hc2,
состояние поверхностной сверхпроводимости при Hc2 < H < Hc3 и
нормальное состояние при H > Hc3 (здесь Hc3 – критическое поле по-
верхностной сверхпроводимости). Важно, что в сверхпроводниках вто-
рого рода формирование сверхпроводящей фазы происходит за счёт
появления и разрастания зародышей сверхпроводимости (Hcm < Hc2).
Переход между сверхпроводящим и нормальным состояниями при
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увеличении внешнего магнитного поля или температуры является фазовым
переходом II рода.

В заключение следует отметить, что при отсутствии внешнего магнитно-
го поля переход в сверхпроводящее состояние при изменении температуры
является фазовым переходом II рода как для сверхпроводников первого
рода, так и для сверхпроводников второго рода.

1.1.5 Вихри в сверхпроводниках II рода

Вихри в сверхпроводниках второго рода представляют собой нормальные
цилиндры, ориентированные вдоль внешнего поля. Параметр порядка ψ
в коре вихря равен нулю, радиус вихря – порядка длины когерентности ξ.
Вокруг каждого такого цилиндра течёт сверхток, создаваемое им магнитное
поле сонаправлено с внешним.

js
H

2
2

0 X

Bz | |,

Рис. 2: Структура вихря Абрикосова в сверхпроводнике второго рода и распределения
плотности сверхпроводящей компоненты |ψ| и магнитного поля Bz вдоль радиуса.

Возникающие в массивном сверхпроводнике вихри принято называть
вихрями Абрикосова. Магнитное поле внутри таких вихрей спадает как [12]

Bz(r) =
Φ0

2πλ2
K0(r/λ) =

Φ0

2πλ2

ln(λ/r) + 0.11, ξ ≪ r ≪ λ,

1.25 exp(−r/λ)/
√
r/λ, r ≫ λ.

(1.1.37)
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В центре вихря, однако, поле не стремится к бесконечности, посколь-
ку формула (1.3.1) применима только на больших расстояниях от вихря.
Логарифмическая расходимость (1.3.1) устраняется обрезанием на длине
когерентности ξ:

Bz(0) ≃
Φ0

2πλ2
ln (λ/ξ), r ≤ ξ. (1.1.38)

Выражение для тока имеет видjφ(r) ≈ nseℏ/2mr, ξ ≪ r ≪ λ,

jφ(r) ∝ exp (−r/λ) , r ≫ λ.
(1.1.39)

В тонких сверхпроводящих плёнках толщиной ds ≪ λ, за счёт ослаб-
ленных экранирующих свойств, магнитную структуру вихря определяет
новый масштаб — эффективная глубина проникновения λeff = λ2/ds ≫ λ.
В результате магнитное поле и токи, сопровождающие вихрь, в сравнении
с массивным случаем затухают медленнее и распространяются на бо́льшие
расстояния [13]:

Bz(r, z = 0) =

Φ0/4πλeffr, r ≪ λeff ,

Φ0λeff/πr
3, r ≫ λeff ,

(1.1.40)

jφ(r) =

cΦ0/8π
2λ2r, r ≪ λeff ,

cΦ0/4π
2dsr

2, r ≫ λeff .
(1.1.41)

Вихри в тонких сверхпроводящих плёнках принято называть вихрями Пир-
ла.
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1.1.6 Экспериментальные методы исследования вихрей

Рис. 3: Изображения вихревой решётки, полученные различными методами: а — магни-
тооптические изображения вихрей в сверхпроводящем кристалле NbSe при T = 4.0 K в
магнитном поле Земли [14]; б — MFM-изображения в тонкой плёнке Nb при T = 4.3 K и
H = 2.5 mT [15]; в — карты, полученные методом STS в сверхпроводящем Nb образце с
диффузным металлическим Cu покрытием при T = 300 mK и H = 55 mT [17]; г и д —
магнитная визуализация стационарных и быстро движущихся вихрей в плёнке Pb при
T = 4.2 K, H = 5.4 mT, соответственно, полученная при помощи сканирующей SQUID-
микроскопии [16].

В настоящее время существует несколько высокочувствительных мето-
дов, позволяющих исследовать структуру вихревой решётки.

На рис.3 а представлено изображение решётки вихрей, полученное при
помощи магнитооптики [14]. В основе метода лежит эффект Фарадея в
индикаторной плёнке: локальное магнитное поле вращает плоскость поля-
ризации света, позволяя визуализировать структуру вихрей и наблюдать
за их динамикой в режиме реального времени.

Другим инструментом наблюдения вихревой решётки является магнитно-
силовая микроскопия (MFM), использующая намагниченный кантилевер,
чувствительный к локальным изменениям магнитного поля, создаваемым
вихрями. Помимо визуализации вихрей, этот метод позволяет также исследо-
вать взаимодействие вихрей с дефектами и центрами пиннинга. На рис.3 б
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изображены вихревые решётки в тонких плёнках ниобия, полученные мето-
дом MFM в работе [15].

Вихри могут быть также исследованы при помощи сканирующей SQUID-
микроскопии, в отличие от MFM позволяющей количественно измерять
локальное магнитное поле без существенного воздействия на образец. В
работе [16] этим методом удалось наблюдать динамику и нестабильности
потока вихрей (см. рис. 3 г, д).

Сканирующая туннельная спектроскопия (STS) даёт возможность полу-
чить детальную информацию о внутренней структуре вихрей и позволяет
напрямую исследовать локальную плотность состояний. На рис. 3 в приведе-
но изображение вихревой решётки в сверхпроводящем образце с диффузным
металлическим покрытием, полученное методом STS в работе [17].

В настоящей работе по исследованию плёнок ниобия был использован
метод STS. В отличие от методов, регистрирующих магнитное поле, STS
позволяет напрямую исследовать электронную структуру сверхпроводника
в смешанном состоянии.

1.2 Сканирующая туннельная микроскопия и спектро-

скопия

1.2.1 Сканирующая туннельная микроскопия

Принцип работы сканирующего туннельного микроскопа (СТМ) осно-
ван на квантовом туннелировании электронов через узкий потенциальный
барьер между металлическим зондом и проводящим образцом при нали-
чии разности потенциалов между ними. Отличительной особенностью всех
зондовых микроскопов (в том числе и СТМ) является наличие системы об-
ратной связи. Пусть взаимодействие иглы с поверхностью характеризуется
параметром P . Если есть однозначная зависимость P (z) параметра P от
расстояния между образцом и иглой z, в системе может быть организована
обратная связь, поддерживающая значение параметра P постоянным. При
изменении расстояния между зондом и поверхностью возникает разность
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Рис. 4: Общая схема проведения экспери-
мента с испольованием сканирующей тун-
нельной микроскопии [18].

