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Introduction
Motivation: Superconducting devices based on proximity effect in
superconductor/magnetic material heterostructures are important objects for
superconducting spintronics. The dependence of the critical temperature of magnetic
material/superconductor/magnetic material trilayers on the angle between the
magnetic layers’ magnetizations leads to a spin-valve effect and gives opportunity
to use such structures as logical elements. While superconducting spin valves with
ferromagnets are well-studied [1-3], we describe AF/S/AF spin valves.

Neel triplet Cooper pairs: It was demonstrated [4] that the Neel order of the fully
compensated AF makes the conventional singlet pairing to be partially converted into
spin-triplet correlations at AF/S interfaces. Their amplitude flips sign from one lattice
site to the next, just like the Neel spin order in the AF. Thus, they are called Neel
triplet Cooper pairs. Spin-valve effect in AF/S/AF structures is caused by sensitivity
of Neel triplet Cooper pairs to mutual orientation of the Neel vectors of the AFs.
Alternating sign of Neel triplets’ amplitude also leads to parity effect [5].

Spin-valve effect in FI/S/FI (review)

Theory:

The average exchange field seen by
a conduction electron is

h̄ = 2|Γ|S(a/dS) cos(θ/2),

where θ is the angle between
magnetizations of F layers [1].

This predicts suppression of
superconductivity for the
parallel (P) configuration and
no suppression for the antiparallel
(AP).

Experiment:

the wave function of the conduction electrons decays on an
atomic scale in the insulator [2,24].

To demonstrate that the suppression of superconductiv-
ity is due to the exchange field, and is interface sensitive,
we changed the interface transparency. We fabricated a set
of control samples by inserting an ultrathin Al2O3 barrier
between the EuS magnetic insulator and the Al film for the
sample structure EuS=Al2O3=Al=Al2O3=EuS. The super-
conducting transition temperatures were obtained for both
the P and AP states for these devices with the Al2O3

thickness ranging from 0.3 to 0.9 nm. As shown in Fig. 4
for both cases, contrary to the samples with transparent
interfaces, no MR transition for the P and AP states was
found in these control samples. Al2O3 barriers as thin as
0.3 nm at the interface were enough to destroy the prox-
imity effect. Also, it is observed that TC is much higher in
the EuS=Al2O3=Al=Al2O3=EuS sample compared with
TAP
C of the EuS=Al=EuS structure, indicating less interplay

between the superconductivity and ferromagnetism in the
former due to the blocking of the exchange field by the
barrier, whereas in the EuS=Al=EuS trilayers possible
unaligned Eu2þ magnetic moments at the EuS=Al inter-
faces may act as magnetic impurities lowering TC [35,36].
Given the extreme sensitivity of the superconductivity to
magnetic impurities, which in the present case of the Eu2þ
ion carry 7 �B per Eu2þ magnetic moment, a TC change is
not surprising.

Here we discuss the noticeable difference between the
coercive fields Hc obtained from the MðHÞ loop and the
switching fields obtained from the RðHÞ curves. There are
two plausible explanations for this differences. First, we
observe a near doubling of the coercive fields in the EuS
films from 4 to 2 K from SQUID measurements. It is
likely this increasing trend in Hc may continue below
2 K (whereas the SQUID system is limited to 2 K).
Alternatively, the above difference could come from the

surface or interface anisotropy of EuS. Considering that the
present films were deposited onto liquid N2 cooled
substrates, the interfaces are expected to be smooth and
sharp [37]. The MðHÞ loop is a manifestation of the
collective average of the ensemble of all the domains.
Given the observation that a 0.3 nm Al2O3 barrier
completely prevented the proximity effect, it is clear that
the interface magnetization of EuS controls the switching.
We estimated the value of the exchange integral � for the

interface, by examining the shift in TC for the P and AP
alignments, as was shown for the Fe3O4=In=Fe3O4 system
[21]. We obtain � for our EuS=Al interface, by fitting the
experimental data to the formula

