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Introduction
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Simple and constrained optimization problems (1)

1. Finding the extrema for a function of two variables without additional conditions

F (x , y) → min/max

Solution

𝜕F

𝜕x
= 0 and

𝜕F

𝜕y
= 0.

2. Determination of extrema for a function of two variables with additional conditions

F (x , y) → min/max provided that 𝜙(x , y) = 0.

Solution of the constrained problem by method of Lagrange multipliers: we introduce an

auxiliary function

G(x , y , 𝜆) = F (x , y)± 𝜆 · 𝜙(x , y),

where 𝜆 is a constant, and then test it for extremal values

𝜕G

𝜕x
= 0,

𝜕G

𝜕y
= 0 and

𝜕G

𝜕𝜆
= 0.
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Simple and constrained optimization (2)

Problem: There is a rectangle of length a and width b. Assume that the perimeter of this

rectangle P = 2(a + b) is fixed. At what ratio a/b the area of this rectangle S = a · b is

maximal?

Solution:

The constrain function is 𝜙(a, b) = 2a+ 2b − P.

We introduce an auxiliary function

G = S − 𝜆 · 𝜙(a, b) = a · b − 𝜆 · (2a+ 2b − P).

The criteria of the unconditioned extremum of three-parameter function G are

𝜕G

𝜕a
= b − 2𝜆 = 0,

𝜕G

𝜕b
= a− 2𝜆 = 0 and

𝜕G

𝜕𝜆
= 2a+ 2b − P = 0.

The first and second equalities gives

a = b = 2𝜆,

therefore, the rectangle of the maximal area should be a square. From the last equation

we get

a = b =
P

4
.
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Thermodynamic potential (internal) energy (1)

According to the first law of thermodynamics, the differential of internal energy dU for a

system with non-fixed number of particles can be written as follows

dU = dQ − dA+ 𝜇dN = T dS − p dV + 𝜇 dN,

where dQ denotes the quantity of energy supplied to the system as heat, dA denotes the

quantity of energy supplied to the system as mechanic work, T is absolute temperature,

S is entropy, p is pressure, V is volume, 𝜇 is chemical potential, N is number of particle.

Natural variables for the internal energy are S , V и N. It means that dU is zero for closed

system (zero heat transfer) at fixed volume (zero work) and number of particles (zero mass

flow).

Total internal energy can be written in the following form

U = TS − pV + 𝜇N.

Note: the chemical potential 𝜇 is equal to the energy that can be absorbed or released due

to a change of the particle number by one in the system:

U
⃒⃒⃒
S,V ,N+1

− U
⃒⃒⃒
S,V ,N

= 𝜇(N + 1)− 𝜇N = 𝜇.
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Thermodynamic potential (internal) energy (2)

For system at fixed temperature it is convenient to introduce the Helmholtz free energy

F = U − TS

instead of the internal energy.

The differential of the free energy dF for a system with non-fixed number of particles can

be written as follows

dF = d(U − TS) = TdS − pdV + 𝜇dN − SdT−TdS = −SdT − pdV + 𝜇dN.

Natural variables for the Helmholtz free energy are T , V и N. It means that dF = 0 for

systems at constant temperature at fixed volume and number of particles, when dT = 0,

dV = 0 and dN = 0.

The term (−TS) is sometimes referred to as entropic contribution and it reflects the

tendency of open systems for increasing its entropy.
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Surface tension

Isotropic system Anisotropic system (crystal)

The differential of the internal/free energy

dU = 𝜎 dS and dF = 𝜎 dS ,

where dS is the change in the surface between two

phases. The parameter 𝜎 > 0 is called surface tension

coefficient.
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Part I

Equilibrium shape of crystals

and Wullf theorem
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Equilibrium shape of crystals (1)

Let z(x , y) be the surface of the crystal in equilibrium. We assume that the surface tension

coefficient 𝜎 for each closely-packed terrace, characterized by the unit normal vector n, is

known either from calculations or experiments.

