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Majorana zero modes (MZMs) localized in vortex cores of topological superconductors are widely
regarded promising building blocks for fault-tolerant quantum computation. However, their unambiguous
detection is hindered by the extremely small energy spacing separating them from conventional Caroli-
de Gennes-Matricon states. Using a microscopic Bogoliubov-de Gennes approach, we demonstrate that
nonmagnetic impurities, rather than suppressing, can substantially enhance the energy gap between
MZMs and other vortex core excitations. The robustness of MZMs against local perturbations ensures
that while conventional states are shifted by impurity-induced potentials, the MZMs remain intact. This
results in a pronounced zero-bias peak in the local density of states. Our results dispute the widespread
assumption that large A /E; values—where A is the superconducting gap and E; is the Fermi energy—
are required to detect MZMs, and instead indicate that purposefully engineered pinning centers in
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conventional s-wave superconductors offer a practical and experimentally accessible alternative.

Introduction

Majorana zero modes (MZMs), first predicted to exist in vortex
cores of a p-wave superconductor [1], exhibit several excep-
tional characteristics that have attracted considerable interest
from the broader physics community. MZMs, which can be
regarded as “half-fermion” excitations, correspond to 2 degen-
erate states with energies lying exactly at the midpoint of the
superconducting gap. These states are localized, yet exhibit
nonlocal behavior: in systems containing a single vortex, the
MZM wave functions are distributed between the vortex
core and the boundary of the sample [2]. MZMs are topo-
logically protected and separated from nearby states by an
energy gap, making them robust against local perturbations
and low-energy excitations [3]. They are also predicted to
appear at the ends of one-dimensional p-wave supercon-
ducting wires [4]. Their robustness makes them promising
candidates for realizing stable qubits in quantum computation
architectures [5-7].

Only a few materials are considered potential p-wave super-
conductors, including Sr,RuO, [8], UPt, [9], layered AuSn,
[10], and Cu,Bi,Se; [11]. However, MZM:s can also emerge via
the proximity effect at interfaces between conventional s-wave
superconductors and topological insulators [12], or between
s-wave superconductors and materials exhibiting ferromagnetic
Rashba spin-orbit coupling (SOC) [13]. These mechanisms
greatly expand the range of materials and hybrid structures in
which MZM:s can be realized, sparking an intensive search for
their experimental detection [2,14,15].
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Signatures of MZMs have been reported in various super-
conducting devices [16-23] and in complicated scanning tun-
neling microscopy (STM) studies of certain novel materials
[24]. However, the experimental observables used to identify
MZMs can also arise from nontopological bound states, mak-
ing unambiguous identification challenging [25,26]. This
ambiguity persists even in the recently presented Majorana 1
quantum processor [7]. Zero-bias peaks in the local density
of states (LDOS) observed near vortex cores in iron-based
superconductors [27-29] have also been attributed to MZMs.
However, such peaks may also originate from alternative
quasiparticle excitations, such as Caroli-de Gennes-Matricon
(CAGM) states [30-33].

One of the major challenges in observing MZMs is the
close proximity of neighboring energy levels. In uniform
superconductors, the energies of vortex core excitations are
given by [1,30]

Ej= +jA%/Ep, (1)

where A is the superconducting gap, Er is the Fermi energy,
and j is a quantum number-integer valued for p-wave pairing
and half-integer for s-wave pairing. The MZM corresponds to
j = 0, representing the only doubly degenerate state in the spec-
trum. It is separated from the nearest excited states by an energy
AE = A% /Ej. Since A < E in most superconductors, this
energy is extremely small [34], which poses a major obstacle
to the experimental resolution and unambiguous detection
of MZMs.
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To overcome this problem, researchers have turned to mate-
rials with small Ej and large A [35]. Among these, iron-based
superconductors have emerged as leading candidates for MZM
observation [27-29,36-48]. However, a serious drawback of
iron-based materials is the presence of magnetic impurities
from interstitial iron atoms. These impurities suppress the
superconducting gap and distort zero-bias peaks, complicating
the identification of MZMs [49]. Thus, high-purity single crys-
tals with minimal disorder are essential for reliable conclu-
sions. Furthermore, statistical analysis of bound-state spectra
[50] and refined spectroscopy protocols [51] have become
crucial tools.

