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Proximity-effect engineering in aluminum-based planar Josephson junctions with
intrinsic superconductivity
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We present a comprehensive study of planar Nb-Al-Nb Josephson junctions with submicrometer dimen-
sions (L ~ 100 nm, active area of approximately 5 x 10* nm?), where the intrinsic superconductivity
of the aluminum weak link plays a crucial role in enhancing device performance. Through a combi-
nation of theoretical modeling and experimental characterization, we demonstrate that the aluminum
interlayer significantly boosts the critical current /. ~ 50 WA and the characteristic voltage V. &~ 1 mV at
T = 4 K, while maintaining the nonhysteretic current-voltage characteristics essential for digital appli-
cations. Our microscopic model, based on self-consistent solutions of the Usadel equations, reveals that
this enhancement originates from the coexistence of proximity-induced superconductivity and intrinsic
pairing in aluminum, which is particularly pronounced at an optimal boundary resistance. Structural anal-
ysis confirms epitaxial Nb-Al interfaces with minimal interdiffusion, enabling reproducible fabrication
of these compact junctions. These results establish Nb-Al-Nb bridges as promising building blocks for
high-density superconducting electronics operating at helium temperatures.

DOI: 10.1103/s1k7-wvw2

I. INTRODUCTION

The development of superconducting electronics is cru-
cial for advancing energy-efficient computing systems
[1-5], quantum computer interfaces [6-9], and neuro-
morphic circuits [10—13]. A key challenge in this field
is the miniaturization of superconducting circuits. Con-
ventional single-flux quantum (SFQ) logic circuits cur-
rently achieve an integration density of approximately
10°-107 Josephson junctions per cm? [14], which remains
significantly lower than the approximately 1.3 x 10'°
transistors per cm? typical of complementary metal-
oxide-semiconductor technology. The scalability of the
superconductor-insulator-superconductor (SIS) Josephson
junctions traditionally used in SFQ circuits is severely lim-
ited, requiring areas of the order of 1 wm? due to low
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critical current density and the need for additional shunt-
ing [5,15,16]. Attempts to increase the current density and
reduce the junction area lead to significant inhomogeneity
and a large parameter spread, which can prevent the use of
these junctions in large-scale integrated circuits.

While high-critical-temperature (high-7,) superconduc-
tors, such as YBa,Cu3;O7_, and MgB,, offer advantages
like higher operating temperatures and current densi-
ties, their integration into large-scale digital circuits faces
fundamental challenges. A key issue in materials such
as YBa,Cu3O7_, is the d-wave symmetry of the order
parameter [17]. This phenomenon causes intrinsic spatial
inhomogeneity of the Josephson current density at grain
boundaries and bicrystal interfaces, and in ion-irradiated
weak links. Although extensive work has been conducted
studying high-T7, junctions and their applications in digi-
tal circuits [18—48], the intrinsic spatial inhomogeneities
at interfaces lead to poor reproducibility and significant
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parameter spread in fabricated junctions. Planar junctions
formed in NbN [49—51] and in MgB, [52,53] also face sim-
ilar problems. It should also be noted that Josephson con-
tacts fabricated with a focused ion beam face limitations on
their width. The requirement for reproducible parameters
restricts their size to the micrometer scale. This limitation
stems from the significant difference in transport proper-
ties between the weak-link regions at the edges and in the
middle of the structure [26]. Collectively, these material-
specific limitations make high-T, junctions less suitable for
high-density, reproducible superconducting circuits than
the mature niobium-based technology.

The International Roadmap for Devices and Systems
Outbriefs [5] considers planar superconductor—normal-
metal-superconductor (SNS) Josephson bridges, consist-
ing of superconducting (S) electrodes separated by a
normal-metal (N) region, as a promising solution for
miniaturization [5,16,54]. These junctions are typically
realized using either nanowires [55—65] or finite-length
normal-metal segments with superconducting electrodes
[Fig. 1(a)]. Such planar bridges enable the reduction of
the weak-link region to 100200 nm while maintaining
high critical currents /. and large characteristic voltages
Ve =I.R,.