The unit vector n of the local normal can be presented in the form

n =
p√︀

1+ p2 + q2
ex +

q√︀
1+ p2 + q2

ey −
1√︀

1+ p2 + q2
ez ,

where the following notations for the partial derivative are introduced for brevity

p ≡ 𝜕z

𝜕x
and q ≡ 𝜕z

𝜕y
.

The equilibrium shape of crystals should corresponds to the minimum of the surface energy

Es =

∫︁∫︁
𝜎(n) dS

at additional constrain accounting the constancy of the volume of the crystal

V =

∫︁∫︁
z(x , y) dxdy = const.
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Equilibrium shape of crystals (2)

We take into account that 𝜎(n) = 𝜎(p, q) and the element of curved surface is equal to

dS ≃
√︀
1+ p2 dx ·

√︀
1+ q2 dy ≃

√︀
1+ p2 + q2 dxdy at |p| ≪ 1 and |q| ≪ 1.

z(x)
dx

dx · (∂z/∂x)

L = dx
√

1 + (∂z/∂x)2

Thus, we formulate the following constrained-optimization problem

I =

∫︁∫︁
ℱ(p, q) dxdy + 2𝜆

∫︁∫︁
z dxdy ,

where

ℱ(p, q) ≡ 𝜎(p, q)
√︀
1+ p2 + q2

is the auxiliary function, and 𝜆 is a Lagrange multiplier.
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Equilibrium shape of crystals (3)

Let us assume that the surface z0(x , y) corresponds to the minimum of the energy, therefore

the auxiliary functional is equal to

I0 =

∫︁∫︁
ℱ0 dxdy + 2𝜆

∫︁∫︁
z0 dxdy .

For the modified surface z(x , y) = z0(x , y) + 𝛿z(x , y) using standard rules of calculus of

variations and integration by parts, we have

I =

∫︁∫︁
(ℱ0 + 𝛿ℱ) dxdy + 2𝜆

∫︁∫︁
(z0 + 𝛿z) dxdy =

= I0 −
∫︁∫︁

𝛿z

(︂
𝜕

𝜕x

𝜕ℱ
𝜕p

+
𝜕

𝜕y

𝜕ℱ
𝜕q

)︂
dxdy + 2𝜆

∫︁∫︁
𝛿z dxdy ,

therefore

𝛿I = I − I0 =

∫︁∫︁ (︂
2𝜆− 𝜕

𝜕x

𝜕ℱ
𝜕p

− 𝜕

𝜕y

𝜕ℱ
𝜕q

)︂
· 𝛿z dxdy .

Thus, the minimum of the surface energy of crystal corresponds to zero variational derivative

2𝜆− 𝜕

𝜕x

𝜕ℱ
𝜕p

− 𝜕

𝜕y

𝜕ℱ
𝜕q

= 0 =⇒ ℱ(p, q) = 𝜆 · (p x + q y − z)
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Equilibrium shape of crystals and Wullf theorem (1)

Combining two expressions

ℱ(p, q) ≡ 𝜎(p, q)
√︀
1+ p2 + q2 and ℱ(p, q) = 𝜆 · (p x + q y − z),

we arrive at the Wullf theorem (1901) for the equilibrium shape of crystal of given volume

and minimal surface energy

𝜎(p, q) = 𝜆
(p x + q y − z)√︀

1+ p2 + q2
= 𝜆

(p ex + q ey − ez) · (x ex + y ey + z ez)√︀
1+ p2 + q2

or

𝜎(p, q) = 𝜆
(︀
n · r

)︀
or 𝜎(p, q) = 𝜆 · h,

where n is the unit normal vector and r = x ex + y ey + z ez is radius-vector running from

the origin to arbitrary points at the surface of crystal, and 𝜃 is the angle between n and r ,

and h is the distance from the origin to the cutting plane.

r h

n

θ
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Equilibrium shape of crystals and Wullf theorem (2)

The Wullf theorem for isotropic surface tension 𝜎(p, q) = 𝜎0

𝜎0 = 𝜆
(︀
n · r

)︀
=⇒ 𝜎0 = 𝜆 |n| |r | cos 𝜃 =⇒ h ≡ |r | cos 𝜃 =

𝜎0
𝜆
,

where 𝜃 is the angle between the normal vector and the radius vector to any point at the

surface.