In contrast, nonmagnetic impurities do not affect MZMs
due to their topological protection and nonlocal character
[1,52]. This distinguishes MZMs from other vortex core
states [53,54], offering a possible route for their identifica-
tion. However, theoretical studies of vortex core states in the
presence of pinning centers have shown that while the MZMs
remain unperturbed, the energies of other states shift closer
together, reducing the visibility of the MZM peak in the
LDOS [55]. These results align with the intuitive expectation
that disorder leads to spectral crowding and suppression of
the visibility of individual states. Nevertheless, experiments
on topological superconducting hybrids such as Pb/Co/Si
have revealed unexpectedly robust zero-bias peaks, attrib-
uted to MZMs, that are separated from other excitations by
sizable gaps, presumably arising from magnetic or spin-orbit-
induced vortex core textures [56].

This work demonstrates that, contrary to prevailing assumptions
and earlier calculations, the mere presence of impurity-induced
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pinning centers can substantially increase the energy separation
between MZMs and other vortex core states, thereby facilitating
the identification of the former. With an appropriately chosen
impurity potential, in terms of both strength and spatial extent,
this energy separation can be substantially enhanced.

Figure 1 illustrates this effect. The top panels (A to D) pres-
ent results for a clean system: Panel (A) shows the supercon-
ducting gap profile within a vortex; panels (B) and (C) display
the spatial distribution of the lowest quasiparticle state in trivial
and topological superconductors, respectively; and panel (D)
depicts the energy dependence of the LDOS. The bottom panels
(E to H) show the corresponding results for a system with a
pinning potential [indicated by the red line in panel (E)].

These findings suggest that the detection of MZMs becomes
considerably more feasible in systems with engineered pinning
centers, shifting the focus from materials with high A / Ep ratios
to more experimentally accessible samples with strategically
pinned vortices. Our results are applicable to both intrinsic
p-wave superconductors and hybrid structures composed of
s-wave superconductors coupled to materials with strong SOC.

Results

The distinction between the MZM and the lowest energy
CdGM states in a pure superconductor is illustrated in Fig.
1B and C, which show the spatial density of their respective
wave functions. The CdGM state is tightly localized around
the vortex core (Fig. 1B). In contrast, the MZM exhibits a
nonlocal character, being localized both at the vortex core
and near the sample boundary (Fig. 1C). It is worth noting
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Fig. 1. Top panels: Clean system. (A) lllustration of the geometry and parameters of the system. The blue line shows the vortex core solution for the gap function| A |, with
characteristic width £ and homogeneous gap magnitude A. (B) Spatial profile of the absolute value of the wave function corresponding to the lowest-energy CdGM state ina
nontopological superconductor,V, = 0. (C) Spatial profile of the absolute value of the wave function corresponding to the MZM in a topological superconductor withV, = 0.5.
(D) Averaged LDOS at the vortex core for topological (blue) and trivial (red) superconductors. Bottom panels: System with pinning potential. (E) Illustration of the geometry
and parameters of the system. The red line represents the pinning potential, characterized by its strength Vy and width #. The blue line shows the vortex core solution for
the gap function | A |, with characteristic width £ and homogeneous gap magnitude A,. (F) Spatial profile of the absolute value of the wave function corresponding to the
lowest-energy CdGM state in a nontopological superconductor,V, = 0. (G) Spatial profile of the absolute value of the wave function corresponding to the MZM in a topological
superconductor withV, = 0.5. (H) Averaged LDOS at the vortex core for topological (blue) and trivial (red) superconductors, shown for V; = 0.8. The impurity width is set equal
to the superconducting coherence length, n = & = 3. The system size is 61 x 61. In panels (B), (C), (F), and (H), the color bars illustrate the respective distribution density of

the wave function for the lower-energy bound state.
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that when the system contains 2 or more vortices, the MZM
can be distributed or “split” between different vortex cores.

To get a deeper insight, we characterize both the energy and
spatial distribution of the quasiparticle states. We calculate the
LDOS using

NG Ey= Y [ulo)| 6(E~E)
n,o (2)

+ vg")(r)|25(5+5<">),

where the result is smoothed by convoluting with a Lorentzian
function of width I = 0.01.