∆P = P−P0, которая в виде
сигнала подаётся на испол-
нительный элемент, коррек-
тирующий положение зон-
да и уменьшающий ∆P до
нуля. Таким образом, рас-
стояние зонд-образец остаёт-
ся постоянным с точностью
до ∼ 0.01 Å, а при скани-
ровании поверхности вдоль
осей x и y разностный сигнал
на исполнительном элементе оказывается пропорциональным топографии
поверхности z = f(x, y).

Рис. 5: Определение рельефа поверхности при помощи СТМ: а — метод постоянного
тока; б — метод постоянной высоты [20].

В СТМ-экспериментах существует два метода формирования рельефа:
метод постоянного туннельного тока и метод постоянного среднего рас-
стояния игла–образец. В первом случае данные о топографии даёт сигнал
с Z-электрода пьезоэлемента, во втором – изменения туннельного тока.
Последний метод оказывается наиболее эффективным для изучения глад-
ких поверхностей: в таком случае скорость сканирования очень высокая, а
опасность задеть иглой образец существенно уменьшается.
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1.2.2 Сканирующая туннельная спектроскопия

Рис. 6: Схема измерения серии
статических локальных вольт-амперных
(I − V ) характеристик при переменном
положении иглы по всем точкам xi, yj
поверхности [11].

Сканирующей туннельной
спектроскопией называется
измерение локальных вольт-
амперных характеристик
туннельного контакта в раз-
личных точках поверхности
образца. Для этого сначала на
СТМ изображении выбирается
область образца, в которой пла-
нируется провести измерения.
Зонд помещается в точку с
заданными координатами x0, y0.
Обратная связь отключается,
и к туннельному контакту
прикладывается линейно нарас-

тающее напряжение. Регистрируется туннельная характеристика I(V ).
Процедура повторяется для всех точек xi, yj поверхности.

1.3 Туннельные контакты

Рассмотрим эффект туннелирования электронов через потенциальный
барьер более подробно. В случае эксперимента по сканирующей туннельной
спектроскопии расстояние между иглой и исследуемым образцом состав-
ляет около нескольких нанометров. Согласно теории Бардина–Тинкхэма–
Клапвейка, при увеличении безразмерного параметра барьера Z андреев-
ское отражение подавляется, и контакт переходит в туннельный режим, где
доминирует вклад квазичастиц (сверхпроводящий ток существенно умень-
шается) [21]. Таким образом, в случае, когда барьеры достаточно велики,
имеет смысл рассматривать лишь квазичастичные ветви вольт-амперных
характеристик.
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1.3.1 Квазичастичный туннельный ток для случая контакта двух
нормальных металлов (N-I-N)

Сначала обсудим туннельный контакт двух нормальных металлов.

Рис. 7: Энергетическая диаграмма туннельного перехода между двумя нормальными
металлами: а — при нулевом напряжении; б — при напряжении V , приводящем к сдвигу
химических потенциалов на величину eV [12].

В отсутствие напряжения туннельный ток отсутствует (см. рис. 7 а). При
приложении напряжения V между металлами их химические потенциалы
сдвигаются на величину eV . Число электронов, которые могут перейти
на свободные уровни другого металла, пропорционально eV , и все они
проходят барьер с одинаковой вероятностью. Таким образом, jN−I−N ∝ V

(см. рис. 8, красная кривая).

0 2
eV

j

N-I-N
N-I-S
S-I-S

Рис. 8: Вольт-амперные характеристики туннельных контактов N-I-N, N-I-S и S-I-S.
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1.3.2 Квазичастичный туннельный ток для случая контакта нор-
мальный металл – изолятор – сверхпроводник (N-I-S)

Теперь рассмотрим туннельный контакт нормального металла и сверх-
проводника. Будем считать T = 0 K. В равновесии в отсутствие напряже-
ния химические потенциалы обеих систем должны совпадать. Однако в
то время как в нормальном металле электроны являются квазичастица-
ми, подчиняющимися газовой модели и находящимися на уровне Ферми, в
сверхпроводнике они объединены в куперовские пары, находящиеся в состо-
янии бозе-конденсата. Этот энергетический уровень и является химическим
потенциалом пары.

Свободно перемещаться через N-S границу куперовские пары не могут:
из-за удвоенных массы и заряда вероятность туннелирования пары через
барьер оказывается значительно ниже, чем для одиночного электрона. Если
электрон переходит из нормального металла в сверхпроводник, он должен
войти в состав куперовской пары. Для этого требуется дополнительная
энергия не менее ∆. Аналогично, для перехода электрона из сверхпровод-
ника в нормальный металл необходимо сначала разрушить куперовскую
пару, что требует энергии ∆ на один электрон (см. рис. 9).

Рис. 9: Энергетическая диаграмма туннельного перехода между нормальным металлом
(слева) и сверхпроводником (справа): а — при нулевом напряжении; б — при напряжении
V [12].

При приложении напряжения одна сторона рисунка начнёт смещать-
ся относительно другой, условием начала тока является eV = ∆. Чтобы
использовать схему уровней, изображённую на рис. 9, необходимо моди-
фицировать полученную ранее формулу (1.1.34) с учётом отрицательных
значений E:
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ρs =

ρn|E|/(E2 −∆2)1/2, |E| > ∆,

0, |E| < ∆,
(1.3.1)

или, что то же самое,

ρs = ρn · Re
(

|E|√
E2 −∆2

)
. (1.3.2)

Считая, что все квазичастичные состояния заполнены равновесным образом
в соответствии с распределением Ферми-Дирака f(E) =

[
1 + eE/kBT

]−1
,

имеем выражение для квазичастичного тока:

IN−I−S =
1

|e|Rn

∞∫
−∞

ρn(E)ρs(E − eV ) · {f(E)− f(E − eV )} dE. (1.3.3)

Здесь Rn – туннельное сопротивление в нормальном состоянии. Подставляя
плотности состояний, нормированные на значение в нормальном случае, и
учитывая T → 0, получаем аналитический ответ