Since the distance h from the center of the crystal to any points at an arbitrary plane

limited the inner part of the crystal does not depend on the choice of the cutting plane,

we conclude that a sphere is the equilibrium surface with minimal surface energy.
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Equilibrium shape of crystals and Wullf theorem (3)

Now assume that the surface tension coefficient depends on the direction: 𝜎 = 𝜎(p, q).

If two arbitrary planes in the crystal are characterized by the vectors n1 and n2, and the

surface tension coefficients 𝜎1 and 𝜎2, then

h1 =
𝜎1
𝜆

and h2 =
𝜎2
𝜆
.

r
h1

n1

θ h2

0

n2

(a)
[01]

[01̄]

[21][2̄1]

[21̄][2̄1̄]

(b)

After considering all possible directions and plotting all cutting planes one can find the

smallest area enclosed by the planes – this area corresponds to the crystal of minimal

surface energy.
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Equilibrium shape of crystals and Wullf theorem (4)

Alternative presentation – the Wullf plot

h( )� h( )�

H. Ibach, Physics of Surfaces and Interfaces, Springer-Verlag Berlin Heidelberg (2006)
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Equilibrium shape of crystals and Wullf theorem (5)

All typical cusps at the surface will disappear at increasing temperature, therefore at high

temperatures all 2D islands will looks like disks:

H. Ibach, Physics of Surfaces and Interfaces, Springer-Verlag Berlin Heidelberg (2006)
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Part II

Phase transition into a state
with developed surface roughness
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Free energy functional (1)

We consider the effect of temperature on microscopic structure of the surface of crystal and

demonstrate that there is a second-order phase transition corresponding to a spontaneous

formation of surface roughness at temperature exceeding some critical value Tc .

We assume that the flat surface of a crystal has N sites (places) potentially available for

adsorbed atoms (so called adatom) and N1 is the number of adatoms (i.e. excited atoms

which leave their positions in the close-packed terrace). The coverage is defined as follows

𝜃 ≡ N1

N

and it varies from zero to unity. Atomically-flat surface corresponds to 𝜃 = 0 and 1, while

surface with the maximal surface roughness corresponds to 𝜃 = 1/2.

atomically-flat surface

rough surface

rough surface
(two-level approximation)
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Free energy functional (2)

Thermally-assisted formation of vacancy-adatom pairs increases the number of dangling

bonds and thus increases the internal energy of the system:

appearance of
a vacancy and an adatom

We estimate the internal energy of the crystal, associated with the surface. This energy

should be proportional to the number of broken chemical bonds

U ≃ 𝜀0 N1 Z (1− 𝜃) ≃ 𝜀0 N Z 𝜃 (1− 𝜃),

where 𝜀0 is a typical energy of a single broken bond, Z is the difference of coordination

numbers for the atom inside the close-packed surface and the atom on top of the surface,

and factor 1 − 𝜃 determines probability to find the broken bond on the surface of the

crystal.

It is clear that the internal energy defined above is minimal for the ideal flat surface (𝜃 = 0

and 𝜃 = 1) and maximal for the surface with developed roughness (𝜃 = 1/2).
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Free energy functional (3)

In order to analyze equilibrium properties of the system at constant temperature, we need

to introduce the Helmholtz free energy F = U − T · S and estimate the entropy S .

Entropy depends on the number of combinationsW – i.e. the number of possible combinations

to arrange N1 particles for N sites

W =
N!

N
1
! (N − N

1
)!
,

assuming that any site can adsorb no more than one atom. This vale can be also called

the number of micro-states corresponding to the same macro-state.