Despite these advantages, material selection remains a
critical challenge. While niobium (Nb) is the established
standard for superconducting electrodes, the choice of
normal-metal weak-link materials is less straightforward.
Common candidates include thin films of copper (Cu)
[66-80], gold (Au) [81-83], silver (Ag) [84], and alu-
minum (Al) [85-89]. In particular, in Ref. [89], it was
shown that in the NbN-Al junctions, the critical current
density at 300 mK can be 30% higher than that of Al
nanowires with the same lateral dimensions as the NbN-
based devices. These findings demonstrate the importance
of using superconducting barriers in hybrid nanodevices.
The achievement of a very high Josephson current in the
NbN/ALl junctions is of great relevance for superconducting
circuits requiring a high integration density.

The transport properties of SN-N-NS junctions depend
not only on the interelectrode distance L but also on the
interface transparency and the overlap between the S and
N films [16,90,91]. The transparency of Nb-Al interfaces
in particular has been extensively studied [92—100]. These
interfaces can exhibit tunnel-like behavior even without
intentional oxide layers, depending on the deposition con-
ditions [99—-107]. Unfortunately, the application of multi-
layer Nb-Al-Nb sandwiches is limited by their asymmetry,
which arises from differences between the Nb-Al and
AI-Nb boundaries. The planar NbAI-Al-AINb geometry
[Figs. 1(a) and 1(b)] of the junctions solves this problem
because both Al-Nb boundaries are manufactured using
the same technological process. Moreover, existing inho-
mogeneities in the interface are averaged by the large
coherence length £ in the aluminum layer.

The electronic properties of such junctions are usually
considered in two temperature regimes: (i) for tempera-
tures T above the critical temperature of Al (77), they are
interpreted as conventional SN-N-NS junctions; (ii) at 77 <
T%, they may function as SIS’-S’-S'IS junctions [89] (as
two superconducting tunnel junctions connected in series).

In this work, we demonstrate that Al’s intrinsic super-
conductivity plays a crucial role over the whole temper-
ature range and amplifies the proximity effect, even for
T > T}. Therefore, aluminum serves as an exceptional
weak-link material for superconducting nanoelectronics,
outperforming traditional normal metals such as Cu, Au, or
Ag. We fabricate NbAI-Al-AIND bridges with L ~ 100 nm
and an active area of approximately 5 x 10* nm?, achiev-
ing V.~ 1mV, I. ~50 pA, and R, ~20 Q at T~ 4 K.
These results are supported by a microscopic theoretical
model and comprehensive structural and transport mea-
surements, highlighting the potential of Al-based junctions
for next-generation superconducting circuits.

II. THEORY OF S-S’-S BRIDGES

For the theoretical analysis of the studied structures,
we employ an extended version of the SN-N-NS junction
model [16], which accounts for the intrinsic superconduc-
tivity of the Al material with critical temperature 77 < T,
where T, is the critical temperature of the Nb electrodes.
We assume the dirty-limit conditions for both the Al and
Nb layers, with the Al-layer thickness da; being much
smaller than the coherence length £z; = (Da1/27T,)!/2,
where Dy, is the diffusion coefficient of aluminum. Addi-
tionally, we neglect the suppression of superconductivity
in the Nb electrodes due to the inverse proximity effect
with the Al layer.

Under these conditions, the problem can be reduced [16,
90,108] to the one-dimensional Usadel equations [109] in
an Al strip [see Egs. (A1)~+(A10)] for details]. In the central
region (|x| < L/2), the equation takes the form

1 0 a9
——(G—)=d-A 1
wGax( ax) ’ M

while under the Nb electrodes (L/2 < |x| < Lj1 2 + L/2),
we have

1 9 [ ,00 O — §elvsen)/2
—— (=) =————— A (2
wG dx ox 5

The self-consistency equation in the N layer is given by
A OG
(— — —) =0. 3)