IN−I−S =

√
(eV )2 −∆2

|e|Rn
. (1.3.4)

Формула (1.3.4), полученная из (1.3.3) для T → 0, соответствует розовой
кривой на рис. 9. Для туннельного контакта N–I–S при T = 0 форма спектра
дифференциальной проводимости совпадает с плотностью квазичастичных
состояний в сверхпроводнике: dI/dV ∝ ρs(eV ). С ростом температуры в
подщелевой области из-за размытия функции Ферми появляется ток, и рез-
кий пик проводимости dI/dV при eV = ∆ сглаживается. Для рассмотрения
вольт-амперных характеристик при отличных от нуля температурах было
реализовано численное интегрирование (1.3.3), результаты представлены
на рис. 10. Видно, что в случае |eV | < ∆ и T ≪ Tc квазичастичный
ток IN−I−S ≃ 0. В случае же |eV | > ∆ или T ≥ Tc квазичастичный
ток IN−I−S ≃ V/Rn.
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Рис. 10: Туннельный контакт N-I-S: а — численный расчёт вольт-амперных характе-
ристик в режиме заданного напряжения; б — расчёт дифференциальной туннельной
проводимости.

1.3.3 Квазичастичный туннельный ток для случая контакта
сверхпроводник – изолятор – сверхпроводник (S-I-S)

Наконец, рассмотрим туннельный контакт двух сверхпроводников. Ква-
зичастичный ток в этом случае

IS−I−S =
1

|e|Rn

∞∫
−∞

ρs1(E)ρs2(E − eV ) · {f(E)− f(E − eV )} dE. (1.3.5)

Для простоты будем считать сверхпроводники одинаковыми (∆1 =

= ∆2 = ∆). В таком случае при T → 0 получаем аналитический ответ

IS−I−S =
V

Rn

{
E

(√
(eV )2−(2∆)2

eV

)
− 2
(

∆
|eV |
)2
K

(√
(eV )2−(2∆)2

eV

)}
, (1.3.6)

где

K(k) =

π/2∫
0

dφ√
1− k2 sin2 φ

, E(k) =

π/2∫
0

√
1− k2 sin2 φdφ

есть полные эллиптические интегралы первого и второго рода.
На рис. 8 выражению (1.3.6) соответствует синяя кривая. Для туннель-

ного контакта S-I-S, в отличие от контакта N-I-S, условие возникновения
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тока определяется уравнением eV = 2∆. При постепенном увеличении
напряжения в точке eV = 2∆ ток растёт от нуля до конечной величины.
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Рис. 11: Туннельный контакт S-I-S: а — численный расчёт вольт-амперных характе-
ристик в режиме заданного напряжения; б — расчёт дифференциальной туннельной
проводимости.

Аналогично случаю N-I-S, вольт-амперные характеристики туннельного
контакта S-I-S при T ̸= 0 были получены путём численного интегрирования
выражения (1.3.5). Результаты представлены на рис. 11. Важно отметить,
что в отличие от контакта N-I-S, где при T = 0 дифференциальная прово-
димость прямо отражает плотность состояний в сверхпроводнике, в случае
S-I-S спектр проводимости существенно искажается свёрткой плотностей
состояний обоих электродов. В результате форма dI/dV не воспроизводит
профиль ρs(E) и не может быть интерпретирована напрямую как спектр
плотности состояний.
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2 Эксперимент: образцы и установка

В работе исследовались гранулированные ниобиевые плёнки, изго-
товленные при помощи магнетронного напыления. Толщина плёнки
d ≈ 30− 40 nm, характерный размер гранул D ≈ 10 нм. Для гранулиро-
ванных ниобиевых плёнок лондоновская глубина проникновения и длина
когерентности соответственно составляют λLdirty ≈ 80 nm, ξdirty ≈ 12 nm.

Рис. 12: Установка in-situ в МФТИ (слева) и пример камеры магнетронного напыления
в ИФТТ РАН (справа).

Образцы были созданы в установке in-situ, то есть между этапами
подготовки и измерения они не выносились на воздух. Это важно, поскольку
Nb – мультивалентное вещество, образующее множество оксидов различных
составов. Часть этих оксидов – металлические, часть – изоляционные. Если
возникающие при выносе образцов на воздух оксиды не удалить, то в разных
точках поверхности будет либо изолятор, либо металл, и изучать свойства
ниобия не представится возможным. Удалить же оксиды с поверхности
образца очень сложно, поскольку фактически их требуется испарить, нагрев
до 1600 ◦C. Такие условия могут привести к разрушению структуры плёнки
или подложки.

Эксперимент по сканирующей туннельной спектроскопии был проведён
с использованием изготовленной из вольфрама нормальной иглы, покрытой
тонким слоем ниобия. Свойства иглы не были известны, поэтому одной из
главных задач, поставленных перед автором, стало изучение этой системы
и извлечение из измеренных характеристик параметров образца и иглы.

Таким образом, при проведении эксперимента по сканирующей туннель-
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ной спектроскопии ниобиевых плёнок со сверхпроводящей иглой, свойства
которой неизвестны, во-первых, требуется вакуум – во избежания осажде-
ний на поверхности образцов. Во-вторых, чтобы в ниобии сформировалась
энергетическая щель, необходимы низкие температуры (табличное значение
критической температуры ниобия T (табл.)

c = 9.25 К [22]) . В третьих, для
того чтобы по измеренным характеристикам разделить сверхпроводящие
свойства образца и иглы, в систему необходимо ввести вихри с нормальными
сердцевинами. Для этого нужно создать сильное магнитное поле. Именно
поэтому требуется использовать специальную in-situ установку и проводить
исследование в едином технологическо-измерительном цикле.
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3 Обработка данных эксперимента

Данные «сырого» эксперимента были сохранены в виде бинарных файлов
в формате «.3ds». Для их извлечения была написана программа на языке
Python. Настоящий раздел посвящён обработке результатов измерений и их
интерпретации.

3.1 Топография образца и границы гранул

Топография образца была определена методами сканирующей туннель-
ной микроскопии. Полученная карта высот z = f(x, y) изображена на
рис. 13 слева. Видно, что образец имеет гранулированную структуру, сред-
ний размер гранул составляет D ∼ 10 nm, что сравнимо с длиной свободного
пробега в ниобиевой плёнке.
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Рис. 13: Карта высот, полученная с помощью сканирующей туннельной микроскопии и
определённые из неё методом разности гауссианов границы гранул.

