Курс развивает представления об особенностях рассеяния и туннелирования частиц в системах с неоднородным потенциалом, заложенных в базовом курсе квантовой механики. В настоящем курсе лекций основное внимание уделено проблеме вычисления туннельного тока в твердотельных наноструктурах различной природы, включая нормальные металлы, полупроводники, сверхпроводники и ферромагнетики. Рассматриваются основные модели упругого и неупругого туннелирования. На основе рассмотренных моделей туннельных эффектов поясняются принципы работы различных наноустройств (например, резонансно-туннельного диода, туннельного диода Есаки, туннельного контакта Джозефсона, одноэлектронного транзистора, туннельного магниторезистивного элемента) и современные методы экспериментальной физики (например, сканирующая туннельная микроскопия и спектроскопии, лжозефсоновская магнитометрия и элементы квантовой метрология). После прохождения курса студенты смогут принимать активное участие в работах по исследованию транспортных свойств наноструктур и гибридных различнойприроды, включая задачи первичной обработки и интерпретации экспериментальных данных.
1. Задача рассеяния в квантовой механике. Точные решения
Описание электронных волн в твердых телах с помощью уравнения Шредингера. Обсуждение аналогии между туннельным эффектом в квантовой механике и непропусканием в средах с мнимым волновым вектором (полное внутреннее отражение). Граничные условия для волновой функции. Матричная форма записи связи амплитуд распространяющихся мод в областях с постоянным потенциалом. Основные свойства матрицы рассеяния. Основные свойства трансфер-матрицы. Расчет коэффициентов отражения и прохождения от скачка потенциала и прямоугольного потенциального барьера. Расчет уровней размерного квантования частицы в одномерной прямоугольной потенциальной яме конечной высоты. Резонансное туннелирование через двухбарьерную структуру, форма линии резонансного прохождения (Брейта-Вигнера). Уровни размерного квантования в туннельно-связанных потенциальных ямах. Представление о времени туннелирования. Туннельный эффект в одномерных периодических структурах (задача Кронига-Пенни). Зонный спектр.
2. Квазиклассическое описание туннелирования
Приближение Вентцеля-Крамерса-Бриллюэна и его область применимости. Свойства волновой функции вблизи точки поворота (связь осциллирующих и затухающих решений). Метод Миллера и Гуда. Расчет коэффициентов отражения и прохождения частицы через параболический потенциальный барьер. Расчет коэффициентов отражения и прохождения частицы через потенциальный барьер произвольной формы, сравнение с точным решением. Спектр состояний частицы, локализованной в одномерной потенциальной яме произвольного вида. Формула квантования Бора-Зоммерфельда. Расчет спектров состояний для частицы, локализованной в связанных потенциальных ямах.
3. Квазистационарные состояния в квантовой механике
Определение квазистационарных состояний. Связь скорости распада с прозрачностью туннельного барьера. Распад квазистационарных состояний в двухбарьерном потенциале. Распад квазистационарных состояний в сферически-симметричном потенциале. Альфа-распад, формула Гамова.
4. Особенности туннельных эффектов в наноструктурах на основе нормальных металлов
Вывод общего выражения для туннельного тока в плоскослоистой структуре «нормальный металл – изолятор – нормальный металл», связь полученного выражения с формулой Ландауэра. Расчет туннельного тока между нормальными металлами в приближении эффективной массы для случаев малых и больших смещений. Туннельная проводимость и закон Ома. Холодная полевая эмиссия и формула Фаулера-Нордхейма. Расчет туннельного тока между нормальными металлами через уровни размерного квантования двумерного электронного газа (резонансно-туннельный диод). Принцип работы электронного эмиссионного микроскопа. Принцип работы сканирующего туннельного микроскопа. Эмиссионные резонансы. Задача о туннельном токе между монокристаллом с плоской поверхностью и металлической сферой (задача Терсоффа–Хаманна). Локальная плотность состояний. Квазичастичная интерференция на поверхности благородных металлов и топологических изоляторов. Представление о туннельной спектроскопии. Одноэлектронный транзистор и кулоновская блокада туннелирования. Основные представления об одноэлектронике.
5. Особенности туннельных эффектов в наноструктурах на основе ферромагнитных металлов
s-d модель. Квазичастицы в однородном ферромагнетике. Рассеяние спин-поляризованной частицы на потенциальном барьере между двумя ферромагнитными металлами с разной намагниченностью. Принцип работы туннельного магниторезистивного элемента. Принцип работы спин- поляризованной сканирующей туннельной микроскопии. Примеры.