Here, the anomalous Usadel Green’s function ® corre-
sponds to the pairing amplitude in the Al strip, while
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Geometry of Josephson junctions and temperature-dependent electron-transport properties. (a) Typical false-colored scan-

ning electron microscope image of the studied Nb-AI-Nb structures. Green corresponds to the Al film, blue to the Nb film. White lines
connecting electrodes indicate the standard four-probe measurement scheme. Characteristic dimensions are marked by white arrows
and symbols: L, distance between Nb leads; L,j, length of the Al nanobridge; L;; and Ly, lengths of the Nb-Al overlap regions at the
left and right interfaces, respectively. The yellow line indicates the area examined by transmission electron microscope (TEM) (results
shown in Fig. 3). Scale bar: 200 nm. (b) 2.5D schematic of the Nb-Al-Nb structure. Definitions: dp, and da), thicknesses of the Nb and
Al layers, respectively; Wy, width of the Al nanobridge; Wy, width of Nb leads. (¢),(d) Theoretical temperature dependence of the
critical current /. for SN-N-NS Josephson junctions with L = 2&,; for (¢) ygm = 10 with varying critical temperature T of the N-film
and (d) T} = 0.27. (solid line) and T} = 0 (dashed line) with different suppression parameters ygm = 1, 10, 100. (e) Current-voltage
characteristics at temperatures from 0.2 to 10 K. Curves are vertically offset for clarity. Blue circles mark the critical current /.., red
circles mark the retrapping current /.. (f) Differential resistance colormap as a function of increasing current at different temperatures.
Color scale indicates differential resistance values. The dark blue region (marked “S”) represents the superconducting state. The cyan
line tracks the retrapping current /. during current decrease. Above 4 K, /. and I, coincide. R, indicates the normal-state resistance, 7,
is the Nb critical temperature, and 77 is the Al critical temperature.

the normal Green’s function G = w/(w? + CIDwCD’iw)I/2
describes the amplitude of the probability density of the
electron to be unpaired; w = (2n + 1)7/T, represents the
Matsubara frequencies. The effective coherence length
in Al under the Nb electrode is &4 = ypmw/(Gap +
¥em®), the proximity-induced pairing potential & =
GrnoAny/(Gap + veMw). Further, ¢ denotes the phase dif-
ference between the S electrodes. The values An, and Gy
are the pair potential and normal Green’s functions in the
Nb electrode, while A is the pair potential in the Al strip.
The parameters with dimensions of energy, ®, A, Anp,
and w, are normalized to 7 T,. The bridge boundary ygy =
ypda1/&€a1 incorporates the boundary-suppression parame-
ter [110] ¥ = Rp/paiéal, Where R, is the specific bound-
ary resistance of the SN interface and p,; and &4 are the
aluminum resistivity and coherence length, respectively.
The coordinate x is normalized to £4; and measured from
the structure’s center.

Notably, Eq. (2) reduces to Eq. (1) for a completely
opaque interface (ygy — 00).
The current / (x) through the Al strip is given by

1 T < G2 9 Re @ 9Im @
o _T Y L (meoloZ —Red ),
Iy T(;w:_ooa)2 ox ox

“4)

where the normalized current [, = JyWd, the characteristic
current density Jy = w7T./eéa1pa1, and W is the width of
the structure.

We solved the boundary-value problem [Egs. (1)
and (2)] numerically using the boundary conditions
do/dx =0 at x = +£La/2 = =(L/2 + L;). Figure 1(c)
shows the calculated temperature dependence of the crit-
ical current I.(T) for L = 2&4;, L; = 3&41, M = 10, and
various 7} values ranging from 0 to 0.37,. Increasing T
from 0 to 0.17, enhances /.(0) by a factor of 3, while
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the intrinsic superconductivity in the Al layer extends the
low-temperature plateau in /.(7).

Figure 1(d) presents I.(T) curves for L = 2&x), L; =
3&a1, and gy = 1, 10, and 100, comparing cases with
T? = 0 (dashed lines) and 7} = 0.27; (solid lines). The
relative /. enhancement due to Al’s intrinsic superconduc-
tivity becomes more pronounced at larger yg values, where
the electrode proximity effect is suppressed by boundary
opacity. These ygm-dependent features arise from two dis-
tinct sources of superconducting correlations in the Al
layer at T S T7*: (i) intrinsic superconductivity (parameter
A) and (i) electrode-induced correlations (parameter §).
For highly transparent boundaries (ygm < 1), the 1.(7)
dependence shows no discontinuity at 7 = T, with only
an overall /. increase [Fig. 1(d), ysm = 1]. Conversely,
for opaque boundaries (ygm 2 1), 1.(T) exhibits a sharp
increase at T = T followed by strong high-temperature
suppression.