Из карты топографии образца методом разности гауссианов были опре-
делены границы гранул. Результат представлен на рис. 13 справа. Метод
разности гауссианов состоит в вычислении разности двух сглаженных изоб-
ражений, полученных гауссовым сглаживанием с разной шириной (σ1 и
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σ2 > σ1) [23]:

D(x, y) =

∫∫
z(x′, y′) · 1

(
√
2πσ1)2

exp

(
−(x− x′)2

2σ21
− (y − y′)2

2σ21

)
dx′dy′−

−
∫∫

z(x′, y′) · 1

(
√
2πσ2)2

exp

(
−(x− x′)2

2σ22
− (y − y′)2

2σ22

)
dx′dy′.

Тогда фурье-спектр разностного сигнала представляется в виде

D̂(kx, ky) = ẑ(kx, ky) · exp
(
−|k|2σ21

2

)
− ẑ(kx, ky) · exp

(
−|k|2σ22

2

)
≃

≃ ẑ(kx, ky) ·

|k|2(σ22 − σ21)/2 при |k|σ1,2 ≤ 1;

exp
(
−|k|2σ21/2

)
при |k|σ1 ≳ 1.

Таким образом, операция нахождения разности двух сглаженных изоб-
ражений эквивалентна вычислению второй производной (или лапласиана)
от исходной функции:

D(x, y) ∝ −
(
∂2

∂x2
+

∂2

∂y2

)
zfilt(x, y).

Вторая производная (локальная кривизна) максимальна на границах гра-
нул, поэтому максимумы разностного изображения определяют положения
границ.

3.2 Карты дифференциальной туннельной проводимо-

сти

Перейдём теперь к рассмотрению результатов измерений, полученных
методами сканирующей туннельной спектроскопии. Разделы 3.2 и 3.3 по-
священы обсуждению и обработке результатов измерений, полученных при
температуре T = 1.1 К и магнитном поле H = 0.25 Т. Анализ результатов,
полученных при более высоких температурах, представлен в разделе 3.4.
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3.2.1 Оценка расстояния между вихрями в эксперименте и в
теории

На рис. 14 а изображён спектр дифференциальной туннельной прово-
димости, усреднённый по всем точкам сканирования и нормированный на
проводимость в нормальной фазе (при больших энергиях, вдали от щели).
Таким образом были определены значения напряжений, соответствующих
центру и пикам когерентности. При напряжении, соответствующем правому
пику (V0 = 2.64 mV), была построена карта дифференциальной туннельной
проводимости, представленная на рис.14 б. На карте видна вихревая решёт-
ка, близкая к гексагональной. Поскольку карта построена при напряжении,
соответствующем максимуму плотности состояний, то, согласно рис. 10,
при переходе от сверхпроводящей фазы к нормальной дифференциальная
туннельная проводимость должна уменьшаться. Это согласуется с экспе-
риментом: на рис.14 б наблюдаются тёмные вихри на фоне более яркого
сверхпроводящего окружения.
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Рис. 14: a – Усреднённый по всем точкам спектр dI/dV − V ; б – Карта проводимости
dI/dV (x, y, V0) при напряжении V0, соответствующем правому пику среднего спектра
проводимости.

Оценим среднее расстояние между вихрями. Если поле H однородно и
перпендикулярно поверхности сверхпроводника, то плотность вихрей (число
вихрей на единицу площади) равна 1/S = H/Φ0, при этом в гексагональной
вихревой решётке каждый вихрь занимает ячейку площади S =

√
3d2/2,

где d — среднее расстояние между соседними вихрями (расстояние между
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центрами ячеек решётки). Таким образом, имеем:

d =

√
2Φ0√
3H

. (3.2.1)

Подставляя значение поля H = 0.1 T, при котором был проведён экс-
перимент, получаем теоретическую оценку среднего расстояния между
вихрями:

dth ≈ 89 nm. (3.2.2)

По полученной на рис.14 б карте было определено среднее расстояние
между вихрями в эксперименте:

dexp = (96.9± 5.7) nm. (3.2.3)

Это значение даёт хорошее согласие с теоретической оценкой (3.2.2).

3.2.2 Определение экспериментальных спектров дифференци-
альной туннельной проводимости, соответствующих вих-
рям и сверхпроводящему окружению
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Рис. 15: a – Определение серий точек внутри и вне вихрей из карты проводимости
dI/dV (x, y, V0); б – Экспериментальные спектры, усреднённые по окрестностям точек
на риcунке а) и их усреднённые кривые.

По карте дифференциальной туннельной проводимости были также
определены экспериментальные кривые dI/dV − V . Для этого на карте
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вручную были выбраны два множества точек (см. рис.15 а): точки, соот-
ветствующие сердцевинам вихрей (показаны голубым цветом), и точки,
расположенные вдали от вихрей (показаны синим цветом). Для каждой
из выбранных точек с учётом усреднения по окрестности были получены
спектры дифференциальной туннельной проводимости. На рис.15 б пред-
ставлены две серии спектров (из шести экспериментальных кривых каждая),
соответствующие сердцевинам вихрей и сверхпроводящему окружению со-
ответственно. Утолщёнными линиями показаны усреднённые кривые для
каждой из серий.

3.2.3 Подтверждения наличия сверхпроводящих свойств у иглы

Обратим внимание на серию, изображённую на рис.15 б синим цветом.
Видно, что значение напряжения, соответствующее пику дифференциаль-
ной туннельной проводимости, составляет около 2.5 mV. В ниобии такого
большого значения энергетической щели быть не может, значение 2.5 meV
примерно в два раза превышает значение щели в чистом ниобии. Допущение
о том, что материал образца состоит из ниобия с такой большой щелью,
противоречит эксперименту: в этом случае критическая температура Tc
также должна была бы быть примерно в два раза выше табличного зна-
чения, чего не наблюдается (см. раздел 3.4). Это подтверждает наличие
сверхпроводимости в игле. Наблюдаемая в экспериментальных спектрах
энергия щели является результатом вклада как со стороны образца, так
и со стороны иглы. Таким образом, наблюдаемые спектры (рис.15 б) не
описывают чистые свойства образца, и для корректного анализа экспери-
ментальных данных необходимо отделить сверхпроводимость образца от
сверхпроводимости иглы, то есть найти решение обратной задачи. Разделе-
ние сверхпроводимости иглы и образца являлось одной из главных задач
настоящей работы.
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3.3 Решение обратной задачи

