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Outline of mini-course and requirements

God made solids, but surfaces were the work of the Devil.

W. Pauli

Outline: preliminary

* Lecture 1: Surface electronic states: Tamm, Schockley and image-potential states.

Quasiparticle interference and quantum corrals (July, 17)

* Lecture 2: Scanning tunneling microscopy and spectroscopy. Quantum-well states and

tunneling interferometry (July, 18)

* Lecture 3: Surface, edge and domain-wall superconductivity in nanostructured hybrid

samples (July, 19)

* Lecture 4: Thermodynamic aspects of physics of surfaces and interfaces (July, 20)

Requirements:

* Differential and integral calculus, including calculus of variations

* Basics of quantum mechanics, solid-state physics, thermodynamics, and electrodynamics
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Outline of current lecture

* Introduction

* Band spectrum and surface states in the tight-binding approximation

* Band spectrum and surface states in the nearly-free-electron approximation

* Quasiparticle interference and quantum corrals

* Image potential. Image-potential states as modified surface states

* Stark-shifted image-potential states in linearly increasing potential
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Introduction
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Band spectrum of crystals: general consideration (1)

We consider an electron in a crystal with periodic arrangement of positively charged ions.

ē ψn,k(r) = un,k e
ik·r

V (r)

It is well known that the solutions of the stationary Schrödinger equation

Ĥ𝜓(r) = E𝜓(r)

for electron in an arbitrary periodic potential V (r) = V (r + a) have a form of so-called

Bloch states – modulated plane waves of constant amplitudes

𝜓n,k(r) = un,k(r) e ik·r ,

where n is integer index, un,k(r) = un,k(r + a) is an arbitrary periodic function, and k is

the wave vector (quasi-momentum).
Alexey Yu. Aladyshkin Surface electronic states July 17, 2023 (BIT, Beijing) 5 / 48



Band spectrum of crystals: general consideration (2)

The energy of the Bloch electronic waves 𝜓n,k(r) = un,k(r) e ik·r should generally depend

on the number of quantum state n и the wave vector k = p/~

En,k = En,k+K ,

where K is the reciprocal lattice vector

K = m1 b1 + m2 b2 + m3 b3,

which can be presented as a linear combination of the primitive translation vectors in the

inverse k−space

b1 = 2𝜋
[a2 × a3]

(a
1
· [a

2
× a

3
])
, b2 = 2𝜋

[a3 × a1]

(a
1
· [a

2
× a

3
])
, b3 = 2𝜋

[a1 × a2]

(a
1
· [a

2
× a

3
])
.

Set of all electronic levels En,k for given n is called n−th allowed energy band. Set of En,k

for all n determines the resulting energy structure of crystal.

It should be stressed that all these relationships are strict mathematical consequences of

translational symmetry and they are valid for any crystals of arbitrary dimension.

Presence of surfaces and internal defects immediately destroy N−dimensional periodicity of

crystal, what leads to a drastic modification of both energy spectrum and wave functions.
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Band spectrum of crystals: general consideration (3)

Figure was taken from Ashkroft and Mermin, Solid-state physics (1970).

In 1D crystals energy allowed energy bands never overlap – below we focus on this case.

In 2D and 3D crystals allowed energy bands may overlap.
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Terminology

1. Tight-binding approximation

In the approach, the electronic wave functions are usually considered as a linear combination

of localized atomic orbitals (LCAO).

Surface states described in the framework of a tight-binding model are often referred to as

Tamm states (1932).

2. Approximation of nearly-free electrons

In the approach, the electronic wave functions are usually considered as plane delocalized

electronic waves.

Surface states described in the framework of a nearly-free-electron model are often referred

to as Shockley states (1939).

Thus, there is no strict physical distinction between Tamm and Shockley states, but the

mathematical approaches used in describing them are completely different.

