Superconductivity. Phenomenological theory. Lection 1- introduction

A.S.Mel'nikov Abrikosov Center of theoretical physics, MIPT

Textbooks

A.A.Abrikosov, Fundamentals of the Theory of Metals

 V.V.Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications

- **M.Tinkham, Introduction to superconductivity**
- **P. de Gennes, Superconductivity of metals and alloys**
- **D.Saint-James, G.Sarma, E.J.Thomas, Type II Superconductivity**
- **V. Mineev, K.Samokhin, Introduction to unconventional superconductivity.**
- Ketterson, Song, Superconductivity
- **Schrieffer, Theory of superconductivity.**
- **A.Varlamov, A.Larkin, Theory of Fluctuations in Superconductors**

Resistivity of metals. Drude model

outline

112 years of superconductivity. Kamerlingh – Onnes (1911)

Basic properties of superconductors.

current without resistance. Magnetic field expulsion. Meissner effect.

Thermodynamics of superconductors.

 A few words about history and applications. Magnets, wires, levitation, cryoelectronics ...
 Critical temperature of superconducting transition: higher and higher?

Resistance

Resistance vs temperature

Drude model of conductivity.

Drude model. Questions and problems....

- What is τ ? What is the cause of electron scattering?
- **The How to define** n ?
- What happens in perfect crystal and in the presence of defects?
- can the ions move?

Heike Kamerlingh Onnes

On the way to low temperatures Leiden (1908)

Liquid ⁴He (T=4,2K)

0 K = -273 C

Mercury (Hg) resistance vs temperature (1908)

2	T_c, \mathbf{K}	H_c , Oe	H_{c2} , Oe	λ_L, A	ξ_0, \mathring{A}	κ	Type
Al	1.18	105		500	16000	0.01	Ι
Hg	4.15	400		400			Ι
Nb	9.25	1600	2700	470	390	1.2	II
Pb	7.2	800		390	830	0.47	Ι
Sn	3.7	305		510	2300	0.15	Ι
In	3.4	300		400	3000		Ι
V	5.3	1020		400	~ 300	~ 0.7	II

Table 1.1: Parameters for metallic superconductors

Table 1.2: Parameters for some high temperature superconductors

	T_c , K	H_{c2}, T	λ_L, A	ξ_0, A	κ	Type
Nb ₃ Sn	18	25	~ 2000	115		II
La0.925Sr0.072CuO4	34		1500	20	75	II
YBa2Cu3O7	92.4	150	2000	15	140	II
Bi2Sr2Ca3CuO10	111					II
Tl ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	123					II
HgBa ₂ Ca ₂ Cu ₃ O ₈	133					II
MgB ₂	36.7	14	1850	50	40	II

Persistent current in a closed loop

Disappointment: increasing current and magnetic field destroy superconductivity

Free energies of normal and superconducting phases

Magnetic properties of superconductors. Meissner – Ochsenfeld effect (1933)

Superconductor. Field cooled or zero field cooled sample

Screening current

Superconductors in magnetic field. Phase diagram.

Levitation

2 variants: magnet levitates above superconductor or vice versa.

problem: explain levitation and find the expression for the force balancing the gravitation force.

Some theoretical exersise. Again Drude model.

$$\frac{d\vec{p}}{dt} = e\vec{E} - \frac{\vec{p}}{\tau}$$

$$\vec{E} = \vec{E}_{\omega}e^{i\omega\tau}$$

$$\vec{p} = \vec{p}_{\omega}e^{i\omega\tau}$$

$$\vec{p}_{\omega} = \frac{e\vec{E}_{\omega}}{i\omega + \tau^{-1}}$$

$$\vec{j}_{\omega} = ne^{2}\frac{\vec{E}_{\omega}}{m(i\omega + \tau^{-1})}$$

London equation

$$\tau = \infty$$

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t}$$

Magnetic field penetration depth

Magnetic field penetration depth= London penetration depth

Limit of perfect magnetic screening.

 $\lambda \rightarrow 0$

- x

Magnetic field lines outside superconductor are parallel to its surface $div\vec{B} = 0$

 $\mathbf{j}_{\mathrm{nob}} = rac{c}{4\pi} [\mathbf{n}, \mathbf{H}_0],$

 $rot\vec{B} = \frac{4\pi}{j}\vec{j}$

$$rot\vec{H} = \frac{4\pi}{c}\vec{j}_{ext}$$

 $\vec{j} = \vec{j}_{ext} + c \cdot rot \vec{M}$

 $\vec{B} = \vec{H} + 4\pi \vec{M}$

Thermodynamic arguments. Critical magnetic fields.