При известной плотности состояний иглы и отсутствии шума в экспери-
ментальных данных задача восстановления плотности состояний образца
сводится к прямому решению линейного уравнения

AX = I, (3.3.1)

где A — оператор, отражающий свёрточную связь между плотностью состо-
яний иглы и разностью фермиевских функций, X — плотность состояний
образца, а I — измеренный ток. В этом идеализированном случае решение
может быть получено обращением матрицы:

X = A−1I. (3.3.2)

Однако в нашем эксперименте плотность состояний иглы неизвестна,
а результаты измерений вольт-амперных характеристик сильно зашум-
лены. Поэтому матричный способ решения обратной задачи в дан-
ной работе не применим. Другим вариантом решения обратной за-
дачи является численное моделирование наблюдаемых характеристик
и определение параметров иглы и образца по результатам фиттинга.
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Рис. 16: Совмещённый график плотно-
сти состояний в модели Дайнса и функ-
ции распределения Ферми для двух
сверхпроводящих электродов

Поскольку игла обладает сверх-
проводящими свойствами, име-
ет смысл говорить о туннельном
контакте S-I-S. Вольт-амперная
характеристика такого контак-
та представляет собой свёртку
плотностей состояний иглы и об-
разца, домноженную на разность
соответствующих фермиевских
функций (см. формулу (1.3.5)).
Для нахождения решения обрат-
ной задачи необходимо по извест-
ным туннельным I − V характе-
ристикам иглы и образца найти
такие функции плотности состо-
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яний иглы (ρ1) и образца (ρ2), которые бы наилучшим образом описывали
наблюдаемые в эксперименте спектры.

3.3.1 Различные теоретические модели и их особенности

В качестве возможных классов функций плотности состояний, на основе
которых можно осуществлять поиск решений, в работе были рассмотре-
ны функции, соответствующие теоретическим моделям БКШ, Дайнса и
Абрикосова-Горькова.

В модели БКШ в «полупроводниковой» модели сверхпроводника плот-
ность состояний сверхпроводника описывается формулой (1.3.2)) [24].

Формула Дайнса, в отличие от формулы БКШ, включает феномено-
логический параметр Γ ̸= 0, который учитывает конечное время жизни
квазичастиц за счёт процессов неупругого рассеяния (Γ = ℏ/τ , где τ – время
жизни квазичастиц) [25]:

ρ(E,Γ) = Re

[
E − iΓ√

(E − iΓ)2 −∆2

]
(3.3.3)

Модель Абрикосова-Горькова изначально была создана для описания
влияния магнитных примесей на сверхпроводимость. Однако её область
применения шире: модель Абрикосова-Горькова может быть также исполь-
зована для описания различного рода неоднородностей, которые подавляют
сверхпроводимость, и может быть применена в том числе для описания гра-
нулированных сверхпроводящих образцов. Согласно этой модели, плотность
состояний сверхпроводника определяется выражением:

u− γu√
1− u2

=
E

∆
, ρ(E, γ) = Re

(
u√
u2 − 1

)
· sign(E), (3.3.4)

где E — энергия ; γ — параметр уширения Абрикосова-Горькова (учитывает
влияние магнитных примесей); u — комплексный параметр, определяющий
плотность состояний [26].

На рис. 17 представлены графики плотности состояний сверхпровод-
ника моделях БКШ, Дайнса и Абрикосова-Горькова, нормированные на
плотность состояний в нормальной фазе. Характерной особенностью всех
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моделей является наличие пиков плотности состояний, располагающихся
на величинах энергий, близких к щели, и минимума плотности состояний
при малых напряжениях. Отличие рассматриваемых моделей заключается
в высоте пиков и форме провала. Так, в модели БКШ пики плотности
состояний очень высокие и плотность состояний обращается в нуль всюду
внутри щели. В моделях Дайнса и Абрикосова-Горькова, в отличие от мо-
дели БКШ, пики подавлены, однако плотность состояний Дайнса внутри
щели не обращается в нуль, а плотность состояний Абрикосова-Горькова
принимает нулевое значение при малых напряжениях, при этом ширина
провала уменьшается.
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Рис. 17: Плотность состояний сверхпроводника в моделях БКШ (а), Дайнса (б)
и Абрикосова-Горькова (в). Параметры иглы при моделировании: ∆1 = 1.10 meV;
Γ1 = 0.4 meV, параметры образца ∆2 = 1.35 meV; Γ2 = 0.1 meV. Температура T = 1.1 K;
Tc = 9 K, параметры уширения Абрикосова-Горькова γ1 = 0.20; γ2 = 0.12.

Путём численного интегрирования было проверено, что полное число
состояний во всех трёх случаях остаётся неизменным. Это означает, что учёт
конечного времени жизни квазичастиц или влияния магнитных примесей
не изменяет полное число состояний.
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Рис. 18: Спектры dI/dV (V ) в моделях БКШ (а), Дайнса (б) и Абрикосова-Горькова (в).
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На рис. 18 представлены спектры дифференциальной туннельной про-
водимости, рассчитанные в рамках «полупроводниковой» модели и соответ-
ствующие теоретическим подходам БКШ, Дайнса и Абрикосова-Горькова
(в отличие от рис. 17, здесь были рассмотрены два сверхпроводящих элек-
трода). Видно, что все характерные особенности плотностей состояний
воспроизводятся и здесь. Отличительной особенностью спектров прово-
димости в модели Дайнса является наличие перегибов при напряжениях
|e|V ≈ ∆. Эта особенность является следствием наличия сверхпроводящих
свойств иглы и отсутствия нулевых значений плотности состояний Дайн-
са. Экспериментально наличие перегиба в спектрах дифференциальной
туннельной проводимости было подтверждено в экспериментах по исследо-
ванию туннельных контактов Pb-I-Pb [27], однако подобные особенности не
наблюдаются в нашем эксперименте для плёнок ниобия.

3.3.2 Сравнение рассматриваемых теоретических характеристик
с наблюдаемыми в эксперименте
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Рис. 19: Зависимости дифференциальной туннельной проводимости от напряжения,
полученные экспериментально и численным расчётом в модели БКШ: a – полное изоб-
ражение; б – увеличенная часть.