I prefer to use generalized terms ’surface electronic states’ or ’Tamm-Shockley states’.
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Part I

Band spectrum and wave functions

in the tight-binding approximation
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Band spectrum and wave functions (1)

Let U0(z) be non-perturbed potential energy of an electron around an isolated ion:

U0(z)

ψ(0)(z)
E

(0)
0

E
(0)
1

E
(0)
2

z

(a) U0(z)

V (z)

|ψ(z)|

E(k)

z

(b)

The eigenfunctions 𝜓
(0)
n (z) and eigenenergies E

(0)
n , describing an electron in this single-well

potential, should meet the stationary Schrödinger equation

Ĥ0 𝜓
(0)
n (z) = E (0)

n 𝜓(0)
n (z),

where Ĥ0 = −(~2/2m*) d2/dz2+U0(z) is the Hamiltonian, n is integer index. A potential,

corresponding to the sum of the isolated potential wells

V (z) =
∑︁
m

U0(z + ma),

should be the periodic function with the period a, where a is the lattice constant.
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Band spectrum and wave functions (2)

Wave functions 𝜓(z) of electron in the periodic potential V (z) of arbitrary shape should

be the solutions of the stationary Schrödinger equation

Ĥ 𝜓(z) = E 𝜓(z),

where the Hamiltonian has the following from

Ĥ = −
(︂

~2

2m*

)︂
d2

dz2
+ V (z)±U0(z) =

{︂
−
(︂

~2

2m*

)︂
d2

dz2
+ U0(z)

}︂
+ V (z) −U0(z) =

= Ĥ0 + V (z) − U0(z).

We note that the perturbation V (z) − U0(z) is negative (see figure at page 10).

For simplicity we consider the formation of the s−band, corresponding to n = 0. If

overlapping of the wave functions localized at neighbour cites are negligibly small, then

we can find the solution in the form of the superposition of non-perturbed wave functions

𝜓(0)(z + ma), localized near m−th ion

𝜓(z) =
∑︁
m

bm 𝜓
(0)(z + ma).

In order to find the coefficients bm we apply the variational principle of quantum mechanics.
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Variational principle of quantum mechanics

One can multiply both left-hand side and right-hand side of the Schrödinger equation

Ĥ𝜓(r) = E𝜓(r) by 𝜓*(r) and get the relationship

𝜓*(r) Ĥ𝜓(r) = E𝜓*(r)𝜓(r).

After integration we come to the exact relationship

E =

∫︀
𝜓*(r) Ĥ𝜓(r) dV∫︀
𝜓*(r)𝜓(r) dV

.

Replacing the exact solution 𝜓(r) by a trial function 𝜓app(r), we can estimate the eigenenergy

Eapp =

∫︀
𝜓*

app(r) Ĥ𝜓app(r) dV∫︀
𝜓*

app(r)𝜓app(r) dV
.

Intermediate conclusion: the closer the approximate solution 𝜓app(r) to the true wave

function 𝜓(r), the lower the estimate of the energy Eapp is

E = min Eapp = min

∫︀
𝜓*

app(r)Ĥ𝜓app(r) dV∫︀
𝜓*

app(r)𝜓app(r) dV
.

Alternative: seeking minimal zero value of an auxiliary functional

F ≡
∫︁
𝜓*

app(r)
(︀
Ĥ − Eapp

)︀
𝜓app(r) dV → min.
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System of equations for the coefficients bm (1)

Let us compose an approximate trial solution (aka ansatz) in the form of the linear

combination of the non-perturbed shifted wave functions 𝜓(0)(z)

𝜓app(z) =
∑︁
m

bm 𝜓
(0)(z + ma) =

∑︁
m

bm 𝜓m(z),

where

𝜓n(z) = 𝜓(0)(z + na)

is the ground-state wave function localized at the n−th ion.

After substitution 𝜓app(z) into the auxiliary functional F , we get the following problem for

searching its minimal value

F =

∞∫︁
−∞

𝜓*
app(z)

(︀
Ĥ − Eapp

)︀
𝜓app(z) dz =

=
∑︁
m′

∑︁
m

b*
m′bm

∞∫︁
−∞

𝜓*
m′(z)

(︁(︀
Ĥ0 − Eapp

)︀
+

(︀
V (z) − U0(z)

)︀)︁
𝜓m(z) dz .
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System of equations for the coefficients bm (2)

Taking into account that Ĥ = Ĥ0 + V (z) − U0(z) and Ĥ0 𝜓
(0)
n (z) = E

(0)
n 𝜓

(0)
n (z), we get

F =
∑︁
m′

∑︁
m

b*
m′bm

∫︁
𝜓*

m′(z)
(︁(︀

Ĥ(0) − E
)︀

+
(︀
V (z) − U0(z)