Our fabricated NbAI-Al-AIND bridges (Fig. 1) corre-
spond to the intermediate case with ygy ~ 10, which
is a typical value of the interface parameter for planar
Josephson SNS bridges [63,83].

ITI. FABRICATION AND CHARACTERIZATION
OF NbAI-AI-AINb BRIDGES

NbAI-AI-AINb junctions were fabricated using a
shadow deposition technique. A two-layer mask prepared
by electron-beam lithography enabled the sequential depo-
sition of a 32-nm aluminum layer at 16° to the substrate
normal, followed by a 91-nm niobium layer along the
normal direction, both deposited via electron-beam evap-
oration in a single vacuum cycle with residual pressure
3 x 10~® mbar ensuring no contamination or Al oxidation
[111] at the interface.

This process yielded a series of Josephson junctions
exhibiting critical currents of approximately 50 pA at
4 K. Table I summarizes their geometric parameters and
transport properties at 4 K, with samples ordered by
interelectrode distance L.

Figures 1(e) and 1(f) present the transport characteris-
tics of a representative nanostructure (sample P in Table I).
Figure 1(e) shows the current-voltage characteristics from
0.2 to 10 K, while Fig. 1(f) displays the differential resis-
tance dV/dI as a function of current and temperature.

The critical current emerges at 7, ~ 7 K, correspond-
ing to the critical temperature of the Nb-Al overlap region.
A resistance jump at 7.6 K [Fig. 1(d)] marks the Nb
electrodes’ critical temperature. Between 7 and 4 K, the
I-V curves show no hysteresis, with /. increasing to
50 pA at 4K. The differential resistance R(/) = dV/dl
rises smoothly from Ry~ 3.5 Q (I 2 1) to Ry~ 6 Q
(I =100 pA).

At I ~ 100 pA, one NbAI boundary transitions to
the resistive state, evidenced by a sharp R(/) increase.

0.3 1@
02 -1 30 T T
R 0 50 100 150
< L (nm)
E
~
Experiment
o I
0.1- b
’ Best Fit
—— TS T.=0
—_— T T.=025
0.0 T T T

FIG. 2. Temperature dependence of critical currents. Critical
current /. (blue circles) and retrapping current /. (red dots) of
sample P as functions of temperature 7. The black solid and
orange dashed lines show the best fits to the /.(7) dependence
with and without accounting for intrinsic Al superconductivity,
respectively. Inset: critical current /. versus interelectrode dis-
tance L at T =4 K for samples listed in Table I, along with
model /.(L) dependencies calculated using parameters obtained
from fitting the main panel data (sample P, red star).

Further current increases sequentially drive the second
NbAI boundary, NbAl electrode regions, and adjacent
Nb films into the resistive state. Ultimately, R(/) reaches
approximately 23 €2, matching the normal-state resistance
above T.. Notably, the Nb-Al boundary transition cur-
rent differs from equilibrium Nb-Al tunnel junctions due
to nonequilibrium electron energy distributions in the Al
layer.

Below 4 K, characteristic SNS junction hysteresis
appears in the 7-V curves [Fig. 1(e)], caused by electron-
gas overheating during resistive-to-superconducting
transitions. At 7<1 K, I, ~300 pA exceeds the
retrapping current /, &~ 75 WA by a factor of 4. The
return branch shows sequential superconducting transi-
tions: NbAIl boundaries at 120 pA and the Al layer at
75 wA. The low-temperature characteristic voltage reaches
approximately 7 mV.

Figure 2 shows the temperature-dependent /. for sam-
ple P, exhibiting the characteristic SNS junction behavior:
exponential decay at high 7 and a low-T plateau [74,91];
however, our junctions show an unusually broad plateau
and higher crossover temperatures compared to Au- or Cu-
based SNS bridges [61-63]. Conventional SN-N-NS fitting
without Al superconductivity (77 = 0) yields &5 = 41
nm, pa; = 4.5 wQcm, ygy = 1.1, and 7, = 7.2 K (orange
dashed line).
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TABLE L.

Geometric parameters [see Figs. 1(a) and 1(b)] and transport properties at 7 = 4 K of Nb-Al-Nb junctions [see Figs. 1(¢)

and 1(f)]. Here, L, La;, Wa1, Wxb, L11, and Ly, were determined based on a scanning electron microscope image similar to Fig. 1(a).