Теперь будем пробовать фитировать наблюдаемые туннельные харак-
теристики. Определим, какая из рассматриваемых моделей наилучшим
образом описывает эксперимент. Для этого итеративным методом по всем
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параметрам рассматриваемой модели были одновременно аппроксимиро-
ваны спектры, соответствующие точкам, расположенным вдали от вихрей,
и спектры, соответствующие сердцевинам вихрей. Информация о плотно-
сти состояний иглы была получена из фиттинга спектров, наблюдаемых в
центрах вихрей. Далее в данном разделе будут приведены изображения, ил-
люстрирующие результаты аппроксимации для спектров, соответствующих
точкам вдали от вихрей.

На рис. 19 представлен фиттинг экспериментальных данных в модели
БКШ. Видно, что модель БКШ совершенно не подходит для описания
наблюдаемых в реальном эксперименте спектров, поэтому необходимо рас-
сматривать другие модели.
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Рис. 20: a – Зависимости дифференциальной туннельной проводимости от напряжения,
полученные экспериментально и численным расчётом в модели Дайнса; б – Зависимость
невязки от восстанавливаемого значения щели в образце.

Результат аппроксимации формулой Дайнса существенно лучше (см.
рис. 20 a). Для дифференциальной туннельной проводимости в модели
Дайнса была рассчитана невязка (среднеквадратичное отклонение):

δ(∆2) =
∑
n

((
dI

dV

)exp

n

− dI

dV
(Vn,∆2)

)2

, (3.3.5)

путём её параболической аппроксимации вблизи минимума было определено
оптимальное значение щели в образце, составившее ∆

(opt.)
2 ≈ 1.25 meV (см.

рис. 20 б). Это значение даёт хорошее согласие с табличными значениями
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энергетической щели в ниобии при низких температурах (1.3 – 1.4 meV) [22].
Таким образом, хотя формула Дайнса вследствие наличия перегибов и не
описывает форму наблюдаемых в эксперименте спектров, она может быть
использована для получения корректных результатов восстановленных
значений щели.
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Рис. 21: Зависимости туннельной проводимости от напряжения, полученные экспери-
ментально и численным расчётом в модели Абрикосова-Горькова: a – без сглаживания;
б – с гауссовым сглаживанием.

Наконец, рассмотрим фиттинг с использованием модели Абрикосова-
Горькова. Как видно из рис. 21 а, модель Абрикосова-Горькова также не
подходит для описания формы наблюдаемых спектров, хотя она, как и
формула Дайнса, может быть использована для получения достоверных
значений восстановленной щели. С целью более точного описания экспе-
римента была предпринята попытка применить подход Дайнса в рамках
модели Абрикосова-Горькова – были рассмотрены спектры Абрикосова-
Горькова, в которых к энергии была добавлена мнимая часть (E 7−→ E−iΓ).
Полученные кривые также не соответствовали наблюдаемым. Другим вари-
антом улучшения фиттинга является идея «размазать» плотность состояний
Абрикосова-Горькова сглаживанием с помощью гауссова фильтра. В таком
случае был получен спектр, почти идеально описывающий эксперименталь-
ные характеристики (см. рис. 21 б). Для формулы Абрикосова-Горькова
со сглаживанием также была проведена процедура оптимизации невязки,
восстановленное значение щели в образце составило ∆

(opt.)
2 ≈ 1.35 meV.
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Совместный фиттинг
спектров, соответствующих
точкам вне и внутри вихрей,
в модели Абрикосова-
Горькова со сглаживанием
изображён на рис. 22. С
целью наиболее точного
определения параметров
аппроксимации были оце-
нены шумовые разбросы
изображённых на рис. 15 б
спектров.
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Рис. 23: Усреднённые экспериментальные спектры dI/dV (V ) и их доверительные ин-
тервалы, фиттинг в моделях Дайнса и Абрикосова-Горькова со сглаживанием плотности
состояний: a – вне вихрей; б – внутри вихрей.

Усреднённые кривые для каждой из серий рис. 15 б (внутри и вне
вихрей) и их степень зашумлённости показаны на рис. 23 синим цветом.
Красным цветом на рис. 23 изображены фитирующие кривые в модели
Абрикосова-Горькова со сглаживанием плотности состояний, чёрным пунк-
тиром – фитирующие кривые в модели Дайнса. Параметры аппроксимации
подбирались таким образом, чтобы фитирующие кривые укладывались в до-
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верительные интервалы. Видно, что модель Дайнса не удовлетворяет этому
требованию, в то время как модель Абрикосова-Горькова со сглаживанием
плотности состояний хорошо описывает наблюдаемые спектры.

Определённые по результатам фиттинга при T = 1.1 K (см. рис. 22) зна-
чения щели в игле и в образце составили ∆1 = 1.15 meV и ∆2 = 1.35 meV,
соответственно. Графики на рис. 22 показывают, что оба эксперименталь-
ных спектра (вдали от вихрей и в сердцевинах вихрей) с одними и теми же
параметрами щели в игле ∆1 и уширения γ фитируются очень хорошо.

Физически применение гауссова сглаживания к плотности состояний
Абрикосова-Горькова, вероятно, может быть связано с эффектом близости.
Из-за присутствия на конце зонда небольшого кусочка сверхпроводника,
налипшего на изначально нормальную иглу, игла не становится настоящим
сверхпроводником, а выступает как сверхпроводящий металл в режиме
эффекта близости. Это приводит к размытию сверхпроводящей щели в
плотности состояний иглы. Размытие же плотности состояний образца явля-
ется исчезающе малым эффектом и в принципе может даже не учитываться.
Тем не менее, оно может быть связано с пространственной неоднородно-
стью образца. Поскольку туннельный контакт имеет конечный размер,
спектроскопия даёт усреднённую информацию по области, включающей
различные величины сверхпроводящей щели, что приводит эффективному
сглаживанию спектра. Следует подчеркнуть, что установить точную физи-
ческую природу наблюдаемого размытия не представляется возможным:
система является очень сложной. Возможно лишь строить интерпретации в
рамках различных моделей и вводить различные плотности состояний. В
такой ситуации единственным критерием пригодности модели является её
способность описывать наблюдаемые данные.