Without the impurity, the averaged LDOS N(r <&, E) at the
vortex core, shown in Fig. 1D of the topological (blue line) and
conventional (red line) superconductors, are practically indis-
tinguishable. (In this regard, we note that SOC shifts the ener-
gies of the CAGM states, breaking their symmetry around the
gap center E = 0 [57,58].) However, introducing an impurity
substantially modifies the spatial profile of the lowest CAGM
state (Fig. 1F) while only slightly perturbing the MZM state
(Fig. 1G). This leads to a clear separation of the zero-bias MZM
peak at E = 0 from the other vortex core states, as clearly evi-
denced in Fig. 1H.

This impurity-induced restructuring of the LDOS N(r, E) is
further explored by examining its spatial dependence on the
distance from the impurity r and shown in Fig. 2. The top and
bottom panels correspond to the nontopological (A) and topo-
logical (B) superconductors, respectively. The results are pre-
sented for different values of the pinning potential: V; = 0 (no
pinning), V, = 0.4, and V; = 0.8.

Clearly, the states localized at the vortex core exhibit radial
symmetry. The radius of the localization ring for these states
increases with energy E. In the case of a topological supercon-
ductor, the MZM energy is precisely in the middle of the gap,
E = 0. However, without pinning (V, = 0), the gap between
neighboring excitations is so small that it becomes difficult to
distinguish the topological (Fig. 2B) from the nontopological
(Fig. 2A) superconductor.

The situation changes when an impurity is introduced into
the system. Its potential raises the absolute value of the energies
of all the vortex core states, except for the MZM. Consequently,
the impurity enhances the energy gap between the MZM and
other vortex core states.

The dependence of the energy levels of all vortex states on
the impurity potential strength Vj, is shown in Fig. 3. Except
for the MZM, the energies of all states in both the topological
(Fig. 3A) and nontopological (Fig. 3B) superconductors shift
away from the center of the superconducting gap at E = 0.
Figure 3C illustrates how the energy gap AE, which separates
the MZM from the other vortex states, varies with V,,. Although
this dependence changes with the width # of the impurity
potential, it remains monotonic.

We note in passing that the spatial profile of the MZM wave
functions differs qualitatively from that of the lowest energy
CdGM state—the radial dependence of the MZM wave func-
tion exhibits pronounced oscillations (Fig. 4). These oscillations
are also visible as scars in the density plot shown in Fig. 1C.
Both the period and the amplitude of these oscillations are
notably dependent on the impurity strength V/,

We emphasize that our calculations predict an increase in
the energy spacing AE for systems with electron-type charge
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Fig. 2. (A) LDOS for vortex core states in a nontopological (trivial) superconductor (V, = 0), calculated without impurity potential (V, = 0) and with impurities of strengths
Vo = 0.4 and 0.8. (B) LDOS for vortex core states in a topological superconductor (V, = 0.5), calculated without impurity potential (V, = 0) and with impurities of strengths
Vo = 0.4 and 0.8. The impurity width is set equal to the superconducting coherence length, n = & = 3. The color bars are adjusted to the maximum value across all the

parameter sets considered.
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Fig. 3. Dependence of the energy levels of the vortex core states on the impurity potential strength V,, for the topological (A) and nontopological (B) superconductors. The
calculations assume that the impurity width is equal to the superconducting coherence length, n = & = 3. The color bars indicate the value of DOS. (C) The variation of the
energy gap AE between the MZM and other vortex core states as a function of pinning strength Vo, computed for impurity widths » = 1,2, and 3. The lines between points are

shown as guides to the eye.
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Fig. 4. (A) Radial dependence of the MZM wave function as a function of distance r from
the vortex core, calculated for impurity strengths V, = 0.2and 0.8. Panels (B) and (C)
show density plots of the spatial distribution of the MZM wave function for V5 = 0.2
and 0.8, respectively. The impurity width is set equal to the superconducting coherence
length, n = & = 3. The color bar is normalized to the maximum value of the density of
the wave function for both panels.

carriers, which occurs when the chemical potential is negative,
4 < 0(p = 0corresponds to the center of the conduction band).
In contrast, for systems with hole-type carriers (u > 0), the
impurity potential has the opposite effect: it shifts the energies
of the vortex core states toward the center of the supercon-
ducting gap, E = 0. This reversed behavior was previously
reported in Ref. [55], where it was concluded that impurities
may further suppress the visibility of MZMs. A similar effect
is observed when the impurity potential becomes attractive
for electrons (V, < 0), again leading to a shift of the vortex
core states toward E = 0.