6. Особенности туннельных эффектов в наноструктурах на основе сверхпроводящих металлов
Основные представления о феноменологической и микроскопической теорий сверхпроводимости. Квазичастицы в сверхпроводниках. Плотность состояний квазичастичных возбуждений, энергетическая щель. Квазичастичное туннелирование в системах «сверхпроводник – изолятор – нормальный металл» и «сверхпроводник – изолятор – сверхпроводник» в приближении малопрозрачного туннельного барьера. Туннельная спектроскопия сверхпроводящей щели. Конверсия сверхпроводящего тока в нормальный ток и андреевское отражение в системе «сверхпроводник – нормальный металл». Стационарный эффект Джозефсона. Переход Джозефсона в магнитном поле. Принцип работы двухконтактного сверхпроводящего квантового интерферометра (СКВИД). Джозефсоновские вихри. Принцип работы перестраиваемого генератора, основанного на движении квантов магнитного потока. Нестационарный эффект Джозефсона. Ступеньки Шапиро. Реализация квантового стандарта напряжения на джозефсоновском переходе в поле электромагнитной волны. Представление о макроскопическом квантовом туннелировании.
7. Особенности туннельных эффектов в полупроводниковых наноструктурах
Зонная структура полупроводников. Туннельный диод Есаки. Межзонное туннелирование в постоянном электрическом поле. Эффект Франца-Келдыша как пример туннелирования с участием фотонов.
Перечень типовых вопросов:
1. Вероятность прохождения квантово-механической частицы через потенциальный барьер: точные и приближенные решения.
2. Спектр уровней размерного квантования для частицы в одномерной потенциальной яме: точные и приближенные решения.
3. Вольт-амперная характеристика туннельного контакта, состоящего из двух массивных нормальных металлов, разделенных туннельным барьеров.
4. Вольт-амперная характеристика туннельного контакта, состоящего из двух массивных ферромагнитных металлов, разделенных туннельным барьеров.
5. Вольт-амперная характеристика туннельного контакта, состоящего из двух массивных сверхпроводящих металлов, разделенных туннельным барьеров.
6. Методы измерения магнитного поля, основанные на использовании джозефсоновских туннельных контактов.
7. Туннелирование и квантово-размерные эффекты: резонансно-туннельный диод
8. Туннелирование и эффекты дискретности заряда: одноэлектронный транзистор с затвором и одноэлектронный транзистор без затвора
9. Макроскопическое квантовое туннелирование
Перечень контрольных вопросов:
1.Матричная форма записи связи амплитуд распространяющихся мод в областях с постоянным
потенциалом. Основные свойства матрицы рассеяния. Основные свойства трансфер-матрицы (матрицы переноса). Примеры решения задач.
2. Резонансное туннелирование через двухбарьерную структуру, форма линии резонансного прохождения.
3. Уровни размерного квантования в одномерных потенциальных ямах.
4. Уровни размерного квантования в туннельно-связанных потенциальных ямах. Представление о времени туннелирования.
5. Приближение Вентцеля-Крамерса-Бриллюэна и его область применимости.
6. Свойства волновой функции вблизи точки поворота (связь осциллирующих и затухающих решений).
7. Расчет коэффициентов отражения и прохождения частицы через квазиклассический потенциальный барьер произвольной формы, сравнение с точным решением.
8. Спектр состояний частицы, локализованной в одномерной квазиклассический потенциальной яме произвольного вида. Формула квантования Бора-Зоммерфельда.
9. Квазистационарные состояния в квантовой механике. Связь скорости распада с прозрачностью туннельного барьера.
10. Туннельная проводимость наноструктур на основе нормальных металлов и закон Ома.
11. Холодная полевая эмиссия и формула Фаулера-Нордхейма.
12. Эмиссионная микроскопия и сканирующая туннельная микроскопия: принцип работы и основные режимы.
13. Туннельная спектроскопия: основные режимы и проблема интерпретации экспериментальных данных.
14. Спиновый вентиль. Спин-поляризованная сканирующая туннельная микроскопия.
15. Квазичастичное туннелирование в системах «сверхпроводник – изолятор – нормальный металл» и «сверхпроводник – изолятор – сверхпроводник» в приближении малопрозрачного туннельного барьера.
16. Стационарный и нестационарный эффекты Джозефсона. Ступени Шапиро и квантовый стандарт напряжения
17. Межзонное туннелирование в полупроводниках в постоянном электрическом поле.
18. Эффект Франца-Келдыша.
Примеры контрольных заданий:
1. Вычислить коэффициент прохождения через одиночный прямоугольный потенциальный барьер. Рассмотреть частные случаи надбарьерного рассеяния, подбарьерного рассеяния, пределы малопрозрачного и предельно тонкого барьера.