TC=TC0 ¼ 1–10ð�S=EFÞð
ffiffiffiffiffiffiffi
�0l

p
=dÞ; (2)

where TC0 is the transition temperature of the pure super-
conductor film (without the adjacent magnetic layer), S is
the spin angular momentum of Eu2þ, EF is the Fermi

energy of Al,
ffiffiffiffiffiffiffi
�0l

p
is the coherence length in the dirty

limit, and d is the Al film thickness [21]. Although TP
C for

the trilayer with 3.5 nm Al is below our available tempera-
ture range, we can use our lowest temperature of 1 K
for a rough estimation. Given that TC vs 1=d follows a
linear relation [21], we can estimate � from the slope. We
obtain �min ¼ 16 meV using as parameters TC0 ¼ 2:22 K
[from Fig. 4(b)], S ¼ 7=2, EF ¼ 11:6 eV, �0 ¼ 1600 nm.
and l ¼ 3:9 nm [26,31]. The actual value of � should be
larger than 16 meV because TP

C for the 3.5 nm Al trilayer

is lower than 1 K. Substituting this � value into Eq. (1),
we obtain the exchange field hð0Þ ¼ 13 meV. Using
TC0 ¼ 2:22 K and the BCS relation, we obtain a BCS
gap of 0.68 meV for our 3.5 nm Al film. Comparing this
gap to hð0Þ, we are in the strong exchange field condition.
In conclusion, we studied the transport properties

of a superconductor subjected to an exchange field
using a FI=S=FI sandwich structure with the ferromagnetic
insulator EuS. We demonstrated switching between the
superconducting and normal states by tuning the proximity
effect induced by the exchange field at the EuS=Al inter-
faces. Clean and sharp transitions, as well as an infinite MR
has been realized, confirming the theoretical prediction
of de Gennes [19]. This system has potentials for logic
circuits and memory applications. It also provides a plat-
form to engineer structures with an s-wave superconductor
and a ferromagnetic insulator in the search for Majorana
fermions [38].
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FIG. 4 (color online). Temperature-dependent resistance for
the parallel (P) and antiparallel (AP) configurations for
(a) EuSð1:5Þ=Alð3:5Þ=EuSð4Þ, and (b) EuSð1:5Þ=Al2O3ð0:3Þ=
Alð3:5Þ=Al2O3ð0:3Þ=EuSð4Þ. No MR transition is observed
with the Al2O3 layers inserted. Black data squares are for the
antiparallel state and red data triangles are for the parallel state.
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Fig.1 R(T ) for the P and AP configurations for (a)
EuS/Al/EuS and (b) EuS/Al2O3/Al/Al2O3/EuS
[2].

Spin-valve effect in AF/S/AF
Dependence of the critical
temperature Tc of the (insulating
AF)/S/(insulating AF) spin valve on
the angle ϕ between Neel vectors in the
AFs and the impurity strength in S δµ.

Fig.2 Setup. The angle ϕ between the Neel
vectors is shown.

BdG, clean case (no impurities):
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Fig.3 Tc(ϕ) for the AF/S/AF structure.
Different curves correspond to different dS .

BdG, influence of impurities:

Fig.4 General suppression Tc(ϕ = 0) due
to impurities.

Fig.5 Suppression of spin-valve effect by
impurities. Tc(ϕ = 0) − Tc(ϕ = π) as a
function of the impurity strength δµ.

Fig.6 Tc(ϕ = 0) + Tc(ϕ = π) − 2Tc(ϕ =
π/2) as a function of the impurity strength
δµ.

Quasiclassical results, clean case:

Fig.7 Tc(ϕ) for fixed heff and different dS .

Fig.8 Tc(ϕ) for different dS and heff chosen
so that value Tc(ϕ = 0) was the same.

Fig.9 Tc(ϕ) for a fixed dS and different heff .

Parity effect in AF/S/AF and F/S/F

H = −t
∑

⟨ij⟩,σ
ĉ†iσ ĉjσ +

∑
i

(∆iĉ
†
i↑ĉ

†
i↓ +H.c.)−

−µ
∑
iσ

n̂iσ − J

2

∑
i,αβ

ĉ†iα(hiσ)αβ ĉiβ

Anomalous Green’s function:

Fi ,αβ(ωm) =
∑
n

(
ui
n,αv

i⋆
n,β

iωm − εn
+

ui
n,βv

i⋆
n,α

iωm + εn

)

Singlet (triplet) correlations:

F s,t
i (ωm) = Fi ,↑↓(ωm)∓ Fi ,↓↑(ωm)