At first glance, these findings suggest that the outcome
strongly depends on the impurity type and the nature of the
charge carriers. However, this interpretation is misleading.
Calculations predicting the reverse effect also rely on the
same approximation (Eq. 9), which becomes invalid when
the impurity attracts quasiparticles (V, < 0) or the system
becomes hole-like (p > 0). In such cases, the vortex is repelled
by the impurity, rendering the solution based on Eq. 9 unsta-
ble. Therefore, adding “usual” impurities V;; > 0 can only
enhance the visibility of MZMs, not suppress it, as in this case
the vortex is strongly pinned to the impurity, which effectively
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acts as alocal potential barrier that pushes the higher-energy
CdGM states away from MZM.

Conclusion

In this work, we have investigated the effect of an impurity
potential on MZMs localized in the vortex core of a hybrid
topological superconductor, composed of a conventional
s-wave superconductor, a Rashba spin-orbit coupled semi-
conductor, and a ferromagnetic material.

Our direct numerical calculations based on a microscopic
model show that introducing nonmagnetic impurities increases
the energy separation between MZMs and other vortex core
states, while the MZMs themselves remain robust. This finding
substantially relaxes the conventional requirement for a high
A / Ep ratio, which has traditionally hindered the experimental
detection of MZMs due to the typically small energy spacing
between MZMs and low-energy in-gap excitations. Our results
suggest that, rather than relying on materials with large A / Ej,
ratios (such as iron-based superconductors), it is feasible to
observe MZMs in hybrid topological systems based on con-
ventional s-wave superconductors containing single, strategi-
cally engineered nonmagnetic impurities.

Results of the work remain valid as long as the width of the
impurity lies within the range 1 /kp < 7 < &, ensuring that it
does not exceed the size of the vortex core and Vj, is high
enough to suppress superconducting gap.

Our 2-dimensional model captures the essential surface
physics governing topological superconductivity and MZM
formation in relevant 3-dimensional (3D) platforms. It is
directly applicable to 3D samples with columnar defects,
where MZMs remain localized at the vortex ends. Surface
defects, such as those created by focused nanoscale ion
beams or arising from band bending [49,59,60], are likewise
expected to yield a comparable widening of the minigap in
the surface LDOS, owing to the suppressed contribution
from relevant bulk states near the surface.

We finally note that strongly pinned vortices are not ideal
for direct motion-based braiding schemes proposed for quan-
tum computations; nevertheless, MZM states at such vortices
can still be controlled via alternative approaches. For instance,
manipulation can be achieved by controlling the MZM’s entan-
gled partner at the sample boundary. This strategy enables
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control of MZM’s via local gating or phase biasing without
moving the vortices themselves [61]. In this context, the pro-
posed mechanism for reliable MZM detection in readily avail-
able materials could be essential for designing MZM-based
quantum computation schemes.

Methods

The model of topological superconductor

We consider a hybrid topological superconductor that com-
prises layers of a superconductor with s-wave pairing symme-
try, a semiconductor with Rashba SOC, and a ferromagnetic
insulator. Such a system is described using the discrete model
Hamiltonian [62]

H:H5+Hsoc+Hm, (3)

where the Hamiltonian of the superconducting subsystem is
written in the mean-field approximation as

i T
HS = Z tijciacja + z <AiCiTCil+h' C. ), (4)
(i-j)o i

with ¢, being the electron operators corresponding to lattice
site i and spin 6. The hopping elements t;; = ¢ are nonzero only
for nearest neighbors, and A; is the gap function at site i. The
magnetic part is described by the Hamiltonian

= T T
H,=V, Z (CiTCiT_CiiCii)’ (5)
1

with V, characterizing the Zeeman splitting. Finally, the Rashba
interaction Hamiltonian is given by

_a t t
Hsoc =75 Z [(ﬂ--exfn - Ci+eX¢CiT> +
1

i i ©
i (ci_eylc” = Cite, it ) +h.c. ] ,
where a is the SOC hopping amplitude responsible for spin-flip
hopping between nearest neighbors.
We also consider an additional contribution due to an impu-
rity located at position r;, described by a Gaussian potential

2
_ |r; — x|
Vi = VOCXP —T > (7)

where V; denotes the strength of the impurity and # its spatial
extent. Compared to the Fu-Kane model, the Hamiltonian
(Eq. 3) includes extra kinetic and Zeeman terms, allowing a
trivial phase.

