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Outline of current lecture

* Basic principles of scanning tunneling microscopy and spectroscopy

* Bardeen’s approach for calculation of tunneling current

* Theory of STM: approach of Tersoff and Hamann
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Part I

Basic principles of scanning

tunneling microscopy and spectroscopy
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Scanning tunneling microscopy (SMT): general scheme

Invention: Binnig & Rohrer (1981), Nobel prize in physics (1986)

This approach is applicable only for conducting samples.

Binnig, Rohrer et al., Phys. Rev. Lett., vol. 49, 57–61 (1982)

Binnig and Rohrer, Surf. Sci. vol. 126, 236–244 (1983)

Chen, Introduction to scanning tunneling microscopy. Oxford (1993)

Wiesendanger, Introduction to scanning probe ... Cambridge (1994)

Springer Handbook of Nanotechnology (Ed. B. Bhushan, 2010)
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Scanning tunneling microscopy
in regime of constant current

During scanning (i.e. movement of the tip forward-and-backward in the lateral direction),

the feedback loop system compares the instant tunneling current I with the set-point

value I0, defined by an user, and change the distance between the STM tip and the sample

surface.

Fast scanning direction
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 z=f(x) @ y=const, V=const

 I=f(x) @ y=const, V=const
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Analysis of reconstruction Si(111)7×7

Binnig, Rohrer, Gerber, Weibel, Phys. Rev. Lett., vol. 50, 120–123 (1983)

Oura, Lifshits, Saranin, Zotov, Katayama,
Surface Science: An Introduction. Springer (2013)
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Single-point tunneling spectroscopy

Measurement of local current-voltage (I − V ) dependence at a fixed position of the STM

tip with respect to the sample surface

V

I

V

d
I
/
d
V

Modulation technique: V (t) = V0 + V1 · cos 𝜔t =⇒ I (t) = I0 + I1 · cos (𝜔t + 𝛾)

I1 ≃ V1 ·
(︂

dI

dV

)︂
V0

Thus, the amplitude of the oscillation of tunneling current measured by a lock-in amplifier

is proportional to the differential tunneling conductance dI/dV at given mean bias voltage

V = V0.
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Scanning grid spectroscopy

During scanning process the STM tip periodically stops for the acquiring the local I − V

dependences at fixed positions of the STM tip with respect to the sample surface.

Results of measurements: three arrays z = f (xn, ym,V0), I = f (V , xn, ym) and

dI/dV = f (V , xn, ym).

Fast scanning direction
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 z=f(x) @  y=const, V=const

For all points of the grid @ x,y,z =const
 I=f(V)  dI/dV=f(V) 
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Scanning tunneling microscopy in modulation regime

The tip voltage is periodically modulated in time: V (t) = V0 + V1 · cos 𝜔t.

During scanning process the STM tip periodically never stops, while the Control Unit

continuously adjust the tip height to keep the tunneling current constant and record

the amplitude of the current oscillations, proportional to the local tunneling conductance

dI/dV .

Results of measurements: two arrays z = f (x , y ,V0) and dI/dV = f (x , y ,V0).

Fast scanning direction
ForwardBackward
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 z=f(x) @ y=const, V=const

 dI/dV=f(x) @ y=const, V=const
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Part II

Bardeen’s approach for calculation

of tunneling current
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Fermi’s golden rule and tunneling current

The rate of quantum transitions (i. e. the number of quantum transition per unit of time)

from the initial state i to the final state of discrete spectrum f is essentially constant and

it is known to be given by the formula

Γi→f =
2𝜋

~
|Ti→f |2 𝛿

(︀
Ei − Ef

)︀
,

where Ti→f is the matrix element of a stationary perturbing Hamiltonian Ĥ ′ applied to the

system

Tn,m =

∫︁
Ψ*

n(r , t) Ĥ ′ Ψm(r , t) dr = e−i(En−Em)t/~ ·
∫︁
𝜓*

m(r) Ĥ ′ 𝜓n(r) dr ,

and the delta-function 𝛿
(︀
Ei−Ef

)︀
accounts the conservation of energy at quantum transitions.

Recommended methodological notes for educational reading: Emmanuel N. Koukara, Fermi’s

Golden Rule, http://staff.ustc.edu.cn/∼yuanzs/teaching/Fermi-Golden-Rule-No-II.pdf

Question: How to introduce the tunneling Hamiltonian Ĥ ′ in such a way to calculate

tunneling current using the Fermi’s golden rule I = e
∑︀

Γi,f ?
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Tunneling through low-transmission 1D potential barrier:
Bardeen’s approach (1)

John Bardeen, Nobel prize in physics in 1956 (with Shockley and Brattain for the invention of the

transistor) and in 1972 (with Cooper and Schrieffer for microscopic theory of superconductivity)

(a) Reservoir L (sample) Reservoir R (tip)V (z)

zB

Vs(z)

(b)
ψs(z)

zB
(c)

ψt(z)

zB

Vt (z)
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Tunneling through 1D potential barrier of low-transmission:
Bardeen’s approach (2)

Bardeen, Phys. Rev. Lett., vol. 6, 57 (1961).

Main idea: the partial wave functions 𝜓L,n(z) and 𝜓R,m(z) in a non-interacting system are

non-overlapping and thus form the full and orthonormal basises, describing the localization

of electrons in the left and right electronic reservoirs, respectively.

z1 z2 z

U(z)

ψL ψR

exact solution exact solution

Following the Bardeen’s idea, we consider the approximate wave functions for the electrons

in the left and right reservoirs (limit of weekly-interacting subsystems)

𝜓L,n =

{︃
Ĥ𝜓L,n = EL,n𝜓L,n при z ≤ z2;

const · e−κ2z при z > z2,
𝜓R,n =

{︃
const · e+κ2z при z ≤ z1;

Ĥ𝜓R,n = ER,n𝜓R,n при z > z1,

where Ĥ is the exact Hamiltonian of the problem.
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Tunneling through 1D potential barrier of low-transmission:
Bardeen’s approach (3)

We start with the assumption that the electron at initial moment (at t = 0) is in the left

reservoir in the state, described by one of the localized functions 𝜓L,n(z). We estimate a

probability for this electron to transfer to one of possible electronic states described by the

localized wave function 𝜓R,m(z) in the right reservoir.

We seek for the solution of time-dependent Schrödinger equation in the form of the linear

combination of non-perturbed wave functions

Ψ(z , t) = cn(t)𝜓L,n(z) e−iEnt/~ +
∑︁
m′

dm′(t)𝜓R,m′(z) e−iE
m′ t/~,

where En и Em are eigenenergies of the initial and final states.

After substitution of the trial function Ψ(z , t) into the non-stationary Schrödinger equation

i~ 𝜕Ψ/𝜕t = ĤΨ, we get

i~ ċn(t)𝜓L,n(z) e−iEnt/~ +
∑︁
m′

i~ ḋm′(t)𝜓R,m′(z) e−iE
m′ t/~ =

= cn(t) e−iEnt/~ (Ĥ − En)𝜓L,n(z) +
∑︁
m′

dm′(t) e−iEmt/~ (Ĥ − Em′)𝜓R,m′(z) (*),

where ċn(t) ≡ dcn/dt.
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Tunneling through 1D potential barrier of low-transmission:
Bardeen’s approach (4)

After multiplying the equation (*) at 𝜓*
R,m(z) and integration over z , we get∑︁

m′

i~ ḋm′(t)
⟨︀
𝜓*

R,m(z)
⃒⃒
𝜓R,m′(z)

⟩︀
e−iE

m′ t/~ ≃ cn(t) e−iEnt/~
⟨︀
𝜓*

R,m(z)
⃒⃒
(Ĥ − En)𝜓L,n(z)

⟩︀
.

The expression

TL→R =
⟨︀
𝜓*

R,m(z)
⃒⃒
(Ĥ − En)𝜓L,n(z)

⟩︀
can be viewed as a matrix element of quantum transition for the effective Hamiltonian

Ĥ ′ = Ĥ − En from the initial state 𝜓L,n(z) (electron in the left box) to the state 𝜓R,m(z)

(electron in the right box).

Provided that 𝜓R,m(z) are orthonormal functions, we arrive∑︁
m′

i~ ḋm′(t) 𝛿m,m′ e−iE
m′ t/~ = i~ ḋm(t) e−iE

m′ t/~ ≃ cn(t) e−iEnt/~ TL→R .

This means that the evolution of the coefficients dm is similar to the expression typical for

quantum-mechanical problems

i~ ḋm ≃ e−i(En−Em)t/~ · TL→R .
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Tunneling through 1D potential barrier of low-transmission:
Bardeen’s approach (5)

Thus, the matrix element in the Bardeen’s problem is equal to

TL→R = ⟨𝜓*
R,m(z)|(Ĥ − En)𝜓L,n(z)⟩ =

∞∫︁
−∞

𝜓*
R,m(z) (Ĥ − En)𝜓L,n(z) dz =

=

∞∫︁
z
B

𝜓*
R,m(z) (Ĥ − En)𝜓L,n(z) dz ,

where zB is an arbitrary point inside the tunneling barrier (z1 ≤ zB ≤ z2).

This expression can be written in a symmetric form

TL→R =

∞∫︁
z
B

{︁
𝜓*

R,m(z) (Ĥ − En)𝜓L,n(z) − 𝜓L,n(z) (Ĥ − Em)𝜓*
R,m(z)

}︁
dz .

Taking into account the conservation of the energy at tunneling process (En = Em) and

after integration by parts, we get a simple expression for the matrix element

TL→R = − ~2

2m*

{︂
𝜓L,n

d

dz
𝜓*

R,m − 𝜓*
R,m

d

dz
𝜓L,n

}︂
z=z

B
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Tunneling through 1D potential barrier of low-transmission:
Bardeen’s approach (6)

The matrix elements for the direct and reverse tunneling processes in 1D case are equal to

TL→R = − ~2

2m*

{︂
𝜓L,n

d

dz
𝜓*

R,m − 𝜓*
R,m

d

dz
𝜓L,n

}︂
z=z

B

TR→L = − ~2

2m*

{︁
𝜓R,m

d

dz
𝜓*

L,n − 𝜓*
L,n

d

dz
𝜓R,m

}︁
z=z

B

,

where zB is the arbitrary point inside the tunneling barrier.

These expressions look like probability flux in quantum mechanics (up to numerical coefficient)

j =
i~
2m*

{︂
𝜓

d𝜓*

dz
− 𝜓* d𝜓

dz

}︂
.

Generalization for three-dimensional case:

TL→R = − ~2

2m*

∫︁∫︁
S

{︁
𝜓L,n∇𝜓*

R,m − 𝜓*
R,m∇𝜓L,n

}︁
n

· dS ,

where S is an arbitrary surface inside the barrier, n is

the normal vector.
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Homework for inspired students: estimate of the transmission
coefficient of 1D square barrier

A model potential has the following form

U(z) =

⎧⎨⎩
U1 at z < z1,

U2 at z1 < z < z2,

U3 at z > z2

The auxiliary potentials for the ’left’ and ’right’ problems, which can be considered separately

z1 z2 z

UL(z)

U1

U2

1 2 3

z1 z2 z

UR(z)U2

U3

1 2 3

It is possible to demonstrate that the transmission coefficient (do not mix it with the matrix

element) are equal to

𝒯 =
16k1κ2

2k3
(k2

1
+ κ2

2
)(κ2

2
+ k2

3
)
e−2κ2(z2−z1).

It perfectly coincides with the exact answer for the transmission coefficient in the limit of

low-transmission barrier (κ2(z2 − z1) → ∞).
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Part III

Theory of STM:

approach of Tersoff and Hamann
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Problem of Tersoff and Hamann (1)

Tersoff and Hamann, Phys. Rev. Lett. vol. 50, 1998 (1983)

We consider tunneling effect between metallic semi-space with flat surface (at z < 0) and

metallic tip with an apex of spherical shape of the radius R. For sake of simplicity we

assume that the Fermi energies and the work functions are equal: E
(s)
F = E

(t)
F = EF and

Ws = Wt = W .

STM tip

sample

R0

(a)

ϕt = −U

sample

R0

r0

(b)

ϕt = −U

Here U is the potential of the sample with respect to a tip (𝜙s = 0 and 𝜙t = −U).

Let Ts→t be the matrix element, corresponding to the transition of the electron from one

of possible states in the sample with wave function 𝜓s and energy Es to one of possible

states in the tip with wave function 𝜓t and energy Et .
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Problem of Tersoff and Hamann (2)

Band diagram of tunneling contact

U > 0

EF

EF + |e|U

(a)

sample tip

ē
ē

U < 0

EF
EF + |e|U

(b)

sample tip

If 𝜙t = −U > 0, then the electrochemical potential of tip

𝜇′ = EF + e𝜙t = EF + |e|U

is larger than that for the sample (𝜇′ = EF ). As a result, tunneling current is associated

mainly with quantum transitions from the electronic states in the tip to the empty electronic

states of the sample.

If 𝜙t = −U < 0, then the electrochemical potential of tip is smaller than that for the

sample. As a result, tunneling current is associated mainly with quantum transitions from

the filled electronic states in the sample to the tip.
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Problem of Tersoff and Hamann (3)

The rate of the quantum transitions according to the Fermi’s golden rule at equal to

Γs→t =
2𝜋

~
|Ts→t |2 𝛿(Es − Et).

Full tunneling current, associated with all possible transitions between the electronic states

in the sample and the tip is equal to

I =
∑︁
s

∑︁
t

e Γs→t

{︁
f0(Es − e𝜙s) − f0(Et − e𝜙t)

}︁
=

= −2𝜋|e|
~

∑︁
s

∑︁
t

|Ts→t |2
{︁
f0(Es) − f0(Et − |e|U)

}︁
𝛿(Es − Et),

where 𝜙s = 0 и 𝜙t = −U are the electrical potentials of the sample and the tip; the

difference
{︀
f0(Es) − f0(Et − |e|U)

}︀
accounts the disbalance between the occupied states

in the sample and empty states in the tip at U > 0, and

f0(E) =
(︁
1 + e(E−EF )/kBΘ

)︁−1

is the equilibrium Fermi-Dirac statistical distribution for particles with half-integer spin,

and Θ is the absolute temperature.
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Problem of Tersoff and Hamann (4)

We introduce the differential conductance dI/dU of the tunneling contact

dI

dU
= −2𝜋|e|

~
∑︁
s

∑︁
t

|Ts→t |2
(︂
− d

dU
f0(Et − |e|U)

)︂
𝛿(Es − Et).

It is obvious, that at kBΘ ≪ EF and kBΘ ≪ |eU| (Θ is the absolute temperature)

d

dU
f0(Et − |e|U) =

|e|
kBΘ

e(Et−|e|U−EF )/kBΘ(︀
1 + e(Et−|e|U−E

F
)/k

B
Θ
)︀2 =

=
|e|

4kBΘ
ch−2

(︂
Et − |e|U − EF

2kBΘ

)︂
≃ |e| 𝛿

(︁
Et − (EF + |e|U)

)︁
.

Thus, at low temperatures the differential tunneling conductance is equal to

dI

dU
=

2𝜋|e|2

~
∑︁
s

∑︁
t

|Ts→t |2 𝛿
(︀
Es − (EF + |e|U)

)︀
𝛿
(︀
Et − (EF + |e|U)

)︀
.

For further simplification one should consider the analytical expression for the matrix

element Ts→t .
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Wave functions of electrons near the sample and the tip (1)

Reminder: the matrix element of tunneling transition is equal to

Ts→t = − ~2

2m*

{︂
𝜓s(r)

𝜕

𝜕n
𝜓*

t (r) − 𝜓*
t (r)

𝜕

𝜕n
𝜓s(r)

}︂
inside barrier

,

therefore we need to know the non-perturbed wave functions 𝜓s(r) and 𝜓t(r) inside the

tunneling barrier.

Stationary wave functions of electrons in the sample 𝜓s(r) and near the tip 𝜓t(r) meet 3D

stationary Schrödinger equation

− ~2

2m
∆𝜓(r) + V (r)𝜓(r) = E 𝜓(r), (*)

where V (r) is the potential energy, equal to EF + W outside the sample and the tip.

At low temperatures the main flux of particles is associated with electrons of the highest

energy: Et ≃ EF and Es ≃ EF , since the transmission of the tunneling barrier for such

electrons is minimal. As a result, the Schrödinger equation (*) for Et ≃ EF and Es ≃ EF

is reduced to the following form

∆𝜓s(r) − κ2 𝜓s(r) = 0 и ∆𝜓t(r) − κ2 𝜓t(r) = 0,

where κ =
√︀
2m

0
W /~ is the inverse radius of the localization of both wave functions.
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Wave functions of electrons near the sample and the tip (2)

The wave functions 𝜓t(r) outside the tip (𝜌 > R0) meet the equation

∆𝜓t(r) − κ2 𝜓t(r) = 0 or

1

𝜌2
𝜕

𝜕𝜌

(︂
𝜌2
𝜕𝜓t

𝜕𝜌

)︂
+

1

𝜌2

[︂
1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝜓t

𝜕𝜃

)︂
+

1

sin2 𝜃

𝜕2𝜓t

𝜕𝜙2

]︂
− κ2𝜓t = 0,

where (𝜌, 𝜃, 𝜙) is the spherical coordinate system with the origin at the center of curvature

of the tip.

The wave function of electrons 𝜓t(r) near the metallic sphere can be expanded into a series

of spherical functions

𝜓t(𝜌, 𝜃, 𝜙) =
∑︁
ℓ,m

Cℓ,m Rℓ(κ𝜌)Yℓ,m(𝜃, 𝜙),

where Cℓm are coefficients; ℓ is the quantum number characterizing orbital momentum; and

m is the magnetic quantum number characterizing a projection of the orbital momentum

at the z−axis.

For the radial part of the wave function of the electron near the tip we get the equation

1

𝜌2
d

d𝜌

(︂
𝜌2

d

d𝜌
Rℓ(κ𝜌)

)︂
− ℓ(ℓ+ 1)

𝜌2
Rℓ(κ𝜌) + κ2 Rℓ(κ𝜌) = 0.
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Effect of s−orbital to the tunneling conductance (1)

The first term in the expansion, corresponding to the s−state and ℓ = 0, gives us

𝜓
(s)
t (x , y , z) = C

e−κ|r−r0|

κ|r − r
0
| ,

where r0 is the radius-vector from the origin to the center of the spherical apex. We assume

that the constant C makes the wave function normalized with respect to available volume.

It should be emphasized that the wave function 𝜓
(s)
t (x , y , z) can be written via the Green

function G(r − r0)

𝜓
(s)
t (x , y , z) =

4𝜋C

κ
G(r − r0) and G(r − r0) =

e−κ|r−r0|

4𝜋|r − r
0
| .

where G(r − r0) is the singular solution of the Schrödinger (Helmholtz-like) equation

−∆G(r − r0) + κ2G(r − r0) = 𝛿(r − r0).

Reminder: the second Green theorem is∮︁
S

{︂
u
𝜕v

𝜕n
− v

𝜕u

𝜕n

}︂
dS =

∫︁
V

{uΔv − vΔu} dV .

Alexey Yu. Aladyshkin Scanning tunneling microscopy July 17, 2023 (BIT, Beijing) 26 / 28



Effect of s−orbital to the tunneling conductance (2)

We consider a surface S0 lying between the sample and the tip and a surface of infinite

radius S∞. Since both 𝜓s and 𝜓t are exponentially decay at the increase of the distance

from the corresponding surfaces, the surface integral over то S∞ is equal to zero

T
(s)
s→t = − ~2

2m*

∫︁
S0+S∞

{︃
𝜓

(s)
t

𝜕𝜓s

𝜕n
− 𝜓s

𝜕𝜓
(s)
t

𝜕n

}︃
dS =

= − ~2

2m

∫︁∫︁∫︁
z>0

{︁
𝜓

(s)
t ∇2𝜓s − 𝜓s∇2𝜓

(s)
t

}︁
dV .

sample

tip

r0

S0

S∞

s−state
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Effect of s−orbital to the tunneling conductance (3)

Taking into account that ∇2𝜓s = κ2𝜓s , ∇2𝜓
(s)
t = κ2𝜓

(s)
t − 4𝜋Cκ−1 𝛿(r − r0), and

𝜓
(s) *
t = 𝜓

(s)
t , we come to the important result

T
(s)
s→t = − ~2

2m*

∫︁
z>0

{︂
𝜓

(s)
t κ2𝜓s − 𝜓s κ2𝜓

(s)
t + 𝜓s

4𝜋C

κ
𝛿(r − r0)

}︂
dV =

= − ~2

2m*

∫︁
z>0

𝜓s(r)
4𝜋C

κ
𝛿(r − r0) dV = − ~2

2m*
4𝜋C

κ
· 𝜓s(r0).

Intermediate conclusion: the matrix element of the tunneling transition is proportional to

the wave function of the electron of the sample in the center of the tip provided that the

dominant contribution is associated with the s−wave orbitals of the electrons near the tip

apex.

As a result, the square of the absolute value of the matrix element is proportional to the

probability to detect the electron of the sample in the center of the tip⃒⃒⃒
T

(s)
s→t

⃒⃒⃒
2

=

(︂
~2

2m*

)︂2 (︂
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