F t
i =

∑
ωm>0

F t
i (ωm)
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FIG. 1. Schematic depiction of the system and key underlying
phenomena. (a) A conventional superconductor (S) is sand-
wiched between two compensated antiferromagnetic insula-
tors (AFIs) bearing Néel vectors n1 and n2 that subtend an
angle θ. (b) In an AFI–S bilayer, spatially alternating spin-
splitting induced by the AFI predominantly generates Néel
spin-triplet Cooper pairs characterized by a checkerboard pat-
tern of their amplitude F t

j [37] thus manifesting an alternating
spatial parity. (c) In an AFI–S–AFI trilayer with odd num-
ber (considered 5 here) of S monolayers and θ = 0, the Néel
triplets generated by the two AFIs interfere constructively.
This results in more induced spin-triplets and larger weaken-
ing of the spin-singlet superconductivity. (d) If instead θ = π,
the Néel triplets from the two AFI–S interfaces interfere de-
structively and superconductivity is weakened less. This de-
pendence of the superconducting state on θ is reversed when
the number of S monolayers is even due to the checkerboard
pattern associated with the Néel triplets.

generated Néel Cooper pairs mediate coupling between
the two AFIs’ Néel vectors exhibiting the signature par-
ity effect with the S monolayers number. Our theoreti-
cal results suggest a direct experimental probe of these
recently predicted Néel triplets [37] while enabling anti-
ferromagnetic superconducting spintronics devices.

System and theoretical model.—We consider a thin-
film superconductor which on each side is interfacing an
antiferromagnetic insulator, as schematically depicted in
Fig. 1(a). While electron hopping is only allowed within
the S layer, the two AFIs impose a local spin-splitting
via interfacial exchange onto the atomic layer closest to
the S–AFI interfaces [23, 37]. We can thus describe the
system by the Hamiltonian

H =− t
∑

⟨i,j⟩,σ
c†i,σcj,σ − µ

∑

j,σ

c†j,σcj,σ − J

2

∑

j

Mj · Sj

+
∑

j

( |∆j |2
U

+∆∗
jcj,↓cj,↑ +∆jc

†
j,↑c

†
j,↓

)
. (1)

Here, c
(†)
j,σ is the annihilation (creation) operator associ-

ated with an electron of spin σ at lattice site j ≡ (jz, jy),
t parametrizes electron hopping between nearest neigh-
bor sites within the S, Sj ≡ ∑

σ,σ′ c
†
j,σσσ,σ′cj,σ′ is the

spin operator for S electrons with σ as the vector of Pauli

matrices, and ∆j ≡ −U⟨cj,↓cj,↑⟩ is the self-consistently
evaluated mean-field superconducting gap [42]. The
chemical potential µ is adjusted to fix the filling frac-
tion, which we assume as n = 0.5 here. We consider the
S lattice to bear the size Nz ×Ny with periodic bound-
ary conditions along z [Fig. 1(a)]. As we consider ideal
insulating antiferromagnets, their thicknesses do not in-
fluence the phenomena investigated here.
A local spin-splitting field JMj/2 is imposed by the

two AFIs onto the S interfacial monolayers (jz, 1) and
(jz, Ny). Here, J parametrizes the AFI–S interfacial ex-
change coupling. As depicted in Fig. 1(a), the magnetic
moments in the first AFI have a fixed orientation corre-
sponding to the Néel vector n1 = z so that M(jz,1) =
(−1)jz−1n1. The Néel vector n2 = [cos(θ)z+sin(θ)y] of
the second AFI leads to rotation of the local spin-splitting
oriented along M(jz,Ny) = (−1)jz−1n2.
We numerically diagonalize the Hamiltonian in Eq. (1)

by solving the Bogoliubov–de Gennes equation [42] self-
consistently:

H =H0 +

′∑

n

Enγ
†
nγn with (2)