If we know the number of microstates W , then we can calculate the entropy based on

the Boltzmann’s formula S = kB lnW , where kB = 1.38 · 10−23 J/K is the Boltzmann

constant. Using an approximate Stirling’s formula lnN! ≃ N ln N, we get

S = kB ln
N!

N
1
! (N − N

1
)!

≃ kB N

{︂
lnN − N1

N
lnN1 −

(︂
1− N1

N

)︂
ln (N − N1)

}︂
≃

≃ −kB N
{︁
𝜃 ln 𝜃 + (1− 𝜃) ln (1− 𝜃)

}︁
.

The entropy is zero for the ordered atomically-flat surface (𝜃 = 0 and 𝜃 = 1) and maximal

for the state with maximal roughness (𝜃 = 1/2).
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Phase transition into state with surface roughness (1)

Combining the expressions for the internal energy U and the entropy S , we get the

expression for the normalized free energy

F ′ ≡ U − TS

kBT N
= 𝜂 𝜃 (1− 𝜃) + 𝜃 ln 𝜃 + (1− 𝜃) ln (1− 𝜃),

where

𝜂 ≡ Z𝜀0
kBT

is the effective activation energy.

0 1
θ

F
/(
k
B
T
N
)

θ∗1 1/2 θ∗2

η > 2

η = 2

η < 2

terraces
with adatoms

terraces
with vacancies
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Phase transition into state with surface roughness (2)

One extremum of F ′(𝜃) is always located at 𝜃* = 1/2 and depending on the 𝜂 value this

extremum is a local minimum (at 𝜂 < 2) or local maximum (at 𝜂 > 2). This solution

corresponds to the surface with the maximal roughness.

Provided 𝜂 > 2 there are two minima at 𝜃*1 и 𝜃*2 , symmetrically positioned with respect to

𝜃 = 1/2. These solutions correspond to the surface with wide flat terraces with adatoms

or vacancies.

Thus, the critical value of the effective activation energy corresponding to the phase

transition is 𝜂c = 2. We can define the critical temperature of the phase transition

𝜂c = 2 =⇒ Tc ≡ Z𝜀0
kB𝜂c

=
Z𝜀0
2kB

.

One can rewrite the expression for the normalized free energy

F ′ =
2Tc

T
· 𝜃 (1− 𝜃) + 𝜃 ln 𝜃 + (1− 𝜃) ln (1− 𝜃).

From the condition dF ′/d𝜃 = 0 we determine the equilibrium coverage 𝜃*

2Tc

T
· (1− 2𝜃*) + ln

(︂
𝜃*

1− 𝜃*

)︂
= 0.
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Phase transition into state with surface roughness (3)

1. Limit of low temperature: T ≪ Tc

In this case 𝜃*1 → 0, therefore

2Tc

T
(1− 2𝜃*1) + ln

(︂
𝜃*1

1− 𝜃*
1

)︂
= 0 =⇒ 2Tc

T
+ ln 𝜃*1 = 0,

𝜃*1 ≃ e−2Tc/T ≃ e−Z𝜀0/(kBT ) and 𝜃*2 ≃ 1− 𝜃*1 ≃ 1− e−Z𝜀0/(kBT ).

It means that there are unavoidable structural defects (adatoms and vacancies) at the

surface of the crystal at any finite temperature even for ideal conditions.

2. Limit of high temperature: T → Tc .

In this case 𝜃*1 = 1/2−𝜀 and 𝜃*2 = 1/2+𝜀, where 𝜀 → 0. After the expansion of logarithmic

function into a Taylor series, we come

ln

(︂
𝜃*1

1− 𝜃*
1

)︂
= ln

(︂
1− 2𝜀

1+ 2𝜀

)︂
= ln(1− 2𝜀)− ln(1+ 2𝜀) ≃ −4𝜀− 16

3
𝜀3,

4

(︂
1− Tc

T

)︂
+

16

3
𝜀2 = 0 =⇒ 𝜀 ≃

√︃
3

4

(︂
1− T

Tc

)︂
=⇒ 𝜃*1,2 ≃ 1

2
±

√︃
3

4

(︂
1− T

Tc

)︂
.
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Phase transition into state with surface roughness (4)