3.3.3 Исследование предложенного алгоритма восстановления
щели на устойчивость для случаев S-I-S и N-I-S туннельных
контактов

Предложенный алгоритм восстановления щели в сверхпроводнике был
исследован на предмет устойчивости, были рассмотрены случаи исполь-
зования нормальной и сверхпроводящей иглы. На рис. 24 представлены
изображения нормированных функций плотности вероятности f(∆2, σ) в
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полулогарифмическом масштабе, описывающие распределение восстанов-
ленных значений щели ∆2 для разных уровней шума σ (для каждого уровня
было проведено 600 восстановлений). Видно, что при низком уровне шума
значение щели в сверхпроводнике (∆(ист.)

12 = 1.34 meV) восстанавливается
точно. С увеличением шума точность восстановления падает, при этом в
случае использования сверхпроводящей иглы размытие восстанавливаемых
значений происходит немного быстрее, однако это отличие несущественно.
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Рис. 24: Нормированные функции плотности вероятности f(∆2, σ) в полулогарифмиче-
ском масштабе: a – случай сверхпроводящей иглы; б – случай нормальной иглы.

3.3.4 О сканирующей туннельной спектроскопии со сверхпрово-
дящей иглой

Экспериментам по сканирующей туннельной спектроскопии со сверхпро-
водящей иглой посвящено множество работ авторов J.G. Rodrigo, H. Suderow
и S. Vieira. Однако, в отличие от нашего эксперимента по туннельной спек-
троскопии плёнок ниобия, в этих работах иглы были хорошо характеризо-
ваны, поскольку были изготовлены сверхпроводящими целенаправленно.

В работе [28] рассматривается использование нормальных (Au, Pt) и
сверхпроводящих (Pb, Al) игл для наблюдения решётки вихрей в различных
соединениях. Авторы утверждают, что туннельная спектроскопия сверхпро-
водящего образца с использованием сверхпроводящего противоэлектрода
более информативна, чем туннельная спектроскопия с обычным электродом:
в то время как нормальный зонд измеряет локальную плотность состояний
образца напрямую, сверхпроводящие зонды с известыми характеристиками
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предоставляют дополнительную спектральную информацию и повышают
энергетическое разрешение.

Кроме того, СТМ c хорошо описанным сверхпроводящим зондом может
быть использована для получения прямого изображения пространственных
вариаций плотности куперовских пар в образце: измерение локальных кри-
тических токов позволяет получить информацию о локальном параметре
порядка [29]. Однако важно отметить, что такая постановка эксперимен-
та требует создания низкого сопротивления туннельного контакта, чтобы
протекание сверхтока стало возможным.

Другой важной особенностью сверхпроводящей иглы является чувстви-
тельность плотности состояний её наконечника к внешнему магнитному
полю. Это позволяет использовать зонд в качестве локального датчика
магнитного поля. Пространственное разрешение в таком случае достига-
ет нанометрового уровня, а чувствительность к полю составляет порядка
миллитесла. Это делает подход конкурентноспособным по сравнению с
традиционными методами, такими как MFM или сканирующая SQUID-
микроскопия [30].

3.3.5 Альтернативный способ качественной оценки щели
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Рис. 25: Определение «эффективной» ще-
ли по ширине провала дифференциальной
туннельной проводимости.

Альтернативно значение
щели можно получить, оце-
нив её величину по разности
напряжений, соответству-
ющих пикам дифференци-
альной туннельной проводи-
мости. Однако, поскольку
игла также обладает сверх-
проводящими свойствами,
полученное значение будет
являться сложной функцией
образца и иглы («эффектив-
ная» щель) и не будет пред-
ставлять чистые свойства
образца. Тем не менее, опре-
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деление значений «эффективной» щели позволяет получить качественное
представление о распределении сверхпроводящей щели в образце ∆2(x, y).

Однако из-за существенных шумов точное положение пиков определить
затруднительно. На наблюдаемых в эксперименте спектрах шум мини-
мален при малых напряжениях. Считая зависимость ширины «провала»
дифференциальной туннельной проводимости однозначной и монотонной
функцией от величины щели, значение «эффективной» щели можно оце-
нить как полуширину «провала» спектров на уровне 0.5 от нормальной
дифференциальной туннельной проводимости (см. рис. 25):

∆(eff) =
1

2
· |e|(VR − VL). (3.3.6)

В таком случае в рассматриваемой области, во-первых, минимальны
шумы, а во-вторых, график имеет существенный наклон. Таким образом,
если какая-нибудь из экспериментальных линий вследствие шумов сдви-
нется вверх или вниз, и её пик значительно изменится по амплитуде, то
сдвиг точки данной кривой, соответствующей уровню 0.5 от нормальной
дифференциальной туннельной проводимости, будет существенно меньше.
Такой способ оценки щели позволяет надёжно оценить распределение щели
и может быть применён даже при наличии интенсивных шумов.
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3.4 Анализ туннельных спектров при различных тем-

пературах

3.4.1 Туннельные спектры и их фиттинг
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Рис. 26: Туннельные спектры при различных температурах: a – усреднение по точкам
вдали от вихрей; б – усреднение по точкам, соответствующим вихрям.

На рис. 26 представлены спектры дифференциальной туннельной прово-
димости, полученные при температурах от T = 1.1 K до T = 7.5 K. Каждая
из изображённых кривых является усреднением по серии спектров вне
(рис. 26 а) и внутри (рис. 26 б) вихрей при соответствующей температуре.
Для каждой пары спектров (внутри и вне вихрей) был произведён фит-
тинг в модели Абрикосова-Горькова со сглаживанием плотности состояний,
результаты фиттинга представлены на рис. 22 и 27.

Представленные на рис. 22 и 27 результаты фиттинга показывают, что
используемая модель хорошо описывает температурную эволюцию спек-
тров дифференциальной туннельной проводимости. Появляющийся при
T = 4.0 – 6.5 K на спектрах локальный максимум является ещё одним под-
тверждением наличия сверхпроводящих свойств у иглы. Эта особенность не
наблюдается на N-I-S контактах и является характерным признаком S-I-S
контактов (см. результаты численного моделирования на рис. 10 и 11).
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Рис. 27: Фиттинг спектров для вихрей и окружения в модели Абрикосова-Горькова
при температурах от T = 4.0 K до T = 7.5 K..

