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Outline of mini-course

❖  Microscopic BCS (Bardin-Cooper-Schriffer) theory of superconductivity

❖  Formalism of Bogolubov- de Gennes equations

❖  Andreev reflection, Andreev bound states

❖  NIS interface, Blonder-Tinkham-Klapwijk Formalism

https://mezo-mipt.ru/schools/5/en



❖ Differential and integral calculus, including calculus of variations  

❖ Basics of quantum mechanics including the second quantization 
formalism  

❖ Basics of solid-state physics  

❖ Basics of thermodynamics  

❖ Basics of electrodynamics

Requirements 



Outline of the 1st section – theoretical background

❖ Landau Fermi liquid

❖ The Cooper problem

❖ The BCS model

❖ The Bogolubov-de Gennes equations

❖ The self-consistency equation

❖ Observables



Landau Fermi liquid: ground state

𝑘𝐹

Wave function of a free particle in a box 𝐿
V

𝑁 =

Periodic boundary conditions

Number of states in real volume V and k-space volume Ω

Fermi momentum

Ω

Maximal energy of electrons in the ground state

𝐸𝐹



Landau Fermi liquid: quasiparticles

Two-stage process of creation an excitation:
I. A removal of a particle out of the state below 𝐸𝐹. 
        Result: a hole excitation with 
II. Adding a particle to a state above 𝐸𝐹

        Result: a particle excitation with   

Thus, for isotropic system the quasiparticle spectrum is:



Landau Fermi liquid: quasiparticle lifetime

Scattering of quasiparticles

Pauli principle:

Momentum conservation:

The probability of the scattering process:

All the momenta are close to the Fermi surface ⟹ 𝒑1 ≈ 𝒑1
′ , 𝒑2 ≈ 𝒑2

′  ⟹ 



Landau Fermi liquid: quasiparticle lifetime



Landau Fermi liquid: Hamiltonians for particles and holes

One-particle Hamiltonian for particles: What is the one-particle Hamiltonian for holes?

𝑣𝜖,𝒑 = 𝑢−𝜖,−𝒑

𝐻𝑒 −𝒑 = 𝐻𝑒
∗



The Cooper problem

Assume pairing correlations between electrons 𝒑 and −𝒑′ ≈ −𝒑 

Annihilating the pair we annihilate electron 𝒑 and create hole 𝒑′   

correlations between them should exist



The Cooper problem



The Cooper problem

Let’s solve this integral equation:



The Cooper problem



The BCS model: Hamiltonian

Creation operators for electrons at point r with spins ↑, ↓:

Bogolubov transformation



The BCS model: Hamiltonian

Define an effective mean-field Hamiltonian:

How to find right quasiparticles and effective fields 𝑈 𝒓  and Δ 𝒓 ? 



The BCS model: Bogolubov - de Gennes equations

To find right wave functions of quasiparticles let us try to fulfil condition (1):

Substitute Bogolubov transformation here
And compare

We obtain the Bogolubov - de Gennes equations:

Orthogonality condition:



The BCS model: Bogolubov - de Gennes equations

Important properties of the Bogolubov – de Gennes equations:

(2) The Bogolubov – de Gennes equations conserves
the quasiparticle flow:



The BCS model: the self-consistency equation

According to the Wick’s theorem:

Then the Wick’s theorem gives:

Abrikosov, A.A., Gorkov, L.P. and Dzyaloshinski, I.E. (1964) 
Method of Quantum Field Theory in Statistical Physics. 
Prentice-Hall, New Jersey.



The BCS model: the self-consistency equation

Using the anticommutation relations we obtain:

The variation of the true energy: The variation of the effective  energy:

Compare and obtain the self-consistency equations:



The BCS model: the self-consistency equation

How to calculate averages in the self-consistency equations?

To do this we use:

The resulting self-consistency equations take the form:



The BCS model: electron density and final form of the Hamiltonian

The electron density takes the form:

It is a combination of

a particle contribution a hole contribution

The average energy of the state with effective field Δ(𝒓) The final form of the effective Hamiltonian: 

Including the effective field 𝑈(𝒓) into the chemical potential we obtain the final form of BDG equations:



The BCS model: Observables. Energy spectrum and coherence factors.

Consider a homogeneous superconductor with no magnetic field: 

We look for a solution in the form:

with

The system has a nontrivial solution if 

𝜖 > 0 gives the eigen energies of 
             quasiparticle states

the Cooper pair size:

Quasiparticle group velocity:

the coherence factors-



The BCS model: Observables. Density of states (DOS).

- is the number of states per unit volume and per spin 
     for particles with momenta up to  ℏ𝑞



The BCS model: Observables. Structure of quasiparticle wave functions.

The BDG equation in a homogeneous superconductor has a general solution:

It consists of

a particle with the group velocity along the momentum a hole with the group velocity opposite to the momentum



The BCS model: Observables. The energy gap.

Assume that 

Then we obtain the gap equation



The BCS model: Observables. The critical temperature.

Equation for the critical temperature 𝑇𝑐  at which Δ vanishes: 

At zero temperature:



The BCS model: Observables. The condensation energy.

Average energy per volume in the superconducting state:

Result:

energy of excitations
Energy of the ground state
measured from the normal state



The BCS model: Observables. The condensation energy.

Energy of the ground state – the condensation energy:

Result:



The BCS model: Observables. The current.

The quantum mechanical expression for the current density:

In the presence of the supercurrent pairs have nonzero total momentum:

The energy spectrum takes the form:

is the critical velocity



The BCS model: Observables. The current.

-

The total current is:

is the density of superconducting electrons



The BCS model: Observables. The current.

The calculation of the normal current for small superconducting velocity:



The BCS model: Negative energies.



Problems to Section 1

1.1 Calculate the ground state energy of the normal Fermi gas. Express it via 𝐸𝐹 .

1.2  Derive the completeness conditions and

from the Fermi commutation rules.

1.4 Derive the expression for the quasiparticle flow 𝑷  from the BDG equations and show that 𝑷 is conserved.

1.5  Find the energy spectrum and the coherence factors for the order parameter 

1.6  Derive the gap equation which determines the dependence of          on        for the order parameter in the form

1.7 Find the temperature dependence of the gap at

1.3  Derive the orthogonality condition.
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