0 1
θ

F
/(
k
B
T
N
)

θ∗1 1/2 θ∗2

T < Tc

T = Tc

T > Tc

terraces
with adatoms

terraces
with vacancies

0 0.5 1
T/Tc

0

1

θ

θ∗1 � e−2Tc/T

θ∗2 � 1− e−2Tc/T

θ∗1 � 1/2−
√

3(1− T/Tc)/4

θ∗2 � 1/2 +
√

3(1− T/Tc)/4
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Part III

Phase separation in binary alloys.

Ising model for ferromagnetic transition
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Functional of internal energy for binary alloys (1)

We consider a binary alloy (solid-state mixture), consisting on equal amounts of atoms A

and B. Which state corresponds to the minimum of internal/free energy?

Periodic structure Mixed uniform state Macroscopic domains

(a) (b) (c)

domain
wall

For simplicity we will take into account the interaction only between neighbor atoms:

−EAA and −EBB is the energy of interaction between two atoms of the same type,

−EAB is the energy of interaction between two different atoms.

Ising model: assume that cites A and B correspond to the magnetic atoms with spin-up

and spin-down magnetic states. It is clear that the same model will describe magnetic phase

transition between non-magnetic state and ferromagnetic state with developed magnetic

domains.
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Functional of internal energy for binary alloys (2)

The total internal energy of interatomic interaction for the binary alloy in the mean field

approximation is equal to

U = −N

2

{︁
EAA · pAA + EBB · pBB + 2EAB · pAB

}︁
,

where N is number of all atoms; pX ,Y is a probability to find two atoms of types X and Y

next to each other. If C is the local concentration of the atoms of type A, then pAA = C 2,

pBB = (1− C)2 и pAB = C(1− C).

We introduce the parameter
𝜂 ≡ C − 1

2
,

which characterizes the difference of the local concentration of the atoms of type A from

the concentration for ideally mixed system.

𝜂 = 0 𝜂 = 0 𝜂 > 0 and 𝜂 < 0
(a) (b) (c)

domain
wall
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Functional of internal energy for binary alloys (3)

The difference between the interaction energy of the different atoms and the mean interaction

energy of the same atoms can be called a mixing energy

Emix ≡ EAB − (EAA + EBB)

2
.

We rewrite the expression of the total internal energy using the parameters 𝜂 and Emix

U = −N

2

{︂
EAA

(︂
1

4
+ 𝜂 + 𝜂2

)︂
+ EBB

(︂
1

4
− 𝜂 + 𝜂2

)︂
+ 2EAB

(︂
1

4
− 𝜂2

)︂}︂
=

= U0 + N
(EBB − EAA)

2
𝜂 + N Emix 𝜂

2,

where U0 = −N (EAA + EBB + 2EAB)/8 is a constant independent on 𝜂.

0
η

U

Emix > 0

Emix < 0

Emix > 0 : tendency to a

spontaneous mixing

Emix < 0 : tendency to a phase

separation and a formation of

domains
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Functional of free energy for binary alloys (1)

We focus on the binary systems Emix < 0, which demonstrate tendency to a phase

separation. For simplicity we assume that EAA = EBB .

To describe thermodynamic properties of the system with fixed number of particle and fixed

volume at given temperature, one should consider the free energy functional F = U −TS

and calculate entropy S .

To calculate entropy of binary alloy, we use the Boltzmann’s formula S = kB lnw , where

kB is the Boltzmann’s constant and w is the number of microstates, corresponding to the

same macrostate.

Using school-level combinatorics, we find the number of possible realizations (microstates)

for the system with two different sorts of atoms

w =
N!

NA!NB !
,

where NA and NB are the number of A and B atoms, N = NA + NB is the total number.

We use the approximate Stirling’s formula (lnN! ≃ N lnN) and calculate the entropy

S = kB lnw = kB ln
N!