H0 =−Nµ−
∑

j

|∆j |2
U

− 1

2

′∑

n

En, (3)

where
∑′

n denotes the sum over positive eigenenergies
En > 0 only, {γ†

n} is a set of unique fermion operators,
and N = NzNy is the total number of S lattice sites. The
resulting solution provides complete information on the
superconducting or normal state of the S layer.
Critical temperature control via θ.—In order to exam-

ine the magnetoresistance and S layer’s critical temper-
ature dependence on the AFIs, we numerically compute
the superconducting critical temperature Tc. It is de-
termined using a binary search algorithm locating the
temperature at which the superconducting gap starts
to increase from a near-zero initial guess upon its self-
consistent evaluation [43, 44].
To succinctly capture and present the Tc variation

with θ for different thicknesses Ny of the S layer, we
first parametrize Tc vs. θ on symmetry grounds. This
parametrization is only valid for small changes in Tc. For
a small J , Tc is only weakly altered by the adjacent AFIs
and is expected to bear the dependence:

T̃c(θ) ≡
Tc(θ)

Tc,0
≡ ∆T̃c,∥ cos θ +∆T̃c,⊥ sin2 θ + T̃c,∥, (4)

where Tc,0 is the critical temperature of the same S layer
when it is not coupled to the AFIs, i.e., assuming J = 0
in Eq. (1). From Eq. (4) above, we see that

∆T̃c,∥ = [T̃c(0)− T̃c(π)]/2, T̃c,∥ = [T̃c(0) + T̃c(π)]/2,

∆T̃c,⊥ = T̃c(π/2)− T̃c,∥. (5)

Fig.11 (a) Setup and the angle θ between
the Neel vectors. Spatial variation of the
triplet correlations amplitude F t

j in (b)
AF/S bilayer, (c) AF/S/AF with odd
number of S monolayers and θ = 0 or (d)
θ = π.

F/S/F trilayers

FIG. S1. (a) Schematic depiction of a system where the compensated AFIs are replaced with

ferromagnetic insulators (FIs) with magnetization along m1 and m2 that subtend an angle θ.

The normalized critical temperature T̃c variation with θ is plotted for (b) stronger and (c) weaker

interfacial exchange coupling J . Contrary to the AFI/S/AFI system, the variation is no longer

reversed when the number of S monolayers Ny changes from even to odd. The weaker exchange (b)

results in variation of Tc as per Eq. (4) in the main text. In both panels, Nz = 402 and U/t = 1.

In (b), J/t = 0.08. In (c), J/t = 0.02.

266 (1962).
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Fig.10 (a) Setup. Normalized critical
temperature T̃c(θ) for (b) stronger and (c)
weaker interfacial exchange coupling J . Ny is
the number of S monolayers
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FIG. 2. Normalized critical temperature T̃c variation with θ
for (a) stronger and (b) weaker interfacial exchange coupling
J . The variation is reversed when the number of S monolayers
Ny changes from even to odd. A complete suppression of
Tc is observed for the stronger J case (a), while the weaker
exchange (b) results in variation of Tc as per Eq. (4). (c) By

fitting the numerically evaluated T̃c(θ) to Eq. (4) for different

thicknesses Ny, ∆T̃c,∥ and ∆T̃c,⊥ are obtained and studied

for their thickness Ny dependence. The parity effect of ∆T̃c,∥
with respect to Ny results from the alternating sign of Néel
triplets’ amplitude, as discussed in Fig. 1. In all panels, Nz =
202. In (a), U/t = 1 and J/t = 0.08. In (b), U/t = 1 and
J/t = 0.02. In (c), U/t = 1.3 and J/t = 0.08.

In Eq. (4), the ∆T̃c,∥ cos θ term is expected due to the
interference of zero-spin Néel triplets generated by the
two AFI–S interfaces [37], as briefly outlined in Fig. 1.
It is analogous to the cos θ dependence in F–S–F tri-
layers [11, 12] and bears the symmetry of vectorial ad-
dition of the spin-splitting fields from the two AFIs.
The ∆T̃c,⊥ sin2 θ term is expected from the generation
of equal-spin triplets via the noncollinearity between n1

and n2 [38–41] as it is finite only when the two magnetic
orders are noncollinear. In Eq. (4), ∆T̃c,∥ characterizes
the Tc difference between parallel and antiparallel config-
urations. When it is positive (negative), the Tc is larger
for the parallel (antiparallel) configuration of the mag-
netic orders. On the other hand, ∆T̃c,⊥ represents the
change in Tc when going from parallel to perpendicu-
lar configurations. Together, ∆T̃c,∥ and ∆T̃c,⊥ provide a
succinct parametrization to study and present Tc vs. θ in
our system. We emphasize that our numerical evaluation
of Tc does not depend on or assume this parametrization
[Eq. (4)].