2. Рассчитать спектр уровней размерного квантования в одномерной потенциальной яме со стенками конечной высоты. Рассмотреть частные случаи ямы с бесконечно высокими стенками и «мелкой» ямы.
3. Вычислить коэффициент прохождения через двойной потенциальный барьер для случая подбарьерного прохождения. Обсудить зависимость максимального значения коэффициента прохождения от параметров туннельных барьеров.
4. Рассчитать вольт-амперную характеристику перехода сверхпроводник – изолятор – нормальный металл при T=0.
5. Рассчитать зависимость полного джозефсоновского тока через короткий туннельный контакт от внешнего магнитного поля.
6. В рамках модели резистивно-шунтированного перехода рассчитать вольт-амперную характеристику короткого джозефсоновского перехода для заданного стороннего тока.
7. В рамках модели резистивно-шунтированного перехода рассчитать вольт-амперную характеристику точечного джозефсоновского перехода для заданного переменного напряжения.
8. Рассчитать вероятность прохождения спин-поляризованной частицы через туннельный барьер в системе связанных ферромагнитных металлов.
Экзамен проводятся в устной форме по билетам. В каждом билете представлено два теоретических вопроса. При проведении зачёта и экзамена
обучающемуся предоставляется 30 минут на подготовку. Опрос обучающегося не должен превышать одного астрономического часа.
Основная литература:
1. Бурштейн Э., Лундквист С., «Туннельные явления в твердых телах». — М., 1983.
2. Ландау Л.Д., Лифшиц Е.М., «Квантовая механика (нерелятивистская теория)». — М.: Физматлит, 2004.
3. Демиховский В.Я., Вугальтер Г.А., «Физика квантовых низкоразмерных структур». — М: Логос, 2000.
4. Шмидт В.В., «Введение в физику сверхпроводников». — М., Наука, 1982.
5. Абрикосов А.А., «Основы теории металлов». — М.: Наука, 1986.
6. Вольф Е., «Принципы электронной туннельной спектроскопии». — Киев: Наукова Думка, 1990.
7. Солимар Л. «Туннельный эффект в сверхпроводниках и его применение». – Москва: Мир, 1974.
Дополнительная литература:
1. Блохинцев Д.И., «Основы квантовой механики». — М.: Наука, 1976.
2. Бом Д., «Квантовая теория» — М.: Наука, 1965.
3. Галицкий В.М., Карнаков Б.М. и Коган В.И. «Задачи по квантовой механике». – Москва: Наука, 1981.
4. Фрёман Н. и Фрёман П.О. «ВКБ-приближение». – Москва: Мир, 1967.
5. Брандт Н.Б. и Кульбачинский В.А. «Квазичастицы в физике конденсированного состояния». – Москва: Физматлит, 2005.
6. Razavy M., «Quantum theory of tunneling». — World Scientific, 2003.
7. Stroscio J.A. and Kaiser W.J. «Scanning tunneling microscopy». – Academic Press, 1993.
8. Chen C.J. «Introduction to scanning tunneling microscopy». – Oxford University Press, New York, 1993.
9. Datta S. «Electronic transport in mesoscopic systems». – Cambridge University Press, 1997.
10. Davies J.H. «The physics of low-dimensional semiconductors: an introduction» . – Cambridge University Press, 1998.
11. Ferry D.K. and Goodnick S.M. «Transport in nanostructures». – Cambridge University Press, 1997.
12. Де Жен П., «Сверхпроводимость металлов и сплавов». – Москва: Мир, 1968.
13. Ketterson J.B. and Song S.N., «Superconductivity». – Cambridge University Press. 1999.
14. Nazarov Y.V. and Blanter Y.M. «Quantum transport: Introduction to nanoscience». – Cambridge University Press, 2009.
15. Miller S.C. and Good R.H. «A WKB-type approximation to the Schroedinger equation». – Phys. Rev., vol. 91, 174 (1953).
16. Bardeen J., «Tunnelling from a many-particle point of view». - Phys. Rev. Lett., vol. 6, p. 57 (1961).
17. Blonder G.E., Tinkham M. and Klapwijk T.M. «Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion». - Phys. Rev. B, vol. 25, p. 4515 (1982).
18. Tersoff J. and Hamann D.R. «Theory and application for the scanning tunneling microscope».– Phys. Rev. Lett., vol. 50, 1998 (1983).
19. Slonczewski J.C. «Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier». – Phys. Rev. B, vol. 39, 6995 (1989).
20. Лесовик Г.Б. и Садовский И.А. «Описание квантового электронного транспорта с помощью матриц рассеяния». – Успехи физических наук, т. 181, стр. 1041—1096 (2011).