NA!NB !
≃ kB

{︁
N ln N − NA ln NA − NB ln NB

}︁
≃

≃ −kB N
{︁
C ln C + (1− C) ln (1− C)

}︁
.
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Functional of free energy for binary alloys (2)

It is easy to see that the entropy

S ≃ −kB N
{︁
C ln C + (1− C) ln (1− C)

}︁
tends to zero for fully ordered states (C = 0 and C = 1) and it reaches maximum

Smax = kBN ln 2 for fully disordered state (C = 1/2).

We express S via the parameter 𝜂 and then expand it in Taylor series up to fourth-order

terms

S ≃ −kB N

{︂(︂
1

2
+ 𝜂

)︂
ln

(︂
1

2
+ 𝜂

)︂
+

(︂
1

2
− 𝜂

)︂
ln

(︂
1

2
− 𝜂

)︂}︂
≃

≃ kB N

(︂
ln 2− 2𝜂2 − 4

3
𝜂4
)︂
.

It allows us to write the free energy in the following form

F = U − T S = (U0 − kB T ln 2) + N Emix 𝜂
2 + 2NkBT 𝜂2 +

4

3
N kB T 𝜂4 =

= const + N (Emix + 2kBT ) 𝜂2 +
4

3
NkBT 𝜂4
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Functional of free energy for binary alloys (3)

Free energy of the binary alloy

F = const + N (Emix + 2kBT ) 𝜂2 +
4

3
NkBT 𝜂4.

0
η = C − 1/2

0

(F
−
U
0
)/
(2
k
B
T
N
)

−η∗2 η∗2

T < TcT = Tc T > Tc

domain enricheddomain enriched
by atoms B

.

The critical temperature Tc corresponds to the sign inversion for the quadratic term:

Emix + 2kBTc = 0 =⇒ Tc = −Emix

2kB
.
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Functional of free energy for binary alloys (4)

Using the definition of the critical temperature Tc = −Emix/2kB , we write the free energy

in the normalized form

F ′ ≡ F

2kBTcN
≃ const +

(︂
T

Tc
− 1

)︂
𝜂2 +

2

3
𝜂4.

From the condition dF ′/d𝜂 = 0 we find the equilibrium concentrations

𝜂*
1 = 0 и 𝜂*

2 =

√︃
3

4

(︂
1− T

Tc

)︂
.

0
η = C − 1/2

0

(F
−
U
0
)/
(2
k
B
T
N
)

−η∗2 η∗2

T < TcT = Tc T > Tc

domain enricheddomain enriched
by atoms B

.
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Part IV

Wetting, Young’s formula and regimes

of growth of solid-state nanostructures
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Contact angle and Young’s formula (1)

The Wullf theorem is not applicable for heterogeneous systems.

We consider now the problem of the equilibrium shape of a droplet on a substrate. We

introduce surface tension coefficients for interfaces liquid–gas 𝜎13, substrate–gas 𝜎23, and

substrate-liquid 𝜎12.

We assume that the droplet has a form of the spherical segment of radius R and base angle

𝜙. The effective free energy of the droplet of the given volume can be written as follows

F = 𝜎13 S + (𝜎12 − 𝜎23)S0 − 𝜆 · V ,

where

S = 2𝜋R2 (1− cos𝜙) and S0 = 𝜋R2 sin2 𝜙

are the areas of the spherical segment and its

projection, respectively;

V =
𝜋R3

3

(︁
2(1− cos𝜙)− sin2 𝜙 cos𝜙

)︁
is the volume of the droplet, 𝜆 is Lagrange multiplier.