In Fig. 2(a), we depict the T̃c variation when the in-
terfacial exchange is strong and results in a complete Tc

suppression for certain θ. When the number of S mono-
layers Ny = 2, the Néel triplets generated by the two
AFI–S interfaces interfere destructively for θ = 0. This
results in a weakening of the effect due to the AFIs and a
larger Tc at θ = 0. For Ny = 3, the interference becomes
constructive for θ = 0 [Fig. 1(c)] due to the checkerboard
pattern of the Néel triplets [Fig. 1(b)] and the Tc vs. θ
trend is reversed. When the exchange coupling J is small
enough to avoid a complete suppression of Tc, the numer-
ically evaluated T̃c(θ) [Fig. 2(b)] is found to perfectly fit
Eq. (4). The reversal of trends between Ny = 2 and 3
remains as before and is attributed to the interference
and checkerboard effects.

Considering a filling fraction n = 0.6, we found a neg-
ligible dependence of Tc on θ. This is consistent with
a much weaker generation of Néel triplets away from
n = 0.5 corresponding to µ = 0 [41]. Furthermore,
for a direct comparison, we discuss plots analogous to
Figs. 2(a) and (b) for a trilayer comprising ferromagnetic
insulator (FI) instead of AFI in the Supplemental Mate-
rial (SM) [45]. The FI–S–FI trilayer is found to exhibit
a weaker Tc dependence, lack of an abrupt jump to 0
seen in Fig. 2(a), and no reversal of Tc variation between
Ny = 2 and 3. This emphasizes the several unique fea-
tures of our investigated AFI–S–AFI system. Here, we
have considered AFIs with zero net magnetic moments.
In the presence of a finite magnetic moment due to cant-
ing [41], we expect the Tc variation to bear a small con-
tribution reminiscent of the FI–S–FI case investigated in
the SM [45].

Finally, Fig. 3(c) shows the dependence of ∆T̃c,∥ and

∆T̃c,⊥ on Ny obtained by fitting the numerically eval-

uated data to Eq. (4). ∆T̃c,∥, found to be an order of

magnitude larger than ∆T̃c,⊥, exhibits a parity effect
with Ny due to the checkerboard pattern of Néel triplets
[Fig. 1(b)] and the resulting interference effects [Figs. 1(c)
and (d)]. This further validates the argument presented
above that the ∆T̃c,∥ cos θ term stems from the Néel zero-

spin triplets [37, 41]. As ∆T̃c,⊥ stems from the regular
equal-spin triplets generated by the noncollinearity be-
tween n1 and n2 [38–40], it exhibits a simple decay with
Ny without any alternation of its sign.

The results presented above (Fig. 2) show that an in-
finite magnetoresistance [18], resulting from a switching
between the normal resistive and superconducting states
using an applied magnetic field, is achievable in the con-
sidered AFI–S–AFI trilayer by reorienting the Néel vec-
tor of one AFI with respect to the other. Recent ex-
periments already demonstrate manipulation of the Néel
vector in an easy-plane AFI, such as hematite above the
Morin transition [46], using small magnetic fields [47].
Furthermore, a complete suppression of Tc [Fig. 1(a)] en-
ables such a device at arbitrarily low temperatures. An
observation of the parity effect with Ny [Fig. 2(c)] will
additionally provide evidence in favor of these recently

Fig.12 Normalized critical temperature
T̃c(θ) for (a) stronger and (b) weaker
interfacial exchange coupling J . The
variation is reversed when the number of S
monolayers Ny changes from even to odd.

The work was supported by RSF project №22-22-00522.

Conclusions
(i) Neel triplet correlations in AF/S/AF lead to spin-valve effect. The results demonstrate
suppression of the valve effect at larger dS and possibility of absolute valve effect for larger
values of heff .
(ii) Presence of impurities suppresses Neel triplets, which leads to disappearing of the valve
effect.
(iii) For larger dS critical temperature manifests non-monotonic dependence on the
misorientation angle due to appearance of equal-spin correlations and interference effects.
(iv) Angle dependence of AF/S/AF critical temperature shows the parity effect, which
provides a distinct signature of the Neel triplets.
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