The values of da; and dyp, are based on the TEM image in Fig. 3(a).

Sample L (nm) La (nm) Wa (nm) Wy (nm) Ly (nm) Lpp (nm) da (nm) dap (nm) R, () L (RA) VA (mV) V. (mV)

S 20 361 70 185 178
B 28 441 61 198 215
E 37 237 63 179 116
Q 63 356 87 163 159
R 93 241 65 167 87
P 102 442 107 144 177
A 126 412 88 121 153

148 32 91 18 100 0.30 1.80
206 32 91 16 48 0.05 0.77

32 91 23 57 0.50 1.15
150 32 91 22.6 48 0.15 1.08

32 91 239 47 0.24 1.12
153 32 91 229 51 0.17 1.17
149 32 91 20 40 0.16 0.80

Taking into account intrinsic Al superconductivity in
the frame of the modified SS’-S’-S’S model (black solid
line) improves the fit with 77 = 1.8 K, o1 = 49 nm, pa1 =
3.3 wQem, and ygy = 10.3. In this case, the estimates
of material parameters become closer to the literature
thin-film values [112,113], the interface parameter ygy is
comparable to typical SNS bridge values [63,83], and 77 is
within the interval 1.25-2.7 K of experimentally estimated
values of the critical temperature of thin Al films in mul-
tilayered structures [15,98,114—116]. It should be noted
that the aluminum parameters 77; and pa; are sensitive to
reduction of the electron mean free path or structural defor-
mations [117,118], and they may be significantly different
in isolated thin films and multilayer devices.

It is important to clarify that we do not claim a higher
IR, product for our SNS junctions compared to conven-
tional Nb-AI-AlO,-Nb SIS junctions. The key advantage
of our Nb-AI-Nb bridges lies in their high critical current
density (J, ~ 10° A/cm?), which enables a drastic reduc-
tion of the junction area (to approximately 5 x 10* nm?)
while maintaining nonhysteretic operation at 4 K, without
the need for external shunting. This is a fundamental step
toward miniaturization, whereas SIS junctions are limited
by their lower J, (typically 1-10 kA/cm?) and require
shunting to eliminate hysteresis, complicating scaling.

The inset of Fig. 2 shows the distribution of critical cur-
rents /. for samples with different distances between the
electrodes, L = 20120 nm. For comparison, we also show
the possible /.(L) dependencies calculated using the best-
fit parameters obtained above for sample P from the /.(7)
dependence within the SN-N-NS (dashed orange line) and
SS’-S’-S'S (black solid line) models. Although a direct
comparison of these dependencies with the experimental
points is not valid due to the spread of geometrical param-
eters in the other bridges, the general trend of the black line
is close to the obtained results. At the same time, predic-
tions made by the SN-N-NS model for shorter junctions
fail and exceed the measured critical currents by several
orders of magnitude.

Thus, we found that the standard SN-N-NS model can-
not be used to describe Nb-AI-Nb contacts even at tem-
peratures 7 significantly exceeding the critical temperature

of aluminum T7. For an accurate description of the elec-
tronic structure and the current properties of the Josephson
junction, it is necessary to account for the effect of prox-
imity amplification due to the intrinsic superconductivity
of aluminum and to use the modified SS'-S'-S’S model.
In SS’IS’S tunnel structures, a similar enhancement of the
critical current was discussed in Ref. [98] (see Fig. 8 of this
reference).

Regarding the nature of the junction, we note that
the normal-state resistance R, (2023 ) is significantly
larger than the resistance of the Al bridge alone (approx-
imately 3.5-6 2). This indicates that the interface resis-
tances dominate, a signature of an SNS structure with
low-transparency barriers. The temperature dependence of
R, in our measurement range (7 < 10 K) is governed
by residual resistance (impurity and defect scattering)
and does not show the strong metallic increase associ-
ated with phonon scattering, which is typical for this
low-temperature regime.