The vortex core states are studied by solving the Bogoliubov-de
Gennes (BdG) equations corresponding to the model Hamiltonian
(Eq. 3). The approach follows the methodology used for the
analysis of CAGM states in conventional s-wave superconductors
[61-65]. In block-matrix form, the BAG equations are written as

h, :\g 0 A i, i,
-gh. A 0 u u
PR [l - Bl NG
0 A —-h, -3 v, vy
N S A\ v
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where the components of the eigenvectors % , and v, corre-
spond to lattice sites i. The elements of the block matrices are
defined as [hi]ij =1+ (Vi Vz—u)é,»j, with 6;; being the
Kronecker delta; [g] i

right/left neighbors and + ia /2 for upper/lower neighbors;
and [A]ij =A;6

= ajp where a;; takes values of + a /2 for
lj-

Details of calculations
To obtain the vortex solution, Eq. 8 must be solved in the
presence of a magnetic field, which is incorporated by intro-
ducing the Peierls phase factor into the hopping integrals as
tijexp<i f:j A(r)dr/¢, ), where A(r) is the vector potential of
the magnetic field and ¢, is the flux quantum. The solution for
the vortex must satisfy the self-consistency conditions for A;
as well as for the field A. Achieving full self-consistency in the
presence of the magnetic field requires 2 iterative cycles [63].
Solving the BAG equations exactly is computationally
demanding. To reduce the computational load, we employ a
simplified approach in which the vortex solution is approxi-
mated as follows:

A= Aoeigitanh<—| r,;ro | >, )

where A represents the homogeneous gap magnitude, | r; — r |is
the distance from the vortex center, & denotes the coherence
length, and 0, is the polar angle at the lattice site i. Comparison
with the exact self-consistent solution shows that this approx-
imation is highly accurate when the superconductor is well
within the type Il regime [63,66]. Another necessary condition
is that the impurity potential is weak, satisfying V, < W,
where W = 8t is the bandwidth, and that # < & However, we
employ the exact self-consistent solution to confirm whether
the vortex is attracted to the impurity, acting as a pinning cen-
ter, or repelled by it. We also note that a solution of the BdG
equations depends on the system temperature (T = 0 in our
calculations), which enters Eq. 9 via temperature-dependent
quantities A, and &.

Numerical calculations are performed on a finite sample of
size 61 X 61 (measured in units of the lattice constant a), with
boundary conditions set as u = v = 0. All energy values are
expressed in units of the hopping constant, with t = 1 serving as
the energy scale. We set the SOC constant to & = 1.2 in accor-
dance with Ref. [61], which demonstrated the existence of the
topological phase at this level of SOC, and the chemical potential
to u = —3.5, which corresponds to a shallow electron-like band.

We also take Ay = 0.3 and & = 3, which is substantially
smaller than the sample size L. The relative values of the
chosen parameters are illustrated in Fig. 1E, which plots the
profile of the gap function in the vortex core (blue line) and
the impurity potential (red line). The choice ensures the appli-
cability of the approximate solution (Eq. 9).

The Zeeman splitting V, governs the topological nature of
the vortex core states. When V, =0, the system is a trivial
superconductor featuring CdGM states localized around the
vortex core. However, when Zeeman splitting satisfies the con-

dition (4t — | u|)? + Aé < sz < u? + A2, the system becomes a

topological superconductor that hosts MZMs near the vortex
core [67]. In the present study, we choose V, = 0.5, which falls
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within this range, thus placing the system in the topological
superconductor regime.
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Majorana zero modes (MZMs) localized in vortex cores of topological superconductors are widely regarded promising
building blocks for fault-tolerant quantum computation. However, their unambiguous detection is hindered by the
extremely small energy spacing separating them from conventional Caroli-de Gennes-Matricon states. Using a
microscopic Bogoliubov-de Gennes approach, we demonstrate that nonmagnetic impurities, rather than suppressing,
can substantially enhance the energy gap between MZMs and other vortex core excitations. The robustness of MZMs
against local perturbations ensures that while conventional states are shifted by impurity-induced potentials, the
MZMs remain intact. This results in a pronounced zero-bias peak in the local density of states. Our results dispute the
widespread assumption that large #/EF values—where # is the superconducting gap and EF is the Fermi energy—
are required to detect MZMs, and instead indicate that purposefully engineered pinning centers in conventional s-wave
superconductors offer a practical and experimentally accessible alternative.
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