ϕ

ϕ

R

(a)

σ23
σ12

σ13
σ23

σ12

σ13
1

2

3ϕ

(b)
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Contact angle and Young’s formula (2)

Seeking the minimum of the free energy

F = 𝜎13 2𝜋R
2 (1− cos𝜙) + (𝜎12 − 𝜎23)𝜋R

2 sin2 𝜙− 𝜆
𝜋R3

3

(︁
2(1− cos𝜙)− sin2 𝜙 cos𝜙

)︁
with respect to independent variables R и 𝜙, we get a system of nonlinear equations

4𝜎13(1− cos𝜙) + 2 (𝜎12 − 𝜎23) sin
2 𝜙− 𝜆R

(︁
2(1− cos𝜙)− sin2 𝜙 cos𝜙

)︁
= 0,

2𝜎13 sin𝜙+ 2 (𝜎12 − 𝜎23) sin𝜙 cos𝜙− 𝜆R sin2 𝜙 sin𝜙 = 0.

Is it clear that this system of equation has a trivial solution

sin𝜙 = 0

regardless on the particular parameters 𝜎12, 𝜎13 and 𝜎23. It corresponds to an ideal wetting

and a formation of ultra-thin film on the substrate (similar to oil or benzene on water

surface).

Assuming sin𝜙 ̸= 0 and excluding all terms containing 𝜆, we get the equation for the

contact angle 𝜙

4𝜎13(1− cos𝜙) + 2 (𝜎12 − 𝜎23) sin
2 𝜙−

(︁
2𝜎13+

+2(𝜎12 − 𝜎23) cos𝜙
)︁ (︂

2(1− cos𝜙)

sin2 𝜙
− cos𝜙

)︂
= 0.
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Contact angle and Young’s formula (3)

Thus, we get a well-known Young’s formula for the contact angle

cos𝜙 =
𝜎23 − 𝜎12

𝜎
13

(*)

ϕ

ϕ

R

(a)

σ23
σ12

σ13
σ23

σ12

σ13
1

2

3ϕ

(b)

Simple mechanical interpretation: as it is known from general physics, the surface tension

coefficient is equal to a tangential force, which tends to decrease the area of the surface

between two media. From the balance of the forces acting at the point of contact of three

media in projection on the x−axis, we get the equation of mechanical equilibrium

𝜎13 · cos𝜙+ 𝜎12 = 𝜎23

and then derive the Young’s formula (*).

The Young’s formula is very convenient for a classification of growth mechanisms.
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Basic regimes of growth of solid-state nanostructures (1)

(a) (b) (c)

1. If 𝜎23 − 𝜎12 < 𝜎13, then the condition

cos𝜙 =
𝜎23 − 𝜎12

𝜎
13

can be fulfilled due to proper choice of the contact angle 𝜙.

It corresponds to island or Vollmer-Weber growth mode (panel a). In this case the atoms

of adsorbate are more strongly bound to each other rather than to the substrate. This

mechanism is analogous to the condensation of droplets from the gaseous phase, however

solid-state droplets become faceted.

It is an example of three-dimensional growth.
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Basic regimes of growth of solid-state nanostructures (2)

(a) (b) (c)

In the opposite case 𝜎23 − 𝜎12 > 𝜎13 the condition cos𝜙 = (𝜎23 − 𝜎12)/𝜎13 cannot be

fulfilled for any 𝜙. It forces us to consider the independent solution

sin𝜙 = 0

There are two different scenarios.

2. The film of adsorbate can grow layer-by-layer, always covering the substrate (panel

b). This regime is also called Frank–van der Merve growth mode. In this case atoms of

adsorbate strongly interact with the substrate rather than to each other. As a result, in

the ideal conditions each layer is fully completed before the next layer starts to grow.

It is an example of two-dimensional growth.
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Basic regimes of growth of solid-state nanostructures (3)

(a) (b) (c)

3. In some case one can see combined layer-and-island regime, also known as Stranski-

Krastanow growth mode.

At the initial stage the layer-by-layer mechanism is responsible for the formation of uniform

thin film of adsorbate (single crystalline or amorphous). Upon increase in the thickness of

the adsorbed film, internal mechanical stress due to mismatch of the lattice constant of

substrate and adsorbate could produce the formation of dislocations and eventually leads

to growth of three-dimension faceted islands.
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