A cross-sectional transmission electron microscope
(TEM) analysis [Fig. 3(a)] reveals distinct 32-nm Al and
91-nm Nb layers with minimal intermixing, as confirmed
by TEM energy-dispersive x-ray spectroscopy measure-
ments. The Al layer exhibits a characteristic polycrys-
talline structure with grain sizes ranging from 30 to 90
nm [Fig. 3(b)], typical for electron-beam-evaporated films
[113,119], while the Nb layer shows significantly smaller
grains of 10—15 nm that maintain epitaxial alignment with
the substrate [Fig. 3(c)]. The interface region displays par-
tial lattice disorder, suggesting imperfect atomic registry
between the two materials [120] [Fig. 3(c), inset]. Comple-
mentary molecular-dynamics simulations performed using
a 46 x 55 x 56-nm> simulation cell (3.5 x 10° atoms) at
600 K [used to accelerate the simulation time (18 ns)
compared to the experimental timescale] reproduce key
experimental observations, including Nb grain sizes of
5-20 nm and the Nishiyama-Wasserman orientation rela-
tionship between the Al and Nb lattices: (111); || (110)np,
[110]41 || [001]np [121,122] [Fig. 3(d)]. The simulations
reveal that the interface-formation mechanism involves
substitution of Al surface atoms by deposited Nb atoms
rather than conventional interdiffusion, attributable to Nb’s
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~ Nb/Alintermixing layer |

Al[110]

FIG. 3. Cross-sectional analysis of the Nb-Al interface. (a)
Scanning electron microscope image of the junction cross
section, showing the complete aluminum layer (32 nm) and nio-
bium layer (91 nm). (b) Dark-field TEM image of the same
region as in (a), revealing individual Al grains with their respec-
tive sizes. Red dashed squares indicate the area magnified in (c).
(c) High-resolution view of the AI-Nb interface. The lower green
region represents part of a single Al monocrystalline grain. The
upper Nb layer shows two distinct grains (approximately 10 nm
in size), highlighted in blue color. Scale bar: 5 nm. Red dashed
squares indicate the area magnified in the inset. Inset: enlarged
view of Nb-Al interface. (d) Results of molecular-dynamics
simulation of Nb deposition on an Al single crystal.

significantly higher cohesive energy (7.57 eV/atom versus
3.39 eV/atom for Al) and surface tension (2.10 J/m? ver-
sus 1.14 J/m? for Al). This substitutional process creates a
metastable Nb-Al intermixing layer that can subsequently
relax into the more thermodynamically stable NbAl; inter-
metallic phase given sufficient time under typical deposi-
tion conditions.

IV. DISCUSSION

Our investigation of NbAI-Al-AINb bridges with vari-
able thickness demonstrates that electron-beam deposition
technology can produce structures with atomically sharp
interfaces between nearly single-crystal Al submicrome-
ter blocks and columnar-structured Nb films. Figure 3(c)
reveals spatial variations in the transport properties of the
NbAI boundary, showing both amorphous regions sepa-
rating single-crystal Nb and Al blocks, and epitaxially
connected Nb-Al regions.

In conventional three-layer NbAINb sandwiches [102—
107], the NbAIl and AINb interfaces exhibit signifi-
cantly different morphologies. While NbAl boundaries
typically show relatively uniform transparency similar to
NbAI-AIO,-Nb tunnel junctions [99—101], the AIND inter-
faces resemble those observed in our work. The pres-
ence of even one interface with the morphology shown
in Fig. 3(c) inevitably creates substantial inhomogeneity
in the critical current density, leading to poor parame-
ter reproducibility in NbAINb sandwiches. Such junctions
[102—107] typically behave as asymmetric SNIS or SS'IS
devices.

The solution lies in restoring symmetry through tran-
sition to double-barrier SINIS or SIS'IS structures [15].
In Nb-I-Al-I-Nb junctions, the probability of forming
both highly transparent epitaxial Nb-I-Al and Al-I-Nb
interfaces is negligible. Moreover, aluminum’s coherence
length exceeds typical Nb crystalline block dimensions,
enabling averaging of superconducting correlations within
the Al layer.

Unlike previous studies [102—107], our planar Nb-Al-
Nb bridges feature NbAl and AIND interfaces fabricated
in a single deposition cycle with comparable transport
properties. The critical current in these bridges is deter-
mined by the anomalous Green’s function amplitudes at
the Al film boundaries with the NbAl and AINb elec-
trodes, representing the averaged superconducting corre-
lations (both intrinsic and induced) within the Al sub-
layer. The significant size difference between Nb crystal-
lites (approximately 10—15 nm) and Al’s coherence length
(approximately 50 nm) enables self-averaging of inter-
face inhomogeneities, making boundary effects less pro-
nounced than in sandwich-type Nb-I-Al-I-Nb junctions.