3.4.2 Температурная зависимость щели

По результатам фиттинга туннельных спектров (рис. 22 и 27) были по-
лучены оптимальные значения параметров модели Абрикосова-Горькова, в
том числе величины энергетической щели в игле и в образце. При T = 1.1 K
эти значения оказались близки к ожидаемым и составили ∆1 ≈ 1.15 meV
и ∆2 ≈ 1.35 meV. С увеличением температуры восстановленные значения
щели уменьшаются. Функциональная зависимость этих величин от темпе-
ратуры представлена на рис. 28.

С учётом степени шумов, присутствующих в эксперименте, нет осно-
ваний считать, что температурные зависимости восстановленных щелей
отличаются от температурной зависимости БКШ. Оптимальные кривые
температурной зависимости БКШ (см. рис. 1) для щелей в игле и в образ-
це показаны на рис. 28 пунктирными линиями. Согласно аппроксимации,
значения этих щелей при нулевой температуре составляют ∆1(0) ≈ 1.1 meV
и ∆2(0) ≈ 1.3 meV, соответственно. Определённые по результатам фиттин-
га критические температуры иглы и образца равны Tc1 ≈ 7 K и Tc2 ≈ 8 K.
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Значения щелей в игле и в образце вне вихрей при нулевой температуре
практически не отличаются от ожидаемых значений [27], отличие составляет
несколько процентов ( ∆1(0)

1.76kBTc1
= 1.02, ∆2(0)

1.76kBTc2
= 1.07).
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Рис. 28: Температурная зависимость восстановленных значений щели и оптимальные
кривые, соответствующие температурной зависимости БКШ.

Видно, что температурная зависимость БКШ находится в неплохом
соответствии с восстановленными значениями щелей. Графики на рис. 28
представляют результат сложной процедуры разделения сверхпроводимости
образца и иглы, являвшейся одной из главных задач настоящей работы.

3.5 Восстановление пространственно-неоднородного

распределения щели

3.5.1 Восстановление заданного профиля щели

Теперь рассмотрим пространственно-неоднородное распределение щели.
Вначале предложенный алгоритм восстановления щели был протестирован.
Для этого был задан, а затем восстановлен заранее известный профиль
пространственного распределения щели ∆(x) = x.

На рис. 29 а профиль восстанавливается точно, поскольку в моделируе-
мых спектрах дифференциальной туннельной проводимости отсутствовал
шум. На рис. 29 б к туннельным спектрам был добавлен шум, поэтому на
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восстановленном профиле щели наблюдается некоторый разброс значений,
однако он даёт хорошее согласие с заданным профилем. Таким образом,
алгоритм работает без ошибок и достаточно устойчив в присутствии шумов.
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Рис. 29: Восстановление линейного профиля щели: a – без шума в спектрах дифферен-
циальной туннельной проводимости; б – с шумом.

3.5.2 Карты восстановленных значений щели в образце
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Рис. 30: Карты распределения пространственной вариации восстановленных (слева) и
«эффективных» (справа) значений щели в гранулированном сверхпроводящем образце.

Рассмотрим теперь результаты восстановления распределения энерге-
тической щели по данным туннельной спектроскопии гранулированных
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ниобиевых плёнок. На рис. 30 представлены карты пространственно-неодно-
родного распределения восстановленных (слева) и «эффективных» (справа)
значений щели в образце, полученные по данным эксперимента, проведён-
ного при T = 1.1 K, H = 0.25 T. Продемонстрирована гранулированная
структура образца, замкнутые контуры обозначают линии уровня одинако-
вой высоты. Видно, что распределение щели не коррелирует с границами
зёрен. Это подтвержает расчёт коэффициента корреляции Пирсона рас-
пределения восстановленных ∆2(x, y) значений щели и топографии z(x, y).
Коэффициент корреляции Пирсона – это стандартная статистическая мера,
которая показывает, насколько линейно связаны между собой два ансамбля
величин:

ρ(X, Y ) =
cov(X, Y )

σX · σY
=

∑
(X − ⟨X⟩)(Y − ⟨Y ⟩)√∑

(X − ⟨X⟩)2 ·
∑

(Y − ⟨Y ⟩)2
. (3.5.1)

Коэффициент Пирсона является нормированной ковариационной функ-
цией (не зависит от единиц измерения) и принимает значения от −1 (полная
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Рис. 31: Отсутствие корреляции восста-
новленной щели в образце и топографии
(ρ(∆2, z) = 0.04)

антикорреляция) до 1 (пол-
ная корреляция). Значение
коэффициента Пирсона
ρ = 0 указывает на отсут-
ствие линейной зависимости
между двумя рассматривае-
мыми величинами. Значение
коэффициента Пирсона
для распределения восста-
новленных значений щели
∆2(x, y) и топографии z(x, y)
составило ρ(∆2, z) = 0.04

(см. рис. 31), что подтвер-
ждает отсутствие корреля-
ции распределения щели в

образце и топографии. Наблюдаемая же на рис. 30 небольшая вариация
щели, вероятнее всего, связана с наличием у плёнки развитой поверхности.
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Поскольку угол подведения иглы для всех точек сканирования один и
тот же, в точках поверхности с разным рельефом туннелирование идёт с
разных сторон наконечника иглы, что незначительно изменяет щель.
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Заключение

В результате проделанной работы была реализована методика анали-
за туннельных спектров с участием сверхпроводящей иглы, параметры
которой заранее неизвестны. Извлечение и обработка больших массивов
экспериментальных данных были произведены с использованием программ-
ного обеспечения Python. В ходе работы были построены карты топографии
и из них определены методом разности гауссианов границы зёрен. Для опи-
сания туннельных спектров со сверхпроводящей иглой были рассмотрены
различные теоретические модели — БКШ, Дайнса и Абрикосова–Горькова.
Было показано, что модель Абрикосова–Горькова со сглаживанием плот-
ности состояний наилучшим образом согласуется с экспериментальными
данными во всём температурном диапазоне. Анализ туннельных спектров,
полученных при температурах от 1.1 K до 7.5 K, позволил эксперименталь-
но подтвердить наличие сверхпроводящих свойств у иглы и определить её
критическую температуру, а также критическую температуру исследуемого
образца. По результатам фиттинга были определены температурные зави-
симости щели в игле и в образце, хорошо описывающиеся предсказаниями
модели БКШ.
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