Full diamagnetism $\vec{B} = 0$

$$\vec{H} = -4\pi \vec{M}$$

The work of the source of the magnetic field H $-\vec{M}d\vec{H} = \frac{1}{4\pi}\vec{H}d\vec{H}$ $-\int_{0}^{H}\vec{M}d\vec{H} = \frac{1}{4\pi}\int_{0}^{H}\vec{H}d\vec{H} = \frac{H^{2}}{8\pi}$

Density of the free energy in the field

$$F_s = f_{s0} + \frac{H^2}{8\pi}$$

Condition of transition to the normal state

$$F_{s} = f_{s0} + \frac{H_{cm}^{2}}{8\pi} = f_{n}$$

Energy of the favorability of superconducting state

$$\frac{H_{cm}^2}{8\pi} = f_n - f_{s0}$$

Levitation.

 $\vec{f} \sim -\nabla \left(\frac{H^2}{8\pi}\right)$

?

Is it correct? What about stability? Earnshaw's theorem?

3. Transition at T=Tc is second order phase transition

4. In magnetic field we get 1st order phase transition

Electronic specific heat

$$C_{V} = T \left(\frac{\partial S}{\partial T} \right)_{V} \qquad S_{n} - S_{s} = -\frac{H_{cm}}{4\pi} \frac{\partial H_{cm}}{\partial T}$$

$$C_{n} - C_{s} = -T \frac{H_{cm}}{4\pi} \frac{\partial^{2} H_{cm}}{\partial T^{2}} - \frac{T}{4\pi} \left(\frac{\partial H_{cm}}{\partial T} \right)^{2}$$

$$C_{n} - C_{s} = -\frac{T_{c}}{4\pi} \left(\frac{\partial H_{cm}}{\partial T} \right)^{2} \Big|_{T_{c}}$$

Electronic specific heat in normal state?

$$U \sim N_F \cdot T \cdot T$$
$$C_V = \frac{\partial U}{\partial T} \sim N_F \cdot T$$

Temperature dependence of phononic contribution to specific heat?

Some milestones and history

Superconductivity = superfluidity of electronic fluid? Landau criterion of superfluidity (1941)

⁴He at temperatures below 2K in capillary

Energy of excitation which results in dissipation

$$E' = \varepsilon(p)$$
$$E = \varepsilon(p) + \vec{p}\vec{v} < 0$$

$$v > \min \frac{\varepsilon(p)}{p} = v_c$$

Q. No minimum quasiparticle energy in metals!?

A. To get the energy gap electrons should form pairs

Phenomenological Ginzburg – Landau theory (1950). Quantum mechanics at macroscale. Nobel prize -2003

Ψ

Microscopic theory of superconductivity 1957- BCS Bardeen – Cooper - Schrieffer

Attraction of electrons results in formation of bound electron pairs

Size of the Cooper pair: 100-1000 A

BCS expression for superconducting critical temperature

$$T_c = \omega_D e^{-\frac{1}{gN}}$$

Isotope effect

$$\omega_{_D} \propto rac{1}{M^{1/2}}$$

$$M \frac{d^2 x}{dt^2} + kx = 0$$

Why does the magnetic field destroy superconductivity?

Mechnisms of interaction of the magnetic field with the Cooper pair

Type-II superconductivity. Alloys. High critical fields and currents

 T_c

Type – iI superconductivity. Abrikosov vortices – tubes of magnetic flux. *Nobel prize -2003*

More milestones of theory

N.N.Bogolubov

Equations for interacting electrons and holes in superconductors 1958-1959

Gorkov equations 1958

Andreev reflection 1964

Applications of superconductivity

No dissipation:

Strong magnets, Energy transmission, Superconducting cables

Рис.7. Сверхпроводящий соленоид (весом 224 m, включая около 15 m Nb-Ti сверхпроводящего кабеля) для детекторов частиц Большого адронного коллайдера

applications

Meissner effect, levitation: transport

applications

Flux quantization, Josephson effect:

Magnetic field sensors, SQUIDs, Medicine, Cryoelectronics, Photon detectors Quantum computing ... superconductor 1

superconductor 2

Q. Can we get a supercurrent between 1 and 2?

A. Yes, it is called Josephson effect

Race for high- temperature superconductivity.

before 1986г. – no big progress – maximum critical temperature~ 24К (Nb3Ge)

Jump above liquid nitrogen temperature = 77K

Bednorz, Muller (1986)

New classes of superconductors

Fe based compounds

Questions for home work:

Is there any upper limit for superconducting critical temperature?

Do we really need attraction between electrons to get superconductivity?

Suggest new version of application?