For a direct comparison with the widely used
Nb-AI-AlO,-Nb SIS junctions, we note that while SIS
junctions offer superior reproducibility and uniformity, our
Nb-AI-Nb bridges provide a path to much higher inte-
gration density due to their smaller area (approximately
0.05 pm? vs approximately 1 wm? for SIS) and intrinsic
nonhysteretic behavior at 4 K without external shunting.
The IR, product of our junctions (around 1 mV) is compa-
rable to that of typical SIS junctions used in SFQ circuits.
The key trade-off is between miniaturization or scalabil-
ity (favored by our bridges) and mature process uniformity
(favored by SIS).

V. CONCLUSION

Our experimental studies demonstrate that NbAI-Al-
AINDb Josephson junctions exhibit several key advan-
tages for superconducting nanoelectronics applications.
The fabricated devices show: (i) compact dimen-
sions (La; x W= 5 x 10* nm?), significantly smaller
than conventional tunnel junctions; (ii) hysteresis-free
current-voltage characteristics at operating temperatures
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(T 2 4K), eliminating the need for external shunting;
and (iii) excellent electrical parameters at 4 K, including
a critical current /. ~ 50 WA, a normal-state resistance
R, =~ 20 ©, and a characteristic voltage V. comparable to
tunnel-junction performance.

The device with these parameters outperforms pla-
nar junctions using alternative weak-link materials. These
unique properties occur due to the intrinsic superconduc-
tivity of the Al film, which significantly amplifies the
proximity effect, even above the aluminum critical temper-
ature T7. It is likely that the mutual Nb-Al proximity-effect
amplification will also allow the electrode dimensions
to be reduced to the hundred-nanometer scale without a
reduction in their effective critical temperature, in contrast
to the behavior recently observed in Nb-Au-Nb junctions
[83].

These results conclusively validate the proposed
approach [16] of using variable-thickness bridges with
Nb superconducting electrodes and an Al-based weak link
for compact active elements in superconducting circuits.
The interfaces exhibit tunnel-like conductivity with a sup-
pression parameter gy & 10 while maintaining excellent
device performance. Crucially, our electron-beam deposi-
tion technique enables the fabrication of structures with
atomically sharp interfaces between layers, providing a
pathway for further miniaturization of superconducting
elements without compromising their performance charac-
teristics.
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APPENDIX A: ® PARAMETRIZATION

In this study, we analyze NbAI-AI-AIND bridges while
disregarding the processes that take place within the Nb

layers. For the S’ material (aluminum, which has intrin-
sic superconductivity), the Usadel equation [109] in the &
parametrization is given by

ad P a P oG wGA
el (G I (G e
ox ox ay ay T, T,

(AT)

In this expression, the anomalous Usadel Green’s func-
tions F' are related to the functions ® = ®,, by the expres-
sion F = ®,,/(w? + ®,* )!/? and represent the pairing
amplitude in the Al strip, whereas the normal Green’s func-
tion G = G,, = w/(w* + ®,d* )!/? describes the prob-
ability amplitude of an electron remaining unpaired. The
parameter £5; = (Daj/2m T.)'/? is the coherence length of
aluminum, 7 is the critical temperature of niobium, Dy
is the Al diffusion coefficient, and A4 is the pair potential
in the Al strip. Here, o = (2n 4 1) T are the Matsubara
frequencies, and the x and y axes are directed along and
perpendicular to the SN interfaces, respectively.

Equation (A1) should be solved with the Kupriyanov-
Lukichev [110] conditions at SN interfaces,

0 @ o, O
vBéalG—— = G\ <— — —> (A2)
ay w 0w o
and
0
—d =0, (A3)
on

where 7 is a unit vector in the direction perpendicular

to a free interface. The term Gy = (w/,/@? + A%,) in

Eq. (A2) represents the normal Green’s function in the Nb
electrode, while ®; is given by

Oy = Anpe. (A4)
Here, Ayp is the superconducting order parameter in the
bulk S electrode and ¢ = ¢ sgn(x)/2 denotes the phase of
the order parameter at the SN interfaces. The boundary-
suppression parameter [110] yz = Rp/paiéal, Where Ry, is
the specific boundary resistance of the SN interface and pa;
and &, are the aluminum resistivity and coherence length,
respectively.

In the limit of small Al layer thickness da; compared to
a1, the functions @ (A1) depend only weakly on the coor-
dinate y. Performing integration over the y coordinate and
taking into account the boundary conditions (A2) and (A3),
we arrive at the following one-dimensional equation for
the function @ (x) at each frequency w:

RTE 3 (@00
oG 0x dx

NTCGS(ANbeid) - (I))

WYBM

+ Apa =9,
(AS)

where ysm = yadai/éal.
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For convenience, we rewrite the equation in a normal-
ized form by introducing the following parameters: the
effective coherence length in Al under the Nb electrode
€2 = vemw/(Gny + yemw) and the proximity-induced
pairing potential 6 = GxpAnn/(Gnb + Yem®). All energy-
related parameters (®, A, Anp, and the Matsubara frequen-
cies w) are normalized to 7 T,. Finally, the coordinate x is
normalized to £4; and is measured from the structure’s cen-
ter. Using the introduced notation, we can rewrite Eq. (A5)
in the form convenient for our purposes, as in (1):

1 0 , 0P d — §elvsgn)/2
— ()= A,
oG dx ox X

In the area of the Al strip not covered by the electrode,
the parameters simplify to Sesz =landé =0.

The superconducting order parameters Ayp and Ay are
determined by the following self-consistency equations:

o0
A A
AnpIn — +7T E N N =0,
c w00 || [w? + Aib

[o¢]

T Apn OG
Aarln — T ———)=0. A8
AlnT?Jrn w;oo(w w) (A8)

Following normalization by 7 T,, these equations trans-
form into Eq. (3) in the main text:

T T X [A A
Anp h'lF + T Z Nb Nb =0,
¢ ¢ oo 2] [w? + Alz\fb
(A9)
T T K [(Ay  OG
Apln — + — L _")=o0 A10
. T?+Tcw_z_oo(|w| w) (A10)

APPENDIX B: FITTING PROCEDURE

The parameters of the model were fitted to the exper-
imental data using the trust-region-reflective algorithm,
which is a subspace trust-region method based on the
interior-reflective  Newton method [123,124]. In this
method, each iteration involves the approximate solu-
tion of a large linear system via preconditioned conjugate
gradients.

Based on a preliminary analysis showing that the /.(T)
dependence is insensitive to the L;/&; ratio, this parame-
ter was fixed at L; /€ = 6 for computational convenience.

The set of free parameters in the fit included the interelec-
trode distance L/§,,, the boundary parameter ygy;, and the
critical temperatures 7, and 7.

Since the experimental data for /.(7) saturate at low
temperatures, we normalized the experimental curve using
this saturation value prior to fitting. The theoretical curve
was treated in an identical manner.

The theoretical I.(7) dependence was calculated
through a nested loop structure. The outermost loop runs
through the desired temperature range (normalized by T).
For each temperature, the maximum supercurrent /. is
found by searching for the optimal phase difference ¢ via
a bisection method. The current for any given phase ¢
is itself the result of a complex iterative process. First, a
self-consistent solution for the pair potential in aluminum,
Aai(x), must be found. This is achieved by an iterative
loop that starts with the initial guess Aaj(x) = Anp and
converges when the relative update to A, is sufficiently
small. Inside this loop, the core calculation involves solv-
ing the nonlinear boundary-value problem from Egs. (1)
and (2) by integrating over the Matsubara frequencies
until the current profile /(x), given by Eq. (4), converges.
The updated Ay is then found from its self-consistency
equation, Eq. (3).

The mean-squared error between the normalized theo-
retical and experimental curves served as the cost function
for the fitting algorithm. To ensure that a global minimum
was found, the fitting procedure was relaunched with dif-
ferent initial guesses for the parameters if the resulting fit
was deemed inadequate. Finally, after obtaining the best-fit
parameters, the scaling factor /, was determined by com-
paring the absolute values of the saturation currents from
theory and experiment at low temperatures.
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