)︀)︁
𝜓m(z) dz =

=
∑︁
m′

∑︁
m

b*
m′bm

∫︁
𝜓*

m′(z)
(︁(︀

E (0) − E
)︀

+
(︀
V (z) − U0(z)

)︀)︁
𝜓m(z) dz =

=
∑︁
m′

∑︁
m

b*
m′bm

[︁(︀
E (0) − E

)︀
Sm′,m − Pm′,m

]︁
,

where

Sm′,m =

∫︁
𝜓*

m′(z)𝜓m(z) dz > 0 and Pm′,m =

∫︁
𝜓*

m′(z) (V (z) − U0(z))𝜓m(z) dz < 0

are the overlap integrals for the wave functions, localized at the atoms with different

indexes.

From the conditions dF/db*
m′ = 0 corresponding to the extrema of the functional with

respect to all bm independently, one can get an infinite system of linear algebraic equation

for determination of the expansion coefficients bm∑︁
m

bm

[︁(︀
E (0) − E

)︀
Sm′,m + Pm′,m

]︁
= 0 (*).
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Energy spectrum for 1D periodic crystal (1)

Provided that the wave functions of electrons, localized at neighbour atoms, are practically

not overlapped and the probability of hopping of electron from one atom to next atom is

extremely small, one can consider the following simple expressions

Sm′,m =

∫︁
𝜓*

m′(z)𝜓m(z) dz =⇒ Sm′,m = 𝛿m′,m,

Pm′,m =

∫︁
𝜓*

m′(z) (V (z) − U0(z))𝜓m(z) dz =⇒ Pm′,m = 𝛼 𝛿m′,m, 𝛼 < 0,

where 𝛿m′,m is the Kronecker delta function. The system of equations (*) takes the form∑︁
m

bm

[︁(︀
E (0) − E

)︀
𝛿m′,m + 𝛼 𝛿m′,m

]︁
= 0 =⇒ bm

[︁(︀
E (0) − E

)︀
+ 𝛼

]︁
= 0

for all m.

It gives us the energy spectrum of electron in a periodic array of non-interacting potential

wells

E = E (0) + 𝛼.

In the other words, the parameter 𝛼 < 0 describes the shift of energy of electron in

the periodic potential as compared with the non-perturbed energy of electron in a single

potential well.
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Energy spectrum for 1D periodic crystal (2)

In order to take into account non-zero probability of hopping of electron from one atom

to next, we have to consider the following expressions

Sm′,m =

∫︁
𝜓*

m′(z)𝜓m(z) dz =⇒ Sm′,m = 𝛿m′,m,

Pm′,m =

∫︁
𝜓*

m′(z) (V (z) − U0(z))𝜓m(z) dz =⇒

Pm′,m = 𝛼 𝛿m′,m + 𝛽
(︀
𝛿m′,m−1 + 𝛿m′,m+1

)︀
, 𝛼 < 0, 𝛽 < 0

where the parameter 𝛼 < 0 accounts the lowering of the mean potential energy and the

parameter 𝛽 < 0 describes the amplitude of probability for tunneling m → m − 1 and

m → m + 1.

After substituting Sm′,m and Pm′,m into the system of equations (*), one can get a three-

diagonal matrix equation

bm

(︁
E (0) − E

)︁
+ bm 𝛼 + 𝛽

(︁
bm−1 + bm+1

)︁
= 0.
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Energy spectrum for 1D periodic crystal (3)

U0(z)

ψ(0)(z)
E

(0)
0

E
(0)
1

E
(0)
2

z

(a) U0(z)

V (z)

|ψ(z)|

E(k)

z

(b)

The system of equations for electron in one-dimensional periodic potential is the following

bm

(︁
E (0) − E + 𝛼

)︁
+ 𝛽

(︁
bm−1 + bm+1

)︁
= 0.

We look for the solution in the form of a plane electronic wave of constant amplitude

bm = B e ikam, where B is a constant independent on m; k is a real-valued wave vector.

After substituting of bm into the master equation, we get

e ikam
(︁
E (0) − E + 𝛼

)︁
+ 𝛽

(︁
e ika(m−1) + e ika(m+1)

)︁
= 0.

After rearranging one can get a band spectrum in the following form

E(k) = E (0) + 𝛼 + 2𝛽 cos ka = E (0) − |𝛼| − 2|𝛽| cos ka.
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Energy spectrum for 1D periodic crystal (4)

It is easy to see that the ground-state discrete energy level for electron in a single potential

well generates an allowed s−band of the finite width 4|𝛽| for electron in periodic potential:

E(k) = E (0) − |𝛼| − 2|𝛽| cos ka.

Extremal values:

Emin = E (0) − |𝛼| − 2|𝛽| at k = 0

Emax = E (0) − |𝛼| + 2|𝛽| at k = ±𝜋
a

Reminder: ±𝜋/a are the boundaries of the first Brillouin zone for 1D lattice.

0
k

E

π/a 2π/a−π/a−2π/a

4|β|s-band

p-band
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Band spectrum for 1D semi-infinite crystal (1)

It should be repeated that any boundaries and defects break periodicity and leads to non-

applicability of the Bloch theorem. Let the index m = 0 corresponds to the potential well

at the edge. It is reasonable to introduce a modified parameter 𝛼0 for the last potential

well, what meets the criterion 𝛼 < 𝛼0 < 0.

V (z)

|ψ(z)| ∼ eqz

z
m = 0m = 1

Es
E(k)

U0(z)

New system of equations accounting the difference in 𝛼

b0
(︀
E (0) − E + 𝛼0

)︀
+ 𝛽

(︀
0 + b1

)︀
= 0 for m = 0

bm
(︀
E (0) − E + 𝛼

)︀
+ 𝛽

(︀
bm−1 + bm+1

)︀
= 0 for m ̸= 0.
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Band spectrum for 1D semi-infinite crystal (2)

As before, we look for the solution in the form bm = C e ikam, then the eigenenergy Es

should meet the equations(︀
E (0) − Es + 𝛼0

)︀
+ 𝛽 e ika = 0 and

(︀
E

(0)
0

− Es + 𝛼) + 𝛽
(︀
e ika + e−ika)︀ = 0.

We subtract the first equation from the second equation and find, that the allowed values

of k vector should satisfy the relationship

e ika =
𝛽

𝛼
0
− 𝛼

< 0.

Apparently, this equation has no real-valued solution.

A complex-valued solution has the form k = k0 − iq, where

e ik0a = −1 or k0 = ±𝜋
a

and

eqa =
|𝛽|

𝛼
0
− 𝛼

> 0.

Alexey Yu. Aladyshkin Surface electronic states July 17, 2023 (BIT, Beijing) 20 / 48



Band spectrum for 1D semi-infinite crystal (3)

After substituting e ika = 𝛽/(𝛼0 − 𝛼) into the equation
(︀
E (0) − Es + 𝛼0

)︀
+ 𝛽 e ika = 0, one

can find the energy of the surface state

Es = E (0) + 𝛼0 +
𝛽2

𝛼
0
− 𝛼

.

It is easy to see that this energy is larger than the top of the allowed s−band

Es − Emax = E (0) + 𝛼0 +
|𝛽|2

(𝛼
0
− 𝛼)

−
(︁
E0 + 𝛼 + 2|𝛽|

)︁
=

=
1

(𝛼
0
− 𝛼)

(︁
|𝛽| − (𝛼0 − 𝛼)

)︁2

> 0 q.e.d .

0
k

E

π/a 2π/a−π/a−2π/a

4|β|s-band

p-band

Es
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Surface states and Wullf–Bragg–von Laue resonance

The condition k0 = 𝜋/a corresponds to the Bragg resonance on the periodic structure.

The criterion of the coherent back-scattering of electronic waves by neighbor atoms with

indexes m and m + 1

∆𝜙total = 2 · k0a = 2𝜋 n or k0 =
𝜋n

a
.

∆ϕ = k0a

∆ϕ = k0a

a

mm+ 1

incident wavereflected wave

reflected wave

surface

Important conclusion: if the real part of the wave vector k0 of the incident electronic wave

meets the Bragg condition of resonant back-scattering (k0 = 𝜋n/a), such wave cannot

pass through the periodic structure.

As a result, crystal acts like ideal mirror fully reflecting the incident wave with k0 = 𝜋n/a.
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Part II

Band spectrum and surface states

in the nearly-free-electron approximation
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Energy spectrum of free electron in 1D

Electron in free space
Ek =

~2k2

2m*

Electron in a periodic potential of infinitely small amplitude

Ek =
~2(k + K)2

2m* for arbitrary K =
2𝜋n

a
.

0
k

E

π/a 2π/a−π/a−2π/a

2|Vn|

It is well known that splitting of energy levels near the boundaries of the n−th Brillouin

zone at k = nK/2 = 𝜋n/a (points of degeneracy) is controlled by the amplitude of the

n−th Fourier component of periodic potential.
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Energy spectrum of electron in semi-infinite 1D potential (1)

Let us consider one-dimensional crystal terminated at z = 0

V (z) =

{︂
0 at z > 0,

V (z + a) at z < 0,

where a is the period. We assume that potential energy of electron can be written in the

following form

V (z) = V0 + 2Vn cos

(︂
2𝜋n

a
z

)︂
= V0 + Vn e

i 2𝜋n z/a + Vn e
−i 2𝜋n z/a,

where V0 is the mean value, 2Vn is the amplitude of the n−th Fourier component of the

potential, kBr = K/2 = 𝜋n/a is the boundary of the – n−th Brillouin zone, K = 2𝜋n/a is

the reciprocal lattice vector.

We seek solutions of the Schrödinger equation

− ~2

2m*
d2

dz2
𝜓(z) + V (z)𝜓(z) = E 𝜓(z),

inside the crystal in the form of combination of two non-uniform electronic waves

𝜓(z) = Ae ik0z+qz + B e ik0z−i 2𝜋nz/a+qz ,

where q > 0 is the decrement. Such the presentation looks reasonable provided that the

the vector k0 is close to the boundary of the Brillouin zone: k0 ≃ K/2 = 𝜋n/a.
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Energy spectrum of electron in semi-infinite 1D potential (2)

After substituting of the ansatz into the Schrödinger equation and rearranging, we get

− ~2

2m* (ik0 + q)2 Ae(ik0+q)z − ~2

2m*

(︁
ik0 −

i 2𝜋n

a
+ q

)︁2

B e(ik0−i 2𝜋n/a+q) z+

+
(︁
V0 + Vn e

i 2𝜋nz/a + Vn e
−i 2𝜋nz/a

)︁(︁
Ae(ik0+q)z + B e(ik0−i 2𝜋n/a+q)z

)︁
=

= E
(︁
Ae(ik0+q)z + B e(ik0−i 2𝜋n/a+q)z

)︁
(*).

Since travelling electronic waves e ikz and e ik
′z with different wave vectors are linearly-

independent solutions, the equality (*) should be fulfilled for the components proportional

e ikz and e ik
′z independently. It gives us the system of equations for the determination of

parameters A и B (so-called secular equations)

A

(︂
V0 −

~2

2m* (ik0 + q)2 − E

)︂
+ B Vn = 0,

AVn + B

(︂
V0 −

~2

2m*

(︁
ik0 − i

2𝜋n

a
+ q

)︁2

− E

)︂
= 0.

Nonzero solutions of uniform linear system of equation with zero right-hand parts exist if

a determinant of the corresponding matrix M̂ is equal to zero

det M̂ =

(︂
V0 −

~2

2m* (ik0 + q)2 − E

)︂ (︂
V0 −

~2

2m*

(︁
ik0 − i

2𝜋n

a
+ q

)︁2

− E

)︂
− V 2

n = 0.
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Energy spectrum of electron in semi-infinite 1D potential (3)

After solving this quadratic equation with respect to E , we get the energy spectrum

E = V0 +
1

2

~2

2m*

{︃
k20 +

(︂
k0 −

2𝜋n

a

)︂2

− 2q2 − 2i q

(︂
2k0 −

2𝜋n

a

)︂}︃
±

± 1

2

⎯⎸⎸⎷(︂
~2
2m*

)︂2
{︃
k2
0
−

(︂
k
0
− 2𝜋n

a

)︂2

− 2i q
2𝜋n

a

}︃2

+ 4V 2
n .

Generally speaking, the dependence of E on k0 and q is a complex-valued function.

It means that non-uniform electronic plane waves with arbitrary parameters k0 и q cannot

be stationary solution of the Schrödinger equation.

Indeed, the state with Im E ̸= 0 is a decaying state

Ψ(x , t) = A exp (ikx − i𝜔t) and 𝜔 =
E

~
and E = Re E − i Re E =⇒

Ψ(x , t) = A exp

(︂
ikx − i

Re E · t
~

)︂
· exp

(︂
− Im E · t

~

)︂
.

There are two peculiar cases corresponding to Im E = 0 and possible stationary solutions.
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Energy spectrum of electron in 1D periodic potential

The general expression is

E = V0 +
1

2

~2

2m*

{︃
k20 +

(︂
k0 −

2𝜋n

a

)︂2

− 2q2 − 2i q

(︂
2k0 −

2𝜋n

a

)︂}︃
±

± 1

2

⎯⎸⎸⎷(︂
~2
2m*

)︂2
{︃
k2
0
−

(︂
k
0
− 2𝜋n

a

)︂2

− 2i q
2𝜋n

a

}︃2

+ 4V 2
n .

The eigen-energy E becomes real-valued function at q = 0 and arbitrary k0:

E(k0) = V0 +
~2

4m*

{︃
k20 +

(︂
k0 −

2𝜋n

a

)︂2
}︃

± 1

2

⎯⎸⎸⎷(︂
~2
2m*

)︂2
{︃
k2
0
−

(︂
k
0
− 2𝜋n

a

)︂2
}︃2

+ 4V 2
n .

It means that plane electronic waves of constant amplitude are the stationary solutions of

the Schrëdinger equation within the first Brillouin zone of bulk crystal.
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Standing electronic waves in 1D periodic potential

Constructive interference of two travelling plane waves of equal amplitudes results in a

formation of standing wave with zero group velocity

𝜓(z) = Ae i𝜋z/a + B e i𝜋z/a−i2𝜋z/a = |A|
(︁
e i𝛿 e i𝜋z/a + e−i𝛿 e−i𝜋z/a

)︁
=

|A|
2

cos
(︁𝜋z

a
+ 𝛿

)︁

-1 0 1
k/kBr

0

0.5

1

1.5

(E
−
V
0
)/
E
0

-2 -1 0 1 2
x/a

-1.5

-1

-0.5

0

0.5

1

1.5

V
(x
),
|ψ
(x
)|
2

The boundaries of the n−th forbidden energy band at k0 = 𝜋n/a

V0 + ~2k20/2m* − |Vn| < E < V0 + ~2k20/2m* + |Vn|

The width of n−th forbidden energy band is equal to 2 |Vn|.
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Energy spectrum of electron in semi-infinite 1D periodic
potential (1)

The general expression is

E = V0 +
1

2

~2

2m*

{︃
k20 +

(︂
k0 −

2𝜋n

a

)︂2

− 2q2 − 2i q

(︂
2k0 −

2𝜋n

a

)︂}︃
±

± 1

2

⎯⎸⎸⎷(︂
~2
2m*

)︂2
{︃
k2
0
−

(︂
k
0
− 2𝜋n

a

)︂2

− 2i q
2𝜋n

a

}︃2

+ 4V 2
n .

The eigenenergy E becomes real-valued function at k0 = 𝜋n/a and arbitrary q. It gives us

the energy of the electronic state localized near the edge

Es(q) = V0 +
~2

2m* (k20 − q2) ±

√︃
|Vn|2 − q2

(︂
~2
2m*

)︂2 (︂
2𝜋n

a

)︂2

.

Comparing Es with the boundaries of the forbidden band

V0 + ~2k20/2m* − |Vn| < E < V0 + ~2k20/2m* + |Vn| ,

we conclude that the surface state belongs to the forbidden band.
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Energy spectrum of electron in semi-infinite 1D periodic
potential (2)

k

E(k)

q = 0

E

k = πn/aq

Es(q)
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Analytical solution of the full problem (1)

In order to determine the energy of the surface electronic state and other relevant parameters,

one should match the non-uniform electronic wave function inside the crystal

𝜓in(z) = Ae i𝜋nz/a+qz + B e−i𝜋nz/a+qz at z < 0

with the exponentially-decaying wave function outside the crystal

𝜓out(z) = C e−pz at z > 0

together with their first derivatives d𝜓/dz at z = 0

Here q > 0 and p > 0 are the coefficients, which characterizes the rate of decaying of the

wave functions inside and outside the crystal, correspondingly.

Solution: surface state exists only at V0 < 0 and Vn < 0 provided V = 0 at vacuum side.

see Goodwin, Proc. Camb. Phil. Soc. (1939)

A = e i𝛿 and B = e−i𝛿, where cos2 𝛿 =
~2

2m* ·
(︁𝜋n

a

)︁2
·

1

(−V
0
− Vn)

q = −
1

2
·
𝜋n

a
·
Vn

ℰ
0

sin 2𝛿 and p + q =
𝜋n

a
tan 𝛿

Es = −
~2p2

2m* = V0 +
(−V

0
)2

(−V
0
− Vn)

2

~2

2m*

(︁𝜋n

a

)︁2
+

(−V
0
)(−Vn)

(−V
0
− Vn)

.
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Analytical solution of the full problem (2)

𝜓in(z) = Ae i𝜋nz/a+qz + B e−i𝜋nz/a+qz at z < 0

𝜓out(z) = C e−pz at z > 0

0 0.1 0.2
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Surface electronic states: numerical simulation

Considered model profile of potential energy (V1 < 0 and V2 > 0)

V (z) = V0 + 2V1 cos

(︂
2𝜋z

a

)︂
+ 2V2 cos

(︂
4𝜋z

a

)︂

-10 0 10 20
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-80

-60

-40

V
(z
),

E
n
,
|ψ

n
(z
)|
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Generalization for three-dimensional case

Localized one-dimensional solutions 𝜓n(z), considered above, can be generalized for three-

dimensional crystals. For nearly-free electron gas the wave function can be written in the

following form

𝜓(r) = A · e ikx x+iky y · 𝜓n(z)

and it corresponds to nearly-free 2D electrons. Here x and y are the lateral coordinates,

kx and ky are the components of the wave vector along the surface.

The energy of nearly-free 2D electrons is

En,k‖ =
~2k2x
2m* +

~2k2y
2m* + En,

provided that |kx | ≪ kSB и |ky | ≪ kSB , where kSB is the boundary value for the surface

Brillouin zone.

Thus, each surface state generates a subband of surface states in 3D bulk crystals. The

density of surface states is about 1015cm−2, i. e. it is of the order of the number of atoms

at surface per 1 cm2.
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Part III

Quasiparticle interference and

quantum corrals
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Quasiparticle interference (QPI) near defects at surface

Elastic scattering of surface waves at defects leads to peculiar interference patterns

ψk(x)

x
0 Lx

perfect reflection
(a)

strong reflection

weak reflection

(b)

Nonuniform local density of states (see a detailed explanation at the next lecture)

0 20 40 60 80
2k0 x

0

1

ρ
/ρ

0

π/k0
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Quasiparticle interference and quantum corrals

Adatoms Fe on atomically flat Cu(111) surface

Crommie, Lutz, Eigler, Heller, Surf. Rev. Lett., vol. 2, 127-137 (1995)
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Part IV

Image-potential states.

Stark-shifted image-potential states
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Image potential in electrostatics

It is known that a probe charge located outside a conductive sample generate a charge at

the surface of the opposite sign. The interaction of the probe charge with the charged flat

surface of bulk sample can be viewed as the electrostatic interaction of the probe charge

and the mirror (image) charge. A Coulomb force acting between point charges e and −e

at a distance 2h as well as corresponding potential are equal

Fz(h) = −1

𝜀

e2

(2h)2
and U(z) = Evac −

+∞∫︁
z

Fz(h′) dh′ = Evac −
1

𝜀

e2

4z
.

Fz

h

(a)
Evac

V (z)Ena b

z0
(b)
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Surface electronic states in the image potential (1)

Electrons can be potentially localized in the effective potential well formed by the Coulomb

image potential from one side and the surface of the crystal from the other side.

If the energy of the image-potential states is in the forbidden band of bulk crystal,

such states can be quasi-stationary and slowly decaying, affecting optical and transport

properties of nanostructured samples.

Garcia, Reihl, Frank, and Williams, Phys. Rev. Lett., vol. 55, 991-994 (1985)

Alexey Yu. Aladyshkin Surface electronic states July 17, 2023 (BIT, Beijing) 41 / 48



Surface electronic states in the image potential (2)

Let us assume that (i) Evac = 0 and (ii) the energy of the localized states belongs to the

forbidden band of bulk crystal. The effective potential for non-transparent wall at z = 0

can be written in the form

U(z) =

{︂
∞ at z < 0,

−e2/4z at z > 0,

where z is the distance measured from the surface, a = 0 and b = e2/4|En| are classical

turning points for a particle with energy En = −|En|.

Within quasi-classical Wentzel-Kramers-Brillouin (WKB) approximation, one can estimate

the change of the phase of the electronic wave function for the round trip (a → b → a)

1

~

b∫︁
a

p(z) dz + 𝜙b +
1

~

a∫︁
b

(−p(z)) dz + 𝜙a = 2𝜋n,

where 𝜙a and 𝜙b are the phase shifts for reflected waves at points a and b, correspondingly;

n = 0, 1 . . . is the number of quantum-well state.

After rearranging, we come to the Bohr-Sommerfeld quantization rule

1

2𝜋~

∮︁
p(z) dz = n + 𝛾, where 𝛾 = −𝜙a

2𝜋
− 𝜙b

2𝜋
≃ 3

4
.
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Surface electronic states in the image potential (3)

Afetr substituting p(z) =
√︀
2m0 (E − U(z)) into the Bohr-Sommerfeld quantization rule,

we get

1

2𝜋~

∮︁
p(z) dz =

1

𝜋~

b∫︁
0

√︀
2m0 (En − U(z)) dz =

e2

𝜋~

√︃
2m0

|En|
𝜋

8
= n + 𝛾.

As a result, the spectrum of the localized electronic states in the image-potential with

non-penetrable well is given by a simple relationship

En = −m0e
4

32~2
· 1

(n + 𝛾)2
= − 1

16

Ry

(n + 𝛾)2
,

где Ry(rydberg) ≡ me4/(2~2) = 13.6 eV is the ionization energy for hydrogen atom in the

ground state.

The factor 1/16 reflects the fact that the distance is measured from the surface, what as

twice as smaller than the distance between the centers of the probe and image charges.

Flat surface of bulk conducting crystal can be considered as two-dimensional analog of

hydrogen atom.
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Surface electronic states in the image potential:
numerical simulation
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Stark-shifted image-potential states (1)

The shift of the quantum-well states in an uniform electrical field (i. e. in a linearly

increasing potential) is analogue of the Stark effect for hydrogen-like atom in electric

field.

Binnig, Frank, Fuchs, Garcia, Reihl, Rohrer, Salvan,... Phys. Rev. Lett., vol. 55, 991-994 (1985)
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Stark-shifted image-potential states (2)

We can neglect the contribution of the image potential and assume that the potential

energy near the flat metallic surface has the following linear shape

V (z) =

{︂
∞ при z < 0,

U* + F * · z при z ≥ 0;

with the non-penetrable wall at z = 0. Here U is the bias voltage, U* = EF +Ws −|e|U is

the energy of the bottom of the triangular potential well, and F * is the effective electrical

field near the surface.

The Bohr-Sommerfeld quantization rule is

1

𝜋~

b∫︁
a

p(z) dz = n − 1 + 𝛾, n = 1, 2, . . .

where a = 0 and b = (E − U*)/F * are classical turning points, m0 is mass of electron in

vacuum, n is integer index, 𝛾 ≃ 3/4.

After substituting p(z) =
√︀
2m

0
(En − V (z)) and integration, we arrive at the spectrum

of the quantum-well states in the triangular potential well

En = EF + Ws − |e|U +

{︃
3

2

𝜋~√︀
2m

0

F *
n ·

(︂
n − 1

4

)︂}︃2/3

.
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Stark-shifted image-potential states in a linearly increasing
potential